
Stressless RSP Benchmarking With RSPLab

Andrea Mauri, Riccardo Tommasini, Emanuele Della Valle, Marco Brambilla

Politecnico di Milano, DEIB, Milan, Italy
{name.lastname}@polimi.it

Abstract. RSPLab is an infrastructure that reduces the effort required
to design and execute reproducible experiments as well as share their
results. It provides a programmatic environment to deploy RDF Streams
and RSP engines, interact with them and continuously monitor their
performances and collect statistics. In this demo well show how to deploy
RDFStream and RSP engines in the cloud and how to interact with them
registering and unregistering continuous queries lively. We will show how
these action impact the performances and we transform the results in
visual plot on a chart.

Keywords: Semantic Web, Stream Reasoning, RDF Stream Processing,
Benchmarking

1 Introduction

In the RDF Stream Processing (RSP) community particular interest has arisen
on empirical research on benchmarks and evaluation methodologies. These com-
prehend studies on query language expressive power, performance, correctness
of results, memory load and latency [3] (§ 2.4).

Beside community efforts, the evaluation of RSP engines is still not system-
atic. This mostly because RSP engines have different semantics, interfaces, and
processing models. Moreover, existing test drivers [5, 1] are benchmark specific.
This situation challenges comparability of the experiments, because it forces
researchers to set up ad-hoc configuration environments that might have archi-
tectural bias and produce an unmeasurable experimental errors.

In this paper, we present RSPLab [7] a cloud-ready open-source test driver
to support empirical research for RSP.

We will show how it enables design of experiments by the means of a program-
matic interface that allows deploying the environment, running experiments,
measuring the performance, visualizing the results as reports, and cleaning up
the environment to get ready for a new experiment.

The remainder of the paper is structured as follow: Section 2 shows the
RSPLab architecture, Section 3 describes how the demonstration will be carried
out and finally Section 4 concludes and provides information on where additional
material regarding the resource can be found.

2 RSPLab

Figure 1 presents RSPLab architecture that comprises four independent tiers:
Streamer, Consumer, Collector and Controller.

2 A. Mauri, R. Tommasini, E. Della Valle, M. Brambilla

Fig. 1: RSPLab Architecture

RSPLab was developed using Docker, i.e. a lightweight virtualization frame-
work1. This allows to fully control the available resources enabling experiments
execution at scale and it guarantees components isolation. Moreover, it fosters
reproducibility by making the execution hardware-independent.

Streamer. The data provisioning tier publishes RDF streams from existing sources.
It is implemented using a modified version of TripleWave [4]2

Consumer. The data processing tier exposes the RSP engines on the web us-
ing the RSP Services [2], generalizing the processing model enabling streams
registration, queries registration and results consumption.

Collector. This tiers is in charge of monitoring the execution of a benchmark,
in particular it includes: (1) a distributed continuous monitoring system3, that
collects performance statistics, (2) a time-series database4 which is used to store
the data collected and (3) a RSPSink that persists query results on a cloud file
systems, allowing for post-hoc correctness analyses.

Controller. The control and analysis tier allows the RSPLab user to interact with
the whole environment by deploying streams and engines and monitoring the per-
formance of the latter. A programmatic interface, implemented using iPython
Notebooks5 includes wrappers for RSP services, TripleWave and RSPsinks. As-
sisted data visualization dashboards are accessible, in real time, via Grafana6,
i.e. a dashboard that reads directly form the time-series database. Experimental
reports annotated with VOID can be generated also using the library.

1 https://www.docker.com/
2 https://github.com/streamreasoning/triplewave/tree/rsplab
3 https://github.com/google/cadvisor
4 https://www.influxdata.com/
5 https://ipython.org/notebook.html
6 https://grafana.com/

Stressless RSP Benchmarking With RSPLab 3

3 Demonstration

1 Q1 = rsp . BenchmarkQueries .
CityBench .Q1

2 e = rsp .new experiment ()
3 e . add engine (” http :// c q l e s . rsp−

lab . org ” , 80 , rsp . D i a l e c t s .
CQELS)

4 e .add KPIs(rsp .KPI .
Memory Consumption , rsp .KPI
. CPU Load)

5 e . add query (”CB.Q1” , rsp .
QueryType . Query , Q1 , rsp .
D i a l e c t s .CQELS)

6 e . add tbox (”CB.Q1” , name=”
c i t y t r a f f i c . owl” , base=”rsp
−lab . org ”)

7 e . add graph (”CB.Q1” , name=”
SensorRepos i tory . rd f ” , base
=”rsp−lab . org ”)

8 e . add stream (”CB.Q1” , ”
AarhusTraff icData158505 ” ,
base=”rsp−lab . org ”)

9 e . add stream (”CB.Q1” , ”
AarhusTraff icData182955 ” ,
base=”rsp−lab . org ”)

Listing 1.1: Experiment Design

1 #WARM−UP
2
3 rsp = RSPEngine (ehost , eport) ;
4
5 f o r d in experiment . graphs () :
6 rsp . register graph (d)
7 f o r s in experiment . streams () :
8 rsp . register stream (s)
9 f o r q in experiment . qu e r i e s () :

10 rsp . register query (q)
11 rsp . new observer (query , ’

de fau l t ’)
12 spawn sinks (experiment)
13
14 # OBSERVE
15 wait (experiment . durat ion ())
16
17 f o r q in engine . qu e r i e s () :
18 f o r o in engine . ob s e rve r s (q) :
19 rsp . unregister observer (o)
20 rsp . unregister query (q)
21 f o r s in engine . streams () :
22 rsp . unregister stream (s)
23 rsp . report . publish (experiment)

Listing 1.2: Simple execution logic

In this demo we show all the workflow necessary for deploying and executing
a RSP benchmark using RSPLab. In particular we will present the following
steps:

Step-1 Deployment and configuration of RDF Streams: we show how to deploy
and configure the Streamer component in order to stream the included datasets.
Step-2 Deployment and configuration of RSP Engines: we show how to deploy
and configure the Consumer tier, with particular focus on the C-SPARQL and
CQELS engines.
Step-3 Continuous query of the streams and collection of the results: we show
how to issue continuous queries to the streams using the programming interface.
We use the included Python library7 that allow to fully control all the tiers
included in RSPLab. In particular it allows to (1) create and launch experiments
following the structure described in [6], (2) dynamically add and remove graphs
and streams to a RSP engine, (3) dynamically register and unregister queries and
observers to a RSP engine, and finally (4) publish the results following the linked
data principles. Listing 1.1 and 1.2 show respectively the basic code necessary
to create an experiment and and to implement a simple logic for executing a
benchmark. Notice that a RSPLab user is free to build any execution workflow
according to his requirements.
Step-4 Visualization of statistics in real time: we show how to use Grafana on
the Controller tier in order to visualize the performance indexes in real-time
(an example is shown in Figure 2). Moreover we will show how with RSPLab is
possible to observe the different phases of an experiment: the warm-up phase,
where the engines are deployed and the streams and the queries are registered,
and the observation phase, where the engines are in steady state, consuming the
streams and answering the queries.

7 https://github.com/streamreasoning/rsplib

4 A. Mauri, R. Tommasini, E. Della Valle, M. Brambilla

Fig. 2: A example of dashboard showing CPU load and
Memory usage.

With this demon-
stration we aim to
show the effectiveness
of RSPLab in facil-
itating the deploy-
ment and execution
of RSP benchmarks.
We will run both the
included benchmarks
(e.g., Citybench and
LSBench) and custom variation, by adding and removing queries in real-time,
in order to highlight how these actions impact on the performance.

4 Conclusion

The main contribution of this demonstration paper is the proof of RSPLab effec-
tiveness. The Docker-based architecture and the programmatic interface facili-
tate the process of deploying the environment, running experiments, measuring
the performance, visualizing the results as reports.

RSPLab is released as open-source8, examples, documentation and tutorials
are available on GitHub9, hosted by the Stream Reasoning organization.

References

1. Ali, M.I., Gao, F., Mileo, A.: Citybench: A configurable benchmark to evaluate RSP
engines using smart city datasets. In: The Semantic Web - 14th ISWC, Bethlehem,
PA, USA, October 11-15, 2015, Proceedings, Part II. pp. 374–389

2. Balduini, M., Valle, E.D.: A restful interface for RDF stream processors. In: Pro-
ceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney, Australia,
October 23, 2013. pp. 209–212

3. DellAglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
A survey and outlook. Data Science (Preprint), 1–24

4. Mauri, A., Calbimonte, J., Dell’Aglio, D., Balduini, M., Brambilla, M., Della Valle,
E., Aberer, K.: Triplewave: Spreading RDF streams on the web. In: The Semantic
Web - 15th International Semantic Web Conference, Kobe, Japan, October 17-21,
2016, Proceedings, Part II. pp. 140–149

5. Phuoc, D.L., Dao-Tran, M., Pham, M., Boncz, P.A., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: The Semantic Web - 11th
ISWC, Boston, MA, USA, November 11-15, 2012, Proceedings, Part II. pp. 300–312

6. Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven: a framework
for systematic comparative research approach for rsp engines. In: 13th Extended
Semantic Web Conference, ESWC 2016, Heraklion, Crete, Greece. pp. 87–92

7. Tommasini, R., Valle, E.D., Mauri, A., Brambilla, M.: Rsplab: Rdf stream processing
benchmarking made easy. In: The Semantic Web 16th International Semantic Web
Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II

8 http://rsp-lab.org
9 https://github.com/streamreasoning/rsplab

