
Abstract 
Artificial intelligence research to a great degree fo-
cuses on the brain and behaviors that the brain gen-
erates. But the brain, an extremely complex struc-
ture resulting from millions of years of evolution, 
can be viewed as a solution to problems posed by an 
environment existing in space and time. The envi-
ronment generates signals that produce sensory 
events within an organism. Building an internal spa-
tial and temporal model of the environment allows 
an organism to navigate and manipulate the environ-
ment. Higher intelligence might be the ability to pro-
cess information coming from a larger extent of 
space-time. In keeping with nature’s penchant for 
extending rather than replacing, the purpose of the 
mammalian neocortex might then be to record 
events from distant reaches of space and time and 
render them, as though yet near and present, to the 
older, deeper brain whose instinctual roles have 
changed little over eons. Here this notion is embod-
ied in a model called morphognosis (morpho = 
shape and gnosis = knowledge). Its basic structure is 
a pyramid of event recordings called a morphognos-
tic. At the apex of the pyramid are the most recent 
and nearby events. Receding from the apex are less 
recent and possibly more distant events. A mor-
phognostic can thus be viewed as a structure of pro-
gressively larger chunks of space-time knowledge. 
A set of morphognostics forms long-term memories 
that are learned by exposure to the environment. A 
cellular automaton is used as the platform to inves-
tigate the morphognosis model, using a simulated 
organism that learns to forage in its world for food, 
build a nest, and play the game of Pong. 

1 Introduction 
The human brain is the seat of intelligence. Thus when we 
attempt to craft intelligence, naturally we turn to it as a guide. 
Fortunately, neuroscience is proceeding at an astounding 
pace [Kaiser, 2014; Stetka, 2016], methodically unpacking its 
mysteries. Yet the complexity of the brain, with billions of 
neurons and trillions of synapses, remains daunting. Teasing 
apart which aspects and features of the brain are essential to 

the function of intelligence and which are incidental is a cru-
cial and difficult task. Krakauer et al. [2017] recommend that 
neuroscience work takes place after the study of related be-
haviors.  

Unfortunately, the prospects of understanding complex 
systems through examination and dissection are questionable 
[Jonas and Kording, 2016]. And as for constructing a com-
plete precise brain model, it is possible, as John von Neu-
mann believed [Mühlenbein, 2009], that at a certain level of 
complexity the simplest precise description of a thing is the 
thing itself. In reaction to this, some efforts, such as The Hu-
man Brain Project [2015] and Numenta [Hawkins, 2004; 
White paper, 2011], have taken the position that analysis 
must be complemented with synthesis and simulation to 
achieve a satisfactory level of understanding. 

From an artificial intelligence (AI) viewpoint, we must 
keep in mind that the purpose of a brain is to allow an organ-
ism to navigate and manipulate its environment. Thus it is a 
solution to problems posed by the environment. While the 
earlier days of AI seemed more focused on this viewpoint, 
recently neuroscience has assumed perhaps an outsized role 
in directing AI, even to the extent of governmental encour-
agement [Vogelstein, 2014].  

Some researchers maintain that the environment largely 
consists of a body for the brain to interact with. The embodied 
brain will thus leverage the sensory and motor capabilities of 
a body that are adapted to an environment. Robotics research-
ers such as Brooks [1999], Hoffmann and Pfeifer [2011] have 
argued that true artificial intelligence can only be achieved by 
machines that have sensory and motor skills and are con-
nected to the world through a body. However, this approach 
belies the problem since the body, like the brain, is also a so-
lution to its environment. 

Determining a model of an organism’s environment is 
more tractable than creating a brain model of an environmen-
tal model. But it requires settling on what is in the world that 
produces sensory events and reacts to motor responses. Con-
founding this is that we of course must use our brains to do 
this. There is a common and somewhat ironic tendency to de-
scribe AI inputs and outputs in human cognitive terms, i.e. 
post-processed brain output, such as symbolic variables. 

Hoffman [2009] argues that evolution has shaped our 
senses and perceptual machinery to only provide information 
on events that are ancestrally significant, such as finding food 
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and safety. Other events in the environment that we cannot 
directly sense must be mapped through technology onto our 
sensory capabilities. For example, in the age of science the 
existence and use of X-rays is important, but we sense them 
only indirectly, as shadows on photographic film. Indeed, 
Hoffman argues that reality may be more radically alien than 
we can imagine. 

Epistemological offerings would seem at best too abstract 
to be useful for framing a sensory-response environment, and 
at worst useless, as in the cases of nihilism and solipsism. 
And physics has in recent times become increasingly muddier 
on the “true” nature of reality: 
x The arrow of time may be related to the perception of 

entropy [Halliwell, 1994] 
x String theory demands a number of extra infinitesimal 

dimensions [Rickles, 2014]. 
x The perception of space may be a holographic projection 

[Bousso, 2002]. 
x Reality could be a cellular automaton [Wolfram, 2002], 

a graph [Wolfram, 2015], or a simulation [Moskowitz, 
2016].  

Despite these hazards, people universally experience the 
environment as a space-time structure. And even if there is a 
different underlying substructure, the model is empirically ef-
fective. The presence of mammalian brain structures for map-
ping spatial events [Vorhees and Williams, 2014] provides 
evidence for the processing of this type of information. Sim-
ilarly, brain structures for sensing the passage of time have 
also found support [Sanders, 2015].  

Using space-time as a model, it can be speculated that 
higher intelligence is the ability to process information aris-
ing from a larger extent of space-time. And in keeping with 
nature’s penchant for extending rather than replacing, the 
purpose of the mammalian neocortex might then be to record 
events from distant reaches of space and time and render 
them, as though yet near and present, to the older, deeper 
brain whose instinctual roles have changed little over eons. If 
this is so, these structures would be repurposed to embody 
language and abstract concepts. 

 
 

 

Figure 1 – Morphognostic event pyramid 
Building an internal spatial and temporal model of the envi-
ronment allows an organism to navigate and manipulate the 
environment. This paper introduces a model called morphog-
nosis (morpho = shape and gnosis = knowledge). Its basic 

structure is a pyramid of event recordings called a morphog-
nostic, as shown in Figure 1. At the apex of the pyramid are 
the most recent and nearby events. Receding from the apex 
are less recent and possibly more distant events. 

Morphognosis is partially inspired by an abstract morpho-
genesis model called Morphozoic [Portegys et al., 2017]. 
Morphogenesis is the process of generating complex struc-
tures from simpler ones within an environment. Morphozoic 
is based on hierarchically nested neighborhoods within a cel-
lular automaton. Morphozoic was found to be robust and 
noise tolerant in reproducing a number of morphogenesis-
like phenomena, including Turing diffusion-reaction systems 
[Turing, 1952], gastrulation, and neuron pathfinding. It is 
also capable of image reconstruction tasks. 

2 Description 
The morphognosis model is demonstrated in three 2D cellular 
environments: (1) a food foraging task, (2) a nest building 
task, and (3) the game of Pong. The food foraging task is used 
as a venue to further define the model. 

2.1 Food foraging 
In this task a virtual creature called a mox finds itself in a 2D 
cellular world as shown in Figure 2. To find food the mox 
must navigate around various obstacles of various types (col-
ors). 

 

Figure 2 - Mox food foraging in a 2D cellular world. 
Figure 3 shows a snapshot of a morphognostic describing the 
space-time events, in this case obstacle encounters, while the 
mox forages. In this case a neighborhood is configured as a 
3x3 set of sectors. 

Cell type densities are stored instead of raw cell values to 
allow linear scaling of information as the hierarchy increases 
since storing individual cell values would result in a geomet-
ric growth. The cell type density is only one of a number of 
possible statistical or aggregation functions that could be 
used. An alternative might be to look at the distribution of 
cell types as an image processing operation, such as taking a 
Laplacian, Sobel or other image operator. 

2.1.1    Morphognostic spatial neighborhoods 
A cell defines an elementary neighborhood: 
 

 neighborhood0 = cell 
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Figure 3 - Pyramid of obstacle type densities arranged as hierarchy of 3x3 cell neighborhoods. 
 
A non-elementary neighborhood consists of an NxN set of 
sectors surrounding a lower level neighborhood: 
 
 neighborhoodi  = NxN(neighborhoodi-1) 
 
where N is an odd positive number. 
 
The value of a sector is a vector representing a histogram of 
the cell type densities contained within it: 
 
value(sector) = (density(cell-type0), density(cell-type1), … 
density(cell-typen)) 
 
The number of cells contributing to the density histogram of 
a sector of neighborhoodi = Ni-1xNi-1 

2.1.2    Morphognostic temporal neighborhoods 
A neighborhood contains events that occur between time 
epoch and epoch + duration: 
 
 t10 = 0 
 t20 = 1 
 t1i = t2i-1 
 t2i = (t2i-1  * 3) + 1 
 epochi  = t1i 
 durationi  = t2i - t1i  

2.1.3    Metamorphs 
In order to navigate and manipulate the environment, it is 
necessary for an agent to be able to respond to the environ-
ment. A metamorph embodies a morphognostic→response 
rule. A set of metamorphs can be learned from a manual or 
programmed sequence of responses within a world. 
Metamorphs establish an important feedback: 
 
• Learned morphognostics shape responses. 
• Responses shape the learning of morphognostics. 

 
 

 
Metamorph “execution” consists generating a morphognos-
tic for the current mox position and orientation then finding 
the closest morphognostic contained in the learned meta-
morph set, where: 
 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑒𝑡𝑎𝑚𝑜𝑟𝑝ℎ𝑖,  𝑚𝑒𝑡𝑎𝑚𝑜𝑟𝑝ℎ𝑗) = 

∑  
      𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑠

𝑥

∑  
𝑠𝑒𝑐𝑡𝑜𝑟𝑠

𝑦

∑ 𝑎𝑏𝑠 (𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑥,𝑦,𝑧 −
𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑗,𝑥,𝑦,𝑧

)
𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠

𝑧

 

2.1.4    Artificial neural network implementation 
In a complex environment, generating a large number of met-
amorphs may be prohibitive in terms of storage and search 
processing. Alternatively, metamorphs can be used to train an 
artificial neural network (ANN), as shown in Figure 4, to 
learn responses associated with morphognostic inputs. Dur-
ing operation, a current morphognostic can be input to the 
ANN to produce a learned response. The ANN also has these 
advantages: 
 
• Faster. 
• More compact. 
• More noise tolerant. 

2.1.5   Results 
The mox were trained in worlds featuring a number of ran-
domly placed obstacles of various types. Training was done 
by “autopiloting” the mox along an optimal path to the food. 
This generated a set of metamorphs suitable for testing. Table 
1 shows the results of varying the neighborhood hierarchy 
depth in a 10x10 world. Success indicates the mean amount 
of food eaten, so 1 is a perfect score. It can be observed that 
more obstacles tend to improve performance. This is because 
they tend to form unique landmark configurations to guide 
the mox. Larger neighborhoods also tend to improve perfor-
mance. 
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Figure 4 – Metamorph artificial neural network.

 
Neighborhoods Obstacle types Obstacles Food 

1 1 10 0.1 
1 1 20 0.2 
1 2 10 0 
1 2 20 0 
1 4 10 0 
1 4 20 0 
2 1 10 0.3 
2 1 20 0.4 
2 2 10 0.2 
2 2 20 0.6 
2 4 10 0.2 
2 4 20 0.6 
3 1 10 1 
3 1 20 0.9 
3 2 10 1 
3 2 20 1 
3 4 10 1 
3 4 20 1 

Table 1 – Foraging in a 10x10 world. 
The next test examines how well the model performs when 
the test world is not a duplicate of a training world, but is 
similar to a set of training worlds. Thus for this, multiple 
training runs are used. Before each training run, the cell types 
of all the cells are probabilistically modified to a random 
value. A successful test run must then rely on a composite of 
multiple training runs. The results are shown in Table 2. Of 
note is how performance only begins to falter under heavy 
noise and few training runs. 
 
 
. 
 

  
Noise #Train Food 

0.1 1 1 

0.1 5 1 
0.1 10 1 

0.25 1 0.9 
0.25 5 1 

0.25 10 1 
0.5 1 0.6 

0.5 5 0.8 
0.5 10 0.9 
Table 2 – Foraging with noise. 

2.2 Nest building 
This task illustrates how the morphognosis model can be used 
to not only navigate but also manipulate the environment. 

Figure 5 – Nest building with gathered stones.  
Left: scattered stones. Right completed nest. 

 
Figure 5 left shows an environment in which a nest will be 
constructed out of 4 stones (reddish circles) on top of an ele-
vation depicted by the shaded cells. The mox must seek out 
the stones, pick them up, and assemble them into the com-
pleted nest shown in Figure 5 right. 
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For this task, the mox is capable of sensing the presence of a 
stone immediately in front of it, and sensing the elevation gra-
dient both laterally and in the forward-backward direction. In 
addition to the forward and turning movements used by the 
foraging task, the mox is capable of picking up a stone in 
front of it and dropping the stone onto an unoccupied cell in 
front of it. An internal sense allows the mox to know whether 
it is carrying a stone. 

Training was done by running the mox through 10 
repetitions on “autopilot” to build a set of metamorphs. The 
environment was then reset and the mox tested to discover 
whether it is capable of building the nest. Over 50 trials were 
performed with 100% success. Internally, the sensory infor-
mation from the stone, gradient and stone carry states were 
sufficient to achieve success with a neighborhood hierarchy 
of only one level. 

2.3   Pong game 
Much of the real world is nondeterministic, taking the form 
of unpredictable or probabilistic events that must be acted 
upon. If AIs are to engage such phenomena, then they must 
be able to learn how to deal with nondeterminism. In this task 
the game of Pong poses a nondeterministic environment. The 
learner is given an incomplete view of the game state and un-
derlying deterministic physics, resulting in a nondeterminis-
tic game. This task has been found to be challenging for con-
ventional machine learning algorithms [Portegys, 2015].  

2.3.1 Game details 
The goal of the game is to vertically move a paddle to prevent 
a bouncing ball from striking the right wall, as shown in Fig-
ure 6. 
• Ball and paddle move in a cellular grid. 

• Unseen deterministic physics moves ball in 
grid. 

• Cell state: (ball state, paddle state) 
• Ball state: (empty, present, moving 

left/right/up/down) 
• Paddle state: (true | false) 

• Learner orientation: (north, south, east, west) 
• Responses: (wait, forward, turn right/left) 
• If paddle present and orientation north or south, then for-

ward response moves paddle also. 

 
Figure 6 – The game of Pong. 

2.3.2 Procedure and results 
Learner was trained with multiple randomly generated initial 
ball velocities. 
• When the ball moved left and right, the learner moved 

with the ball. 
• When the ball moved up or down, the learner moved to 

the paddle and moved it up or down. 
• This was the challenge: remembering ball state 

while traversing empty cells to the paddle so as 
to move it correctly, then to turn and return to 
ball for next input. 

 
Testing on random games: 100% successful.  

3 Conclusion  
This is an early exploration of the morphognosis model. The 
novelty of the model is both the method for integrating 
knowledge of events occurring in space and time dimensions 
in linear complexity, and the method of expressing the behav-
ioral interplay of responses and sensory events. The goal of 
this project is to model the environment as something that 
could plausibly be in turn modeled by an artificial brain.  

The positive results on the three tasks prompt future 
investigation. Moving up the ladder of animal intelligence, 
possible next tasks include: 

• Web building. Can a space-time memories of building 
one or more training webs allow one to be built in a 
quasi-novel environment? 

• Food foraging social signaling. Bees retain memories of 
foraging food sources that they communicate to other 
bees through instinctive dancing. Can this task be cast 
into the model? 

 
The Java code is available at https://github.com/porte-

gys/MoxWorx 
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