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Abstract. One key characteristic of big data is variety. With massive and growing 

amounts of data existing in independent and heterogeneous (structured and 

unstructured) sources, assigning consistent data semantics, which is essential for 

making sense of data sources, is an increasingly important challenge. We use 

ontology and human cognitive principles (i.e., classification theory) to formally 

define the concept of attribute lattice. An attribute lattice is a graph-based, 

schema-free conceptual model that represents attributes of instances in the 

domain of interest and precedence relations among them. The class structure of 

the domain can be inferred from the precedence relations in the lattice. In other 

words, in an attribute lattice, both properties and classes are represented as 

attributes – they are distinguished only by the pattern of arcs and nodes that 

surround them (the semantic neighbourhood).  We propose that this form of 

representation offers a unified framework for modeling data that can be used to 

resolve semantic data heterogeneity. 

Keywords: Attribute lattice, Instance-Based Data Model (IBDM), Semantic 

data integration, Property precedence. 

1 Introduction 

Semantic data heterogeneity (a form of variety) is an active research area in several 

research communities such as databases, domain ontologies and big data [1-3]. In spite 

of its pervasiveness and the substantial work in this area, resolving semantic 

heterogeneity remains a key challenge in using data from multiple independent sources. 

The lack of deep data understanding, and a focus on syntax and structure, rather than 

on data semantics, hinders semantic data integration [4, 5]. 

Two common assumptions in database design contribute to the challenge of 

understanding the semantics of data. First, traditional database design assumes (either 

explicitly or implicitly) that instances must belong to a class to exist in a database [6]. 

Based on this assumption, the main body of research on resolving semantic 

heterogeneity focuses on schema mapping techniques [1-3]. Second, as a result of being 

schema-oriented, database design approaches assume there is a clear and fundamental 
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distinction between classes and properties of instances (i.e., instances belong to the 

classes and possess properties). 

In this paper, we propose a schema-free (i.e., liberated from fixed schemas) 

conceptual modeling grammar that can be used to resolve semantic heterogeneity. Our 

approach is based on the premise that the semantics of data is a function of human 

cognition. Therefore, this approach uses cognitively-based instance-level constructs 

(attributes of instances and relations among them) to represent classes and properties in 

a lattice structure. We argue that the notion of property or class is contextual, such that 

a specific attribute (node in a lattice) can designate either a property of an instance or a 

class, depending on the context (the immediately connected section of the lattice).  

Our approach is based on the instance-based data model (IBDM) [6]. In conformance 

with principles from cognitive psychology and philosophical ontology [7], the IBDM 

argues that instances (things) exist independent of classes, and classes are derived 

constructs that provide useful abstractions [6]. The IBDM proposes a two-layered 

structure in which one layer is responsible for the storage of data about individual 

entities (instances) and their attributes, and the other keeps track of the definition of 

classes in terms of attributes of instances. In the IBDM approach, instances are stored 

only with their attributes, rather than classes [6]. By freeing data from predefined 

classes, this approach simplifies the semantic integration of data by eliminating the 

need to map class-level constructs between heterogeneous data sources.  

We use the concept of property precedence [8-11] to propose a graph-based 

structure that we call an attribute lattice. The attribute lattice provides a formalism to 

express subsumption relationships between attributes. If r and s are two attributes, s 

precedes r (denoted as r→s) if and only if any instance possessing r also possesses s. 

For instance, if r is “ability to walk” and s is “ability to move,” every instance that 

possesses “ability to walk,” also possesses “ability to move” (“ability to 

walk”→“ability to move”).  

In an attribute lattice, nodes represent attributes, and arcs show precedence relations 

among attributes. The attributes represent concepts. Depending on its pattern of 

inbound and outbound arcs, an attribute can designate a property, a category, or a class1. 

The key distinguishing feature of the attribute lattice (compared to other graph-based 

data models) is that the difference between the type of concept (property, category, or 

class) is purely contextual. The type of attributes in the lattice are interpreted solely 

based on the structure of precedence relations, reflecting a human view of links among 

attributes. 

In the following, we begin by discussing related literature (Section 2). Then we 

formally define the proposed attribute lattice and examine some of its properties 

(Section 3). Finally, we summarize our research contribution and discuss opportunities 

for further research (Section 4). 

2 Related Research 

In this section, we discuss principles from cognitive psychology and philosophical 

ontology that guide us in defining an attribute lattice conceptual modeling grammar. 

                                                           
1 Hereafter in this paper, attribute refers to the node itself, and property denotes one type of node. 
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Then, we briefly review approaches for resolving semantic heterogeneity through data 

integration to highlight a common assumption underlying many approaches – the 

reliance on class-based schemas – and to point out that this dependency in turn leads to 

several known challenges in these approaches. (For comprehensive reviewer of 

semantic integration approaches, see, for example, [12, 13].)   

2.1 Principles from cognitive psychology and philosophical ontology  

In this paper, we use principles from philosophical ontology and cognitive psychology. 

In particular, we use Bunge’s ontology [8], as elaborated for conceptual modeling by 

Wand and Weber [7], [14], which is widely known and used. In particular, three 

ontological principles are central to our approach: (1) the world consists of substantial 

things that are assumed to exist physically; (2) things possess attributes; and (3) 

subsumption relations between attributes can be expressed by property precedence [7, 

9, 14]. The concept of property precedence has been used for improving the semantics 

of conceptual models [11]. 

Principles of human cognition provide additional grounding in developing the 

concept of attribute lattice. Lakoff [15] argues that humans understand the world by 

classifying things. In contrast to the common assumption in schema-based and domain 

ontology-based approaches, classes do not exist independent of human cognition. 

Indeed, classes are useful abstractions that support inferences about instances based on 

partially observed information [16, 17].  

2.2 From Traditional to Domain Ontology-based Data Integration 

Semantic data integration is an approach for providing integrated access to disparate 

and semantically heterogeneous data [18].  The field has been an active area of research 

since the 1980s [19, 20]. However, in spite of abundant literature, concerns about the 

lack of “consistent theory and methodology”, and “in-depth understanding of 

semantics” have persisted [5]. 

Traditional semantic data integration can be divided into two main steps [2, 21]. The 

first step, a match operation, takes two schemas as input and provides a semantic 

mapping between schema elements. The second step proceeds to define mapping 

expressions formally. Depending on the context, the mapping can be expressed in 

different languages such as SQL, LAV (local as view), or GAV (global as view). In 

these methods, the data reside in data sources, while the global schema provides a 

unified, integrated, and virtual view [22].  

Generally speaking, matcher types can be categorized into schema level and data 

(instance) level matchers [2]. As argued by [6], in traditional data models, classification 

is inherently part of data management and storage. In this regard, schema reconciliation 

is a prerequisite to accessing data. Not surprisingly, then, the main body of semantic 

data integration literature focuses on schema integration and data integration based on 

a so-called global schema (or a mediated schema). Data level matchers are often used 

as a complementary method or for semi-structured data when a schema cannot be 

constructed from data. These methods are either based on linguistic characteristics (for 
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text elements) such as keywords relative frequency and string match (e.g. [23]), or 

constraint characteristics (for more structured data), such as value ranges and averages 

[2]. Probabilistic and statistical models are the key common approaches used in data 

level matchers (e.g. [24, 25]). 

The initial approach for data integration was hard-coding the integration points. In 

this approach, developers were supposed to implement separate and specific code to 

get access to components of other schemas. Therefore, it had no flexibility, and it was 

hard to maintain. Although subsequent methods were loosely coupled and easier to 

manage, data semantics was a missing component in the integration process [4]. 

Domain ontology-based approaches were introduced to address this lack of semantics. 

A domain ontology has two primary roles to play in these methods [26]: first, creating 

a mapping between concepts with fixed classes (ontology) and the content; and second, 

integrating these concepts from different ontologies. Although schemas and ontologies 

have differences (for a detailed comparison see [4]), since both using fixed classes, 

similar techniques were used for schema mapping and ontology mapping [12]. The 

ontology mapping techniques, like their ancestors (schema mapping), suffer from a lack 

of deep (cognitive) semantics and their ties to schema and fixed classes.  

2.3 Semantic Web and Linked-Data 

The notion of Semantic Web, first coined by Tim Berners-Lee [27], has been introduced 

to semantically integrating semi-structured data on the web. To achieve this goal, 

Linked Data provides a set of best practices (new paradigm), and offers principles [28, 

29] to publish and interlink machine-readable data on the web [29]. In brief, Linked 

Data uses URIs [30] to define uniquely identifiable web resources and RDF [31] triples 

(subject, predicate, and object) to encode how these resources are related [32].  

As a semantic extension of the RDF data model, RDF schema [33] provides a data 

model vocabulary (schema) for RDF-based data sets. It provides mechanisms to 

describe groups of resources in terms of classes and properties by using RDF-based 

syntax [33]. During the past two decades, multiple web ontologies such as OIL [34], 

DAML + OIL[35], OWL [36], and OWL2 [37] have been introduced to represent 

information about the structure of these resources. The primary goal of these ontologies 

is to provide structured data that can be used for inference and reasoning. Although 

some of these ontologies improved the capability of RDF schema in important ways 

such as adding subsumption hierarchy to the classes and properties [38], the clear 

distinction between class and property is a key assumption in all schemas.  

2.4 Known Issues in Schema-Based Approaches 

There are several well-known problems in schema-based approaches that potentially 

can be addressed by the proposed model: (1) merging one or more properties in one 

schema with a class in another (e.g. [39-41]; (2) matching more general concept (class 

or property) to more specific concept (e.g. [42-44]); and (3) complex matching in which 

possessing several concepts (class or property) at the same time in one schema is 
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semantically equal to possessing one concept (or several concepts) in the second 

schema (e.g. [42, 43] .) 

In the following, first, the attribute lattice is defined, and then, the possible ways that 

this model can tackle to above mentioned longstanding issues are discussed. 

3 Attribute Lattice Definitions and Components 

This study has two key premises. First, classification guidelines based on human 

cognition [17] contribute to gaining a deeper understanding of data. Second, a barrier 

to semantic integration is the dependency on schemas or fixed classifications [6, 9].  

Classification is a mechanism to identify instances and infer further information 

about them [45]. We argue that classes and properties express statements about 

instances and whether a particular statement is considered a class or a property is based 

on the relationship between a statement (attribute) and other attributes linked to it. In 

other words, the first premise states that an attribute (node) in the lattice expresses a 

statement about instances; the type of attribute expressed in the statement (class, 

category, property) depends on the pattern of arcs and nodes linked to it. Thus, the type 

of any attribute is determined by the pattern of attributes connected to it via arcs, and 

may change over time. 

Definition 1 (Semantic neighbourhood): The semantic neighbourhood of an 

attribute A is the set of nodes and arcs reachable from A where an arc is either directly 

connected to A, or connected via the attributes in its full expansion [17].  

As discussed later, in an attribute lattice, the union of all attributes in the base(s) of 

a class and derived attributes constitutes the full expansion of a class attribute, and the 

union of all subcategories of a category attribute constitutes its full expansion. In other 

words, the first definition asserts that nodes and arcs which are connected to a 

class/category via its full expansion are considered as the semantic neighbourhood of 

the A.  

Principles from philosophical ontology suggest that property precedence can 

provide semantics for attributes. Property precedence provides a formalism to represent 

subsumption relations between attributes. Assume r,s∈P are two attributes; s precedes 

r (denoted as r→s) if and only if any instance that possesses r also possesses s (see [17] 

for a detailed discussion.)  

Attributes in a lattice can be manifestations of higher-level attributes [9], and, such 

higher-level attributes can also support semantic integration of lattices. In particular, 

the relation between specialized and general attributes is a precedence relationship [9]. 

For example, ‘is a student’ (Stu) precedes ‘is a graduate student’ (Grd), meaning that 

anyone who is a graduate student is a student. 

 Eq. (a)  {Grd}→{Stu}    

In the following, the components of the attribute lattice are formally defined. In 

addition, examples from a university context are used to illustrate the lattice concepts. 
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3.1 Attribute Lattice Component Definition 

Definition 2 (domain of interest): A domain of interest is a set of phenomena 

(instances), X, and a set of attributes, P, possessed by the instances in X (each attribute 

in P is possessed by at least one instance in X) [9, 17].  

Also, we use f(xi)={P1,P2,…,Pj} to denote a function that returns all attributes 

possessed by specific instance xi. In this definition, attribute (property - using the 

notation in [17]) refers to any true statement (predicate) describing instances.  

An attribute lattice has two main components. Nodes (circles) represent attributes 

(true statement describing instances). Directed arcs (arrows) represent precedence 

relations between attributes.  

Definition 3 (Multiple property precedence): Assume R and S are non-empty sets 

of attributes such that R,S⊆P, and R∪S≠R and R∪S≠S. A (multiple) property 

precedence (MP) exists between R and S (denoted by R→S) if and only if every 

instance that possesses all attributes in R (for brevity, ‘possesses R’) also possesses all 

attributes in S [9, 17]. 

Definition 4 (Category): Assume R is a non-empty set of attributes. R is a category 

if and only if there exists at least one instance that possesses all attributes in R[9, 17]. 

A category is also referred to as a potential class using the terminology in [17]. 

For example, in a university context, assume that an instructor is either a faculty 

member or a graduate student. Three attributes are expressed here ‘is a faculty member’ 

(Fac), ‘is an instructor’ (Ins), and ‘is a graduate student’ (Grd).2 Since instances that 

possess {Ins}, also possess either {Fac} or {Grd}, it is reasonable to have categories to 

have shorthand access to these sets of attributes. Two possible categories are ‘is a 

graduate instructor’ (GrdIns) and ‘is a faculty instructor’ (FacIns). 

Definition 5 (Subcategory precedence): Assume R and S are two sets of attributes 

such that S⊂R⊆P. Since S⊂R, by definition, any instance that possesses R possesses 

S. A subcategory precedence exists between R and S if and only if S⊂R and at least 

one instance exists that possesses R and one instance that possesses S but not R. This 

particular type of precedence is denoted by an arc labeled with S (R  S).  

To illustrate, consider the example mentioned above. The following subcategory 

relations exist: 

 Eq. (b) {FacIns} {Fac}; and {FacIns} {Ins}    

  {GrdIns} {Grd}; and {GrdIns} {Ins}    

Based on cognitive economy and inference, [16] offers criteria for evaluating these 

possible categories and choosing among them. A category (potential class) is a useful 

class whenever it has a base - a strict subset of attributes that is sufficient to identify an 

instance as a member of the class, and from which the remaining attributes of the class 

can be inferred [17]. In other words, to be useful, a class must provide information (in 

term of new attributes) about its members beyond the attributes required to identify 

                                                           
2 Note that these labels might be considered “classes” in many contexts. For our purposes (and 

as discussed later), we do not distinguish between properties and classes at the node level (all 

nodes are attributes), but only distinguish a node as a class based on patterns in its semantic 

neighbourhood. 
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members as belonging to the class. In the attribute lattice, an attribute will be considered 

as a class only if it is a useful class with this definition.  

Definition 6 (Base precedence): Assume R and S are two sets of attributes such that 

S⊂R⊆P. If S → R (R precedes S), R is a class and, S is a base for R. This is called base 

precedence and denoted by R S. 

For instance, assume all (and only) instructors (either graduate or faculty) have a 

separate contract for their teaching and get a course-based salary for the course. In this 

situation, ‘is an instructor’ is a class; and ‘has an instructor’s contract’ (InsCnt) is a 

base for this class. Also, ‘has a course-based salary’ (CbSlry) and ‘has a course to 

teach’ (Crs) are two derived attributes for this class. 

 Eq. (c) {Ins} is a class; {InsCnt} {Ins}; {InsCnt}→{CbSlry, Crs};  

Simple and multiple precedence are semantically equivalent, so simple arcs 

represent them in the lattice (Fig 1.a). Subcategory precedence is shown by an arc 

labeled with S (Fig 1.b). Base precedence is represented by an arc labeled with B (Fig 

1.c). 

   

a. Single/Multiple precedence b. Subcategory precedence c. Base precedecene 

Fig. 1. Types of precedence 

3.2 Attribute Lattice Characteristics 

Lattice characteristics and rules contribute to reasoning about attributes and creating 

a valid attribute lattice. Consider that, in the attribute lattice, the type of an attribute 

depends on its semantic neighbourhood. The first set (of lattice characteristics) specifies 

how to infer the type of any node. The second set (of lattice rules) ensures that the 

lattice is valid and eliminates redundancies.  

Examples based on the lattice representations of equations (a) to (c) above are shown 

in Fig 2.  

 

 

 

 
 

a. Property precedence b. Subcategory precedence c. Base precedence 
 

Fig. 2. Lattice representation of the precedences 

Type of Attributes. 

Characteristic 1 (Node type): An attribute (node) S in a lattice can be a property, 

category or class, based on the semantic neighbourhood of the node (its incoming and 

outgoing precedences). Each node in a lattice has only one type at a time.  
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Characteristic 2 (Class): A node S in the lattice represents a class if and only if it 

has incoming base precedence. In other words, S is a class if and only if it precedes R 

such that R is a base for S.  

For instance, in Fig.2(c), {Ins} precedes {InsCnt} with base precedence relation 

between {Ins} and {InsCnt}; therefore, {Ins} is a class. In this example, the class has 

only one base, and a property (a single attribute) is a base for it. However, it is possible 

for a class to have several attributes (a category) as a base and have more than one base 

(Fig.3). The union of base attributes and derived attributes defines the full expansion of 

a class [17]. When a class has more than one base, all bases form part of the class 

definition. Figure 3.b and 3.c show classes with more than one base. Note that, although 

for representation simplicity bases and derived attributes are shown as independent sets 

in Fig.3.c, these sets may have shared attributes. 

Characteristic 3 (Category): A node R in the lattice denotes a category if and only 

if it has outgoing subcategory precedence. 

A category in a lattice is a set of attributes (possessed by at least one instance). These 

attributes (sub-categories) can be property, class or even category. For instance, Fig.2.b 

shows two simple categories. In this figure, {FacIns} is a category with two 

subcategories, {Fac} and {Ins}. In other words, this part of the lattice states that any 

instance that ‘is a faculty instructor,’ ‘is a faculty member’ and ‘is an instructor.’ 

A category in the lattice can, at the same time, be a base for a class. For instance, in 

Fig.3.c the class {Cls} has two bases – one of them {P2} is a category.  

 

Cls

P1

P1n

P1i

B
.
.
.

 

 

 

Cls

P1P1n

P1i

B
.
.
.

P2

B

P2m

P2j

.

.

.

Pk1 Pkk...

 

Cls

P1

P1n

P1i
B

.

.

.P2

B
P2j

...

P2m

S

S

P2k P2o

 

Base: {P1};      

Derived: P1i,…,P1n} 

 

{P1,P1i,…,P1n}⊆P 

Base: {P1};  

Derived: {P1i,…,P1n,Pk1,…,Pkk} 
 

Base: {P2};  

Derived: {P2j,…,P2m,Pk1,…,Pkk} 

{P1,P1i ,…,P1n,P2,P2i,…,P2n,Pk1,…, Pkk}⊆P 

Base: {P1};       

Derived: {P1i,…,P1n} 
 

Base: {P2j,…,P2m};    

Derived: {P2k,…,P2o} 

{P1,P1i,…,P1n,P2,P2j,…,P2m,P2k,…,P2o}⊆P 

a. Class  

with one base 
b. Class with two bases 

c. Class with two bases;  

one property and one category 

Fig. 3. Class with one and more than one base 

Characteristic 4 (Property): An attribute R in the lattice represents a property if and 

only if it is neither a category nor a class. 

Based on the first characteristic, attributes are class/category or property based on 

their semantic neighbourhood. Also, attributes can have one type at a time. Classes and 

categories are easily inferable based on the 2nd and 3rd characteristics and by considering 

their semantic neighbourhood (incoming and outgoing arcs). Consequently, the 

remaining attributes are properties.  
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Validation and Redundancy Rules. 

Rule 1 (Class validation): Assume S precedes R with the base precedence relation (R 

can be a property or a category). S is a valid class if and only if, it has at least one 

attribute T that precedes R. 

This rule ensures that the class provides information (in term of attributes) for class 

members beyond what is needed to identify the members (base attributes). For instance, 

consider Fig.4.a, in which R is preceded by S with base precedence. However, S is not 

a valid class. Attributes {R1,…,Rm} are used to identify the class members, but no further 

attribute is inferable from class membership. In contrast, Fig.4.b shows a valid class.  
 

 

   

a. Not valid class  
(No derived attributes) 

b. Valid class  
with derived attributes c. Redundant precedence 

 
 

 

d. Redundant precedence e. Redundant precedence f. Redundant precedence 

Fig. 4. Redundant Precedences 

Rule 2 (Redundancy Rule): One desirable quality (for simplicity) of an attribute 

lattice is to represent only non-redundant relationships. The precedence relation (an 

arc) in the lattice is considered redundant if it can be inferred from (i.e., is implied by) 

other precedence relations. The following guidelines provide mechanisms to eliminate 

unnecessary precedences in the lattice.  

First, the precedence between two nodes is redundant if the precedence relationship 

can be inferred from a transitive chain of other precedences. To illustrate, assume that 

R→S and S→T. The precedence definition, R→T is thereby implied (Fig.4.c), so 

showing this precedence in an attribute lattice is redundant. In general, we propose to 

construct attribute lattices such that they retain only the longest chain of precedences 

between any two nodes. 

Second, a precedence relation in the lattice is considered non-redundant if no proper 

subset of preceded attributes is sufficient to infer the preceding attribute [17]. Given 

R→S, R is non-redundant if no R′⊂R exists, such that R′→S. To illustrate, assume 

that T is a class/category, R′ is a subset of this class/category (R′⊂T), and R′→S. 

Although S precedes T (T→S), this precedence is redundant (Fig.4.d and Fig.4.e).  

Third, a subcategory precedence or multiple precedence from a class to its bases and 

all derived attributes is redundant. In other words, depicting direct precedences (either 

subcategory or multiple precedence) from the class to the attributes that belong to its 

full expansion is redundant (Fig.4.f).  
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3.3 Example  

To demonstrate the attribute lattice concept, consider the following example in the 

context of a university (Fig.5). Assume, in this domain, ‘is a student’ (Stu) is an 

attribute. Also, ‘is registered’ (Reg) is a sufficient condition to be a student, so that 

{Reg} is a base for {Stu} and {Stu} is a class. Moreover, a student ‘has a degree 

program’ (Deg) and ‘has a start date’ (StrtDt); these two attributes are shown in Fig.5 

as derived attributes for this class.  

{Stu}={Reg, Deg, StrtDt} is a class;  

Base attributes: {Reg};      Derived attributes: {Deg, StrtDt}; 

GrdIns

Ins

Grd

S

S

FacIns

Fac

SS

InsCnt

Crs

CbSlry

B

Stu

Reg

B

Deg

HiCnt

B

StrtDt

FacSlry

 

Fig. 5. Attribute lattice 

Likewise, assume ‘has a hiring contract’ (HiCnt) is a base for ‘is a faculty member’ 

(Fac). Also, assume faculty member ‘has a faculty base salary’ (FacSlry) and ‘has a 

start date’ (StrtDt) for her/his contract.  

{Fac} = {HiCnt, FacSlry, StrtDt} is a class;  

Base attributes: {HiCnt};      Derived attributes {FacSlry, StrtDt}; 

Furthermore, assume instructors have a separate contract for their teaching. 

Correspondingly, ‘is an instructor’ (Ins) is another class in the attribute lattice. This 

attribute is a class because it has ‘has an instructors contract’ (InsCnt) as a base. This 

class, as shown in the Fig.5, has two derived attributes which are; ‘has a course based 

salary’ (CbSlry), and ‘has a course to teach’ (Crs). 

{Ins}={InsCnt, CbSlry, Crs} is a class;  

Base attributes: {InsCnt};      Derived attributes:{CbSlry, Crs}; 

Moreover, assume that both graduate students and faculty members can be 

instructors. ‘Is a graduate student’ (Grd) is a specialized attribute of the existing one 

{Stu}.  In this situation, it is reasonable to have another attribute {Grd} preceded by 

{Stu}. Since instances possess either {Fac} and {Ins} or {Grd} and {Ins} at the same 

time, two categories (FacIns, GrdIns) are defined in the lattice (Fig.5) to have the 

shorthand access to these sets. 

{FacIns} = {Fac, Ins}  {GrdIns} = {Grd, Ins} 

Table1 provides the full list of all attributes in the lattice (Fig.5) in addition to their 

types and their full expansions. 
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The type of attributes represented in Table 1 considers the semantic neighborhood 

of nodes. However, based on the lattice fundamental assumptions, these types may 

change by integrating lattices or by additional domain-related information. 

Furthermore, higher-level attributes can be added to the lattice for lattice integration. 

 

Table 1. The list of attributes in the Fig.5 and their types 

 

GrdIns

B

CmpCrs

Ctg1

Ins

Grd

S

S

FacIns

Fac

SS

InsCnt

Crs
CbSlry

B

Stu

Reg

B

Deg

HiCnt

B

StrtDt

FacSlry

Crtf

Slry

 

Fig. 6. Updated attribute lattice 

For example, assume for a graduate student, ‘completed all courses’ (CmpCrs) and 

‘has teaching certificate’ (Crtf) are two prerequisites to be eligible for being an 

instructor. This new information about ‘is a graduate instructor’ changes its semantic 

neighbourhood and, consequently, changes the type of {GrdIns} from category to class. 

Instances that possess {GrdIns} or, equally, possess {Grd} and {Ins} at the same time, 

also possess ‘completed all courses’ (CmpCrs) and ‘has teaching certificate’ (Crtf). 

{Grd} and {Ins} → {CmpCrs, Crtf}   or 

{GrdIns} → {CmpCrs, Crtf} 

As mentioned earlier, higher-level attributes can be used for semantic data 

integration. For instance, ‘Has salary’ (Slry) is a potential higher-level attribute for 

Attribute description Label Type Full Expansion 

is a student Stu Class {Reg, Deg, StrtDt} 

is registered as a student Reg Property  

has a degree Deg Property  

has a start date StrtDt Property  

has a hiring contract HiCnt Property  

is a faculty member Fac Class {HiCnt, FacSlry, StrtDt} 

has a faculty base salary FacSlry Property  

is an instructor Ins Class {InsCnt, Slry, Crs} 

has an instructors contract InsCnt Property  

has a course based salary CbSlry Property  

has a course to teach Crs Property  

is a graduate student Grd Property  

is a faculty instructor FacIns Category {Fac, Ins} 

is a graduate instructor GrdIns Category {Grd, Ins} 



12 

 

{CbSlry} and {FacSlry}. Fig.6 depicts the above-discussed type change and higher-

level attributes (updated attributes are surrounded by dotted circles.) 

4 Discussion and future directions  

Resolving semantic data heterogeneity has been an active area of research in several 

disciplines for the past three decades. In this paper, using the premise that data 

semantics is inherently tied to data itself rather than schemas and borrowing principles 

from ontology and human cognition, we offer a new approach for representing data. 

We propose a formalism that represents subsumption relationships among attributes, 

leading to a lattice structure. In this paper, we defined the notion of the attribute lattice, 

its components, construction rules, and validation rules. We then illustrate these 

concepts with an example. A key contribution of the attribute lattice is its semantic 

relativism – whether a node represents a class or property depends entirely on its 

semantic neighbourhood – the pattern of incoming and outgoing arcs and nodes 

connected to these arcs. This uniformity of representation affords much greater 

flexibility in viewing information (multiple perspectives can co-exist), which in turn 

supports integration.    

We envision several core uses for attribute lattices. First, as alluded to above lattices 

provide a semantic foundation for data integration. In traditional approaches, an 

impediment to data integration is structural heterogeneity between independent data 

sources. Known sources of heterogeneity include: what is an attribute in one source 

may be a class in another; concepts can be expressed at different levels of granularity 

in different sources; and the equivalence of attributes in different sources may be 

complex. In all cases, the definition of a node’s semantics as the neighborhood of nodes 

to which it is connected provides a uniform foundation for resolving heterogeneity 

among data sources.  

Second, attribute lattices are well-suited for analysis. Given a lattice, it is possible to 

automatically analyze it to determine which nodes are classes, and which inferences 

can be made using these classes. This analysis can be incorporated in a tool for lattice 

visualization (currently being developed) that enables users of data to view the data 

structure from various perspectives, thereby contributing to gaining insights from data. 

We anticipate this approach will be useful in exploring large data sets. 

In this paper, we have focused on attribute lattice definition and rules. A unified 

attribute lattice-based data integration framework, methods for integrating lattices, 

possible challenges during integration, and evaluation of the effectiveness of lattice 

integration constitute opportunities for future research.  
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