RDF*and SPARQL*: An Alternative Approach to
Annotate Statements in RDF

Olaf Hartig

Dept. of Computer and Information Science (IDA), Linkoping University, Sweden
olaf.hartig@liu.se

1 Introduction

One of the major criticisms of RDF has been the lack of a convenient way to anno-
tate data with metadata on a per-statement basis. Such annotations are a native feature
in other contemporary graph data models (e.g., edge properties in the Property Graph
model [7]) and there exist a number of popular use cases, including the annotation of
statements with certainty scores, weights, temporal restrictions, and provenance infor-
mation. To mitigate the inherent lack of a native support for such annotations in the
purely triple-based data model of RDF, there exist several proposals to capture such
annotations in the RDF context. However, these proposals have a number of shortcom-
ings (cf. Section 2) and none of them has yet been adopted as a (de facto) standard.

We propose an alternative approach that is based on nesting of RDF triples and of
query patterns. This approach allows for a more compact representation of data and
queries, and it is backwards compatible with the existing approaches. In an ongoing
research project we study the trade-offs of our proposal. With a poster in the conference
we aim to introduce our proposal to the community and to present initial results of our
research. In the remainder of this extended abstract we first discuss existing approaches
to annotate statements in RDF; thereafter, we introduce our proposal, highlight the cur-
rent status of our research, and provide an outlook on our future work.

2 Existing Approaches to Annotate Statements in RDF

As a running example, consider the two RDF triples in Figure la (represented in the
standard Turtle syntax), which indicate the age of somebody named Bob. Assume we
want to annotate the statement about the age—i.e., the second of these triples—with
provenance metadata referring to the source and the creator of the statement.

A first approach, called RDF reification, is to apply the reification vocabulary as
introduced in the RDF specification [4]. This approach requires us to include four addi-
tional triples to refer to the triple for which we want to provide metadata. The subject of
these four additional triples has to be a new identifier (IRI or blank node) which, later
on, may be used for providing the metadata. For instance, if we let a blank node la-
beled _: s be our new identifier, then Figure lc lists the additional four triples required
for our running example. Now, we may use the blank node to provide our example
metadata as illustrated in Figure 1b. Note that for every triple for which we want to
provide metadata we have to add the respective four reification triples to our dataset.

Then, to query so-represented metadata about statements using SPARQL, each query
has to contain additional triple patterns to match the triples that establish the reification.
For instance, assume we want to retrieve a list containing the name and the age of each
person in our data and the respective sources of the statements about the persons’ ages.
To this end, we may use the SPARQL query in Figure 1d. Observe that the given query



:bob foaf:name "Bob"; _:s dct:creator <http://example.com/crawlerl>;
foaf:age 23. dct:source <http://example.net/text.html>.

(@) (b)

SELECT ?name ?age ?src WHERE ({
?x foaf:name ?name ;
foaf:age ?age .

:s rdf:type rdf:Statement ; ?r rdf:type rdf:Statement ;

rdf:subject :bob ; .
. rdf:subject ?x ;
rdf:predicate foaf:age ; .
K rdf:predicate foaf:age ;
rdf:object 23 .
rdf:object ?age ;
() dct:source ?src . }
C
(d)
SELECT ?name ?age ?src WHERE { SELECT ?name ?age ?src WHERE ({
?x foaf:name ?name . GRAPH ?gl {
?x foaf:age ?age . ?x foaf:name ?name .
?x ?p ?age . }
?p rdf:singletonPropertyOf foaf:age . GRAPH ?g2 {
?x dct:source ?src . } ?x foaf:age 2age .
}
?g2 dct:source ?src . }
(e ®

Figure 1: Existing approaches to annotate statements in RDF: (a—c) data and (d) query
for RDF reification, (e) query for singleton properties, and (f) query for named graphs.

contains four triple patterns to identify the triple(s) whose metadata we want to see.
If we were also interested in potential metadata about the corresponding foaf :name
triple, we would have to add another four reification-related triple patterns.

The example highlights two major shortcomings of RDF reification: First, adding
four reification triples for every reified triple is inefficient for exchanging RDF data.
Second, writing queries to access metadata about statements is cumbersome because
any metadata-related (sub)expression in a query has to be accompanied by another
subexpression to match the corresponding four reification triples.

To address these shortcomings other authors have proposed alternative approaches;
the most notable of which include singleton properties [6], and an application of named
graphs which, hereafter, we refer to as single-triple named graphs [5]. Figures le and 1f
illustrate a corresponding version of the query in Figure 1d rewritten for singleton prop-
erties and for single-triple named graphs, respectively. As can be observed in these ex-
ample queries, each of the two proposals still requires queries to contain verbose con-
structs whose only purpose is to match artifacts that the respective proposal introduces
to establish the relationship between a triple and the metadata about it. An additional
issue of the singleton properties proposal is that it introduces a large number of unique
predicates, which is untypical for RDF data and, thus, disadvantageous for common-
ly-used SPARQL optimization techniques [5]. Another disadvantage of the proposal to
use named graphs is that it inhibits an application of named graphs for other use cases.

In contrast to these approaches, our proposal in the next section allows for very con-
cise queries; yet, it remains backwards compatible. That is, it can be implemented based
on any system that has been designed and optimized for any of the other approaches.
Additionally, our approach can also be mapped natively to a corresponding physical
storage model as a foundation for novel implementations tailored to our proposal.



SELECT ?name ?age ?src WHERE { SELECT ?name ?age ?src WHERE {

?x foaf:name ?name . ?x foaf:name ?name .
<<?x foaf:age ?age>> dct:source ?src. BIND (<<?x foaf:age ?age>> AS ?t)
} ?t dct:source ?src . }

(@ (b)

Figure 2: SPARQL"query with (a) nested triple pattern and (b) new type of BIND clause.

3 A New Proposal: RDF*and SPARQL*

The basis of our proposal is to extend RDF with a notion of nested triples. More pre-
cisely, this extension, which we call RDF% allows for triples that represent metadata
about another triple by directly using this other triple as their subject or their object. For
instance, assume an extension of the Turtle syntax that implements the idea of nested
triples by enclosing any embedded triple using the strings ’<<’ and ’>>’ (we call this
extended syntax Turtle* and specify it in our technical report [3]). Then, all data and all
metadata of our running example (i.e., Figures 1a—1c) may be represented as follows.
:bob foaf:name "Bob" .
<<:bob foaf:age 23>> dct:creator <http://example.com/crawlers#cl> ;
dct:source <http://example.net/listing.html> .
Given the outlined notion of RDF* which supports (arbitrarily deep) nesting of
triples, the crux of our proposal is to extend the SPARQL query language accordingly.
That is, in the extended language, called SPARQL, triple patterns may also be nested,
which gives users a query syntax in which accessing specific metadata about a triple is
just a matter of mentioning the triple in the subject (or object) position of a metadata-
related triple pattern. For instance, by adopting the Turtle* syntax as outlined above, we
may represent the query in Figure 1d (as well as its rewritten versions in Figures le
and 1f) in a more compact form as illustrated in Figure 2a. Moreover, an alternative, se-
mantically equivalent form is to use an extended type of BIND clauses as demonstrated
in Figure 2b. The latter example also highlights the fact that in SPARQL, variables in
query results may be bound not only to IRISs, literals, or blank nodes, but also to full
RDF* triples. For a detailed formalization of SPARQL, including the complete exten-
sion of the full W3C specification of SPARQL, we refer to our technical report [3].

4 Discussion and Initial Results

We emphasize three orthogonal perspectives on our proposal: On one hand, RDF* and
SPARQL" may be understood—and used—simply as syntactic sugar on top of RDF
and SPARQL. In this sense, any RDF*specific syntax such as Turtle* may be parsed
directly into plain RDF data that uses RDF reification or any of the other approaches
to annotate statements in RDF. Likewise, SPARQL" queries may be rewritten into ordi-
nary SPARQL queries according to the selected statement-annotation approach. Then,
based on such conversions of data and queries, our proposal may be supported easily by
implementing a wrapper on top of any existing RDF triple store. An advantage of this
implementation approach is not only the comparably small effort that it requires, but
also the fact that such an implementation can readily benefit from possible optimiza-
tions that the triple store has for RDF reification (or any of the other related proposals).

As a formal foundation of such a wrapper-based implementation we have studied
RDF*to-RDF and SPARQL*~to-SPARQL mappings [2]. More specifically, we have de-
fined a pair of such mappings that employs the RDF reification vocabulary, and we



have shown formally that these mappings possess two desirable properties, namely the
information preservation property and the query result preservation property [2].

On the other hand, our proposal may also be conceived of as a new abstract data
model in its own right. Hence, this model presents a more feature-rich extension of
the RDF data model and its query language SPARQL. As such, our proposal may be
implemented natively by developing techniques to execute SPARQL" queries directly
on a physical storage model that is designed to support RDF*. For instance, the idea
of nested triples may be carried over to the physical level by means of a new storage
model that embeds physical representations of triples into one another. Since such native
implementations of our proposal may be tailored to leverage particular characteristics
of RDF*and SPARQL, they might be more efficient than wrapper-based ones.

Initial results towards such native implementations also comprise foundations only
at this moment. That is, we have defined the RDF* data model and a formal semantics
of SPARQL, and we have shown properties related to redundancies in RDF* data [2].

Conceptually, our proposal extends RDF and SPARQL with a feature that is similar
to the notion of edge properties in Property Graphs. Therefore, a third, more abstract
perspective on our proposal is that it presents a step towards closing the gap between
the RDF world and the world of graph databases. That is, our proposal may serve
as the foundation of a conceptual mediator layer for integrating RDF data and Prop-
erty Graphs. In fact, in addition to the aforementioned RDF*-to-RDF mappings [2], we
also have preliminary results on reconciling RDF* and the Property Graphs model [1].
Hence, when combined, these works already provide a basis for integrating data across
the different graph data models and for using SPARQL" as a common query language.

5 Outlook

So far we have focused on providing the formal foundations of our proposal. We con-
sider establishing these foundations as the necessary preliminaries to systematically
study the trade-offs of our proposal. Consequently, our future work is to conduct such
a study, which will take multiple directions: First, we plan to investigate how appealing
SPARQL" queries are to users in comparison to the corresponding SPARQL queries that
would have to be written for other RDF-focused statement-annotation approaches (such
as those in Section 2). Second, we aim to understand the practical consequences of ex-
ecuting SPARQL" queries based on a wrapper that employs our mappings. Third, and
perhaps most interesting from a systems-research perspective, we want to investigate
approaches to implement our proposal natively. A particularly interesting idea in this
context is to carry over the notion of nested triples to the physical level.

References

1. O. Hartig. Reconciliation of RDF* and Property Graphs. CoRR, arXiv/1409.3288, 2014.

2. O. Hartig. Foundations of RDF* and SPARQL*. In /1th Alberto Mendelzon Int. Workshop
on Foundations of Data Management (AMW), 2017.

3. O. Hartig and B. Thompson. Foundations of an Alternative Approach to Reification in RDF.
CoRR, abs/1406.3399, 2014.

4. P.J. Hayes and P. F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, Feb. 2014.
5. D. Herndndez, A. Hogan, and M. Krotzsch. Reifying RDF: What Works Well With Wikidata?
In 11th Int. Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS), 2015.

6. V. Nguyen, O. Bodenreider, and A. P. Sheth. Don’t like RDF Reification? Making Statements

about Statements Using Singleton Property. In 23rd Int. World Wide Web Conf. (WWW), 2014.
7. 1. Robinson, J. Webber, and E. Eifrém. Graph Databases. O’Reilly Media, 2013.



	RDF and SPARQL: An Alternative Approach to Annotate Statements in RDF
	Introduction
	Existing Approaches to Annotate Statements in RDF
	A New Proposal: RDF and SPARQL
	Discussion and Initial Results
	Outlook


