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Abstract. Most existing work on predicting NCAAB matches has been
developed in a statistical context. Trusting the capabilities of ML tech-
niques, particularly classification learners, to uncover the importance of
features and learn their relationships, we evaluated a number of different
paradigms on this task. In this paper, we summarize our work, pointing
out that attributes seem to be more important than models, and that
there seems to be an upper limit to predictive quality.

1 Introduction

Predicting the outcome of contests in organized sports can be attractive for
a number of reasons such as betting on those outcomes, whether in organized
sports betting or informally with colleagues and friends, or simply to stimulate
conversations about who “should have won”. We would assume that this task
is easier in professional leagues, such as Major League Baseball (MLB), the
National Basketball Association (NBA), or the National Football Association
(NFL), since there are only relatively few teams and their quality does not
vary too widely. As an effect of this, match statistics should be meaningful
early on since the competition is strong, and teams play the same opponents
frequently. Additionally, professional leagues typically play more matches per
team per season, e.g. 82 in the NBA or 162 in MLB, than in college or amateur
leagues in which the sport in question is (supposed to be) only a side aspect of
athletes’ lives.

National College Athletics Association Basketball (NCAAB) matches there-
fore offer a challenging setting for predictive learning: more than 300 teams that
have strongly diverging resource bases in terms of money, facilities, and national
exposure and therefore attractiveness for high quality players, play about 30
games each per season, can choose many of their opponents themselves (another
difference to professional teams), and often have little consistency in the com-
position of teams from one season to the next since especially star players will
quickly move on to professional sports. Lopsided results and unrealistic match
statistics will therefore not be uncommon, distorting the perception of teams’
quality.

Most of the existing work in the field is more or less statistical in nature,
with much of the work developed in blog posts or web columns. Many problems
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that can be addressed by statistical methods also offer themselves up as Machine
Learning settings, with the expected advantage that the burden of specifying the
particulars of the model shifts from a statistician to the algorithm. Yet so far
there is relatively little such work in the ML literature. The main goal of the work
reported in this paper was therefore to assess the usefulness of classifier learning
for the purpose of predicting the outcome of individual NCAAB matches. Several
results of this work were somewhat unexpected to us:

– Multi-layer perceptrons, an ML technique that is currently not seeing wide-
spread use, proved to be most effective in the explored settings.

– Explicitly modeling the differences between teams’ attributes does not im-
prove predictive accuracy.

– Most interestingly, there seems to be a “glass ceiling” of about 74% predictive
accuracy that cannot be exceeded by ML or statistical techniques.

2 Definitions

The most straight-forward way of describing basketball teams in such a way that
success in a match can be predicted relate to scoring points – either scoring points
offensively or preventing the opponent’s scoring defensively. Relatively easy to
measure offensive statistics include field goals made (FGM), three-point shots
made (3FGM), free throws after fouls (FT), offensive rebounds that provide an
additional attempt at scoring (OR), but also turnovers that deprive a team of an
opportunity to score (TO). Defensively speaking, there are defensive rebounds
that end the opponent’s possession and give a team control of the ball (DR),
steals that have the same effect and make up part of the opponent’s turnovers
(STL), and blocks, which prevent the opponent from scoring (BLK). And of
course, there are points per game (PPG) and points allowed per game (PAG).

The problem with these statistics is that they are all raw numbers, which
limits their expressiveness. If a team collects 30 rebounds in total during a game,
we cannot know whether to consider this a good result unless we know how many
rebounds were there to be had in the first place. 30 of 40 is obviously a better
rebound rate than 30 of 60. Similar statements can be made for field goals and
free throws, which is why statistics like offensive rebound rate (ORR), turnover
rate (TOR), or field goals attempted (FGA) will paint a better picture. Even in
that case, however, such statistics are not normalized: 40 rebounds in a game in
which both teams combined to shoot 100 times at the basket is different from
40 rebounds when there were only 80 scoring attempts.

For normalization, one can calculate the number of possessions in a given
game:

Possessions = 0.96 ∗ (FGA−OR − TO + (0.475 ∗ FTA))

and normalize teams’ points scored and allowed per 100 possessions, deriving
offensive and defensive efficiencies :

OE =
Points scored ∗ 100

Possessions
,DE =

Points allowed ∗ 100

Possessions



It should be noted that the factor 0.475 is empirically estimated – when first
introducing the above formulation for the NBA, Dean Oliver estimated the factor
as 0.4 [6].

Dean Oliver has also singled out four statistics as being of particular relevance
for a team’s success, the so-called “Four Factors” (in order of importance, with
their relative weight in parentheses):

1. Effective field goal percentage (0.4):

eFG% =
FGM + 0.5 · 3FGM

FGA

2. Turnover percentage (0.25):

TO% =
TO

Possessions

3. Offensive Rebound Percentage (0.2):

OR% =
OR

(OR +DROpponent)

4. Free throw rate (0.15):

FTR =
FTA

FGA

While such statistics are normalized w.r.t. the “pace” of a game, they do
not take the opponent’s quality into account, which can be of particular impor-
tance in the college game: a team that puts up impressive offensive statistics
against (an) opponent(s) that is (are) weak defensively, should be considered
less good than a team that can deliver similar statistics against better-defending
opponents. For best expected performance, one should therefore normalize w.r.t.
pace, opponent’s level, and national average, deriving adjusted efficiencies:

AdjOE =
OE ∗ avgall teams(OE)

AdjDEopponent

, AdjDE =
DE ∗ avgall teams(DE)

AdjOEopponent

To gain a comprehensive picture of a team’s performance during the season,
such statistics would have to be averaged over all games (we describe two ap-
proaches for doing so in Section 4.2), and a state-of-the-art way of using the
derived statistics in predicting match outcomes consists of using the so-called
Pythagorean Expectation, e.g.:

Win Probability =
((Adjusted) OEavg)

y

((Adjusted) OEavg)y + ((Adjusted) DEavg)y

to calculate each team’s win probability and predicting that the team with the
higher probability wins. More generally, ranking systems can by used by ranking
the entire pool of teams and predicting for each match-up that the higher ranked
team wins.



3 Related Work

The use of the Pythagorean Expectation actually goes back to Bill James’ work
on baseball. It was adapted for the use in basketball prediction by numerous an-
alysts, including such luminaries as Daryl Morey, John Hollinger, Ken Pomeroy,
and Dean Oliver. The difference between the different approaches comes down
to which measures of offensive and defensive prowess are used and how the ex-
ponent has been estimated. Dean Oliver was also the one who first introduced
possession-based analysis formally in his book “Basketball on Paper” [6], al-
though he acknowledges that he had seen different coaches use such analysis in
practice. In the same work, he introduced the “Four Factors”.

The adjustment of efficiencies to the opponent’s quality is due to Ken Pomeroy
who uses them as input in his version of the Pythagorean Expectation to rank
NCAAB teams and predict match outcomes. His is far from the only ranking
system, however, with other analysts like Jeff Sagarin, Ken Massey or Raymond
Cheung running their own web sites and giving their own predictions. Compar-
isons of the results of different ranking systems can for instance be found at http:
//masseyratings.com/cb/compare.htm or http://www.raymondcheong.com/
rankings/perf13.html. The worst accuracy for those systems is in the 62%−

64% range, equivalent to predicting that the home team wins, the best ones
achieve up to 74%− 75%.

The NCAAB itself uses the so-called Ratings Percentage Index to rank teams,
a linear weighted sum of a team’s winning percentage, its opponents’ winning
percentage, and the winning percentage of those opponents’ opponents.

As an alternative approach, Kvam et al. have proposed a logistic regres-
sion/Markov chain model [5]. In this method, each team is represented as a
state in a Markov chain and state transitions occur if one team is considered
better than its opponent. Logistic regression is used to estimate transition prob-
ability parameters from the data. The authors have proposed an updated version
using Bayesian estimates [3], and recently published work in which they estimate
their method’s success in comparison to other ranking schemes [2].

4 Day-by-day predictions using ML

The approaches described in the preceding section are in many cases somewhat
or even fully hand-crafted. This can be rather high-level, as in defining the
transition probabilities in LRMC’s Markov chain by hand, or it can go as far
as Ken Pomeroy taking home court advantage into consideration by multiply-

ing the home team’s stats by 1.014. Furthermore, especially the Pythagorean
Expectation seems to be a rather simple model.

Machine Learning promises to address both of these issues: we would expect
to be able to learn the relative importance of different descriptive measures, in
particular if this importance changes for different numerical ranges, and to be
able to learn their relationships, automatically making the model as difficult
(or simple) as needed. We therefore turned to classification learners representing
several different paradigms and evaluated their performance.



In a reversal of current practice, explicit prediction of match outcomes could
be used to rank teams by predicting the outcome of all hypothetical pairings
and ranking teams by number of predicted wins.

The evaluated learners were:

– Decision trees, represented by C4.5.
– Rule learners, represented by Ripper.
– Artificial neural networks, represented by a Multi-layer Perceptron (MLP).
– Näıve Bayes
– Ensemble learners, by a random forest.

All algorithms were used in the form of their respective Weka implementations
and run with default parameter settings, with the exception of Näıve Bayes,
for which the “Kernel Estimator” option was activated to enable it to handle
numerical attributes effectively, J48, whose pre-pruning threshold we set to 1% of
the training data, and the Random Forest, which we set to consist of 20 trees. All
data has been downloaded from Ken Pomeroy’s web site, kenpom.com, and we
limit ourselves to matches involving two Division I teams. Matches were encoded
by location (home, away, neutral court), the chosen numerical statistics up to
the day the match was played, and the outcome (win, loss) from the perspective
of the first team. We always chose the team with the lexicographically smaller
name as first team. For each experiment run, one season was used as test set and
the preceding seasons from 2008 onward as training data, leading to the training
and test set sizes shown in Table 1.

Season 2009 2010 2011 2012 2013

Train 5265 10601 15990 21373 26772
Test 5336 5389 5383 5399 5464

Table 1. Training and test set sizes per season

4.1 Seasonal Averaging

Ken Pomeroy’s web site features only the most recent averaged adjusted efficien-
cies (and averaged Four Factors), i.e. from the end of the season for completed
seasons, and for seasons in progress the efficiencies up to the current date. We
therefore calculated the day-to-day averaged adjusted efficiencies ourselves, fol-
lowing Pomeroy’s description. While that description is very precise for the most
part, the averaging is summarized as averaging over the season with more weight
given to recent games. We chose to average via two methods:

1. an adjustable weight parameter α:

AdjEavg,post−match = (1 − α)AdjEavg,pre−match + αAdjEpost−match



and evaluated a number of different alpha values. Both averaged efficiencies
and Four Factors stabilized for α = 0.2. To have a pre-match value for
the first game of the season, we used the preceding season’s end-of-season
efficiencies, and

2. explicitly:
A side-effect of using an α-parameter less than 0.5 (e.g. 0.2) in averaging
is that last season’s end-of-season averaged adjusted efficiency is weighted
rather highly since it is the only value whose weight is never multiplied with
α itself but always with (1−α). We therefore evaluated a different weighting
scheme in which each match’s adjusted efficiency is weighted explicitly with
the number of games played +1. This means that last season’s end-of-season
efficiency has weight one, the adjusted efficiency of the first game weight two
etc. The sum is normalized with the total sum of weights up to the current
date.

We have to admit that using either way, we did not manage to arrive at
the same end-of-season efficiencies as Ken Pomeroy. Typically, our values are
more extreme, with adjusted offensive efficiencies higher and adjusted defensive
efficiencies lower than Pomeroy’s values. Also, since α-weighting performed con-
sistently worse, we will focus on the explicit averaging for the rest of the paper.

4.2 Using adjusted efficiencies

In the first set of experiments, we aimed to identify which attributes out of
the full set of raw statistics, normalized statistics, Four Factors, and adjusted
efficiencies were most useful in predicting match outcomes. We found the combi-
nations of location and adjusted offensive and defensive efficiencies, and location
and Four Factors to work best. This result is supported by the outcome of using
Weka’s feature selection methods to winnow the attribute set down, which select
location first, followed by adjusted efficiencies, and the Four Factors.

A somewhat surprising result is the weak performance of the symbolic clas-
sifiers: MLP and Näıve Bayes give consistently best results (Table 2). We also
see that more training data does not translate into better models, and that 2012
seems to have been an outlier season.

Season J48 RF NB MLP

2009 0.6839 0.6885 0.7101 0.7077
2010 0.6899 0.6942 0.7172 0.7251
2011 0.6905 0.6779 0.7028 0.716
2012 0.7042 0.7137 0.7276 0.7446
2013 0.6898 0.6881 0.7193 0.7215

Table 2. Match outcome prediction
accuracies using adjusted efficiencies

Season J48 RF NB MLP

2009 0.6647 0.6801 0.7121 0.7011
2010 0.6645 0.6931 0.7202 0.7165
2011 0.6622 0.6983 0.7206 0.7121
2012 0.6788 0.702 0.7305 0.7311
2013 0.6508 0.6892 0.7081 0.7092

Table 3. Match outcome prediction
accuracies using adjusted four factor



The accuracies for the different seasons are on par with those of the best-
performing predictive systems, e.g. Ken Pomeroy’s predictions and the LRMC,
but unfortunately they are not better.

4.3 Using adjusted Four Factors

As mentioned in Section 3, Dean Oliver proposed the so-called “Four Factors”
as being influential for a team’s success. Since our experiments had indicated
that the unadjusted Four Factors were already as useful in predicting match
outcomes as adjusted efficiencies, we assumed that adjusted Four Factors should
be more effective. We therefore performed adjusting in the same way as for
efficiencies: multiplying with the national average and dividing by the opponent’s
counter-statistic, averaging using both methods. Averaging using α proved again
to be worse, while explicitly averaging lead to similar yet slightly worse results
compared to using adjusted efficiencies, as Table 3 shows.

In a bid to improve the performance of the symbolic classifiers, we also ex-
perimented with encoding the differences between adjusted Four Factors explic-
itly, hypothesizing that for instance C4.5’s over-fitting had to do with inducing
branches for many different combinations of values that could be summarized by
their difference. We either subtracted a team’s defensive factor from the oppo-
nent’s corresponding offensive factor, or subtracted offensive from corresponding
offensive, and defensive from corresponding defensive factors. The former scheme
severely underperformed, while the latter scheme with explicit weights for aver-
aging showed very similar results to Table 3.

Finally, we attempted to address our more extreme adjusted values by calcu-
lating each season from stretch, not using the preceding season’s values as input
for the first game. While the resulting adjusted efficiencies are closer to those
reported on Pomeroy’s web site, prediction accuracies also decrease slightly.

4.4 Development of predictive accuracy as the season progresses

Figure 1 shows how predictive accuracy develop as the season progresses. We
chose MLP with adjusted efficiencies for this plot but the general trend is rep-
resentative for other settings.

With the exception for 2009, when only training data from 2008 was available,
predictive accuracy is 100% or close to it for the first few days of the season and
then experiences a dip before it recovers, and shows only slight deterioration
for the rest of the season. Interesting, but hard to spot in the plot, is that
there are small up-and-downs in the playoffs, particularly in the last rounds, for
instance predicting the semi-finals and final correctly after getting the quarter-
finals wrong.

5 Lessons learned and open questions

In this work, we have explored the use of ML techniques, specifically classifi-
cation learners, for making NCAAB match outcome predictions. These are just
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Fig. 1. Development of predictive accuracy over the course of a season (MLP, AdjEff)

preliminary steps and the exploration is obviously far from complete. While the
results were somewhat disappointing, we want to stress that they were not bad
per se – being on par with the state-of-the-art is only disappointing since we
aimed to improve on it. Given our results, however, we believe that there are
two first lessons that can be learned and that should guide our next steps.

5.1 It’s in the attributes, not in the models

As stated above, one of our expectations was that more complex models could
tease out relationships that simpler models would miss. Instead, we found that
Näıve Bayes, arguably the simplest of the classifiers, performs remarkably well.
Similar observations can actually be made about existing techniques, since Ken
Pomeroy’s straight-forward Pythagorean Expectation performs as well as, or
even better than, the much more complex LRMC model, Brown et al.’s claims
notwithstanding.

Instead, whatever differences in performance we have observed essentially
came down to the used attributes and how they were calculated: adjusted ef-
ficiencies and (adjusted) Four Factors are validated both by feature selection
techniques and by the success of the classifiers trained on those representations
but different ways of averaging over the season have an effect on the quality.
Using other or additional features, on the other hand, leads to worse results. In
a sense, this should not be surprising: any given match will be won by the team
that scored more points than the other one, which is the information encoded
in the adjusted efficiencies, for instance.



Of course there is also ML/DM conventional wisdom that the main aspect
of using such techniques effectively consists of constructing the right represen-
tation. Still, we found it surprising how stark the influence of choosing the right
attributes was on achieving best results.

5.2 There seems to be a glass ceiling

Which brings us to the second lesson: the other invariant that we saw in our
experiments is that there seems to be an upper limit to predictive accuracy for
match outcomes, at around 74% − 75%. This holds not only for Näıve Bayes
and the MLP, but when one considers comparisons of non-ML methods, e.g.
http://www.raymondcheong.com/rankings/perf13.html or [2], one finds sim-
ilar results. Additionally there are works in fields such a soccer [4] (76.9%),
American Football [8] (78.6%), NCAA Football [7] (76.2%), and the NBA [1]
(74.33%) that show best results in a similar region.

It is difficult to determine why this is the case. If the claim made in the pre-
ceding section holds and the performance of predictors comes down to attribute
construction, then maybe this glass ceiling is an artifact of the attributes we and
others use. It is also possible, however, that there is simply a relatively large
residue of college basketball matches that is in the truest sense of the world
unpredictable.

5.3 Where to next?

First off, there is need to verify that our first lesson is correct and attributes
are indeed what make or break success. To this end, different feature selection
and modeling techniques need to be contrasted to get a clear understanding of
attributes’ effects, and how to best aggregate them over the course of a season.
Following (or parallel to) that, both of the possible explanations for the glass
ceiling given above offer themselves up for exploration that we intend to pursue
in the near future:

1) Most existing attributes do not encode so-called “intangibles” such as ex-
perience, leadership, or luck. Attempts have been made to construct objective in-
dicators, as in http://harvardsportsanalysis.wordpress.com/2012/03/14/

survival-of-the-fittest-a-new-model-for-ncaa-tournament-prediction/,
whose author proposes a “Returning Minutes Percentage”, Dean Oliver’s at-
tempts to measure positional stability, or Ken Pomeroy’s work that takes the
luck of teams into account. Pomeroy incidentally credits Dean Oliver (once again)
with having introduced this into basketball analysis. Hence, constructing new at-
tributes that include additional information could improve predictive power.

2) A better understanding of incorrectly predicted matches is necessary. The
weak performance of ensembles indicates that misclassified matches are not easily
modeled. However, identifying similarities of misclassified matches or learning a
model that can discriminate correctly and incorrectly classified instances, would
help in gaining an understanding whether those matches are different or simply



unpredictable. At this point, we would also finally come back to whether we can
determine which team “should have won”.

Finally, somewhat unrelated, it could be interesting to separate training data
by conference and learn models particular to the involvement of certain confer-
ences teams. The most challenging question would probably have to do with how
to decide which model’s prediction to use if the two models disagree.
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