

Attribute Lattices: A Schema-free Unified Framework

for Data Semantics

Mojtaba Asgari1, Jeffrey Parsons1, and Yair Wand2

1Faculty of Business Administration, Memorial University of Newfoundland, St. John's, NL,

CANADA

{m.asgari, jeffreyp}@mun.ca
2Sauder School of Business, The University of British Columbia, Vancouver, BC, CANADA

yair.wand@ubc.ca

Abstract. One key characteristic of big data is variety. With massive and growing

amounts of data existing in independent and heterogeneous (structured and

unstructured) sources, assigning consistent data semantics, which is essential for

making sense of data sources, is an increasingly important challenge. We use

ontology and human cognitive principles (i.e., classification theory) to formally

define the concept of attribute lattice. An attribute lattice is a graph-based,

schema-free conceptual model that represents attributes of instances in the

domain of interest and precedence relations among them. The class structure of

the domain can be inferred from the precedence relations in the lattice. In other

words, in an attribute lattice, both properties and classes are represented as

attributes – they are distinguished only by the pattern of arcs and nodes that

surround them (the semantic neighbourhood). We propose that this form of

representation offers a unified framework for modeling data that can be used to

resolve semantic data heterogeneity.

Keywords: Attribute lattice, Instance-Based Data Model (IBDM), Semantic

data integration, Property precedence.

1 Introduction

Semantic data heterogeneity (a form of variety) is an active research area in several

research communities such as databases, domain ontologies and big data [1-3]. In spite

of its pervasiveness and the substantial work in this area, resolving semantic

heterogeneity remains a key challenge in using data from multiple independent sources.

The lack of deep data understanding, and a focus on syntax and structure, rather than

on data semantics, hinders semantic data integration [4, 5].

Two common assumptions in database design contribute to the challenge of

understanding the semantics of data. First, traditional database design assumes (either

explicitly or implicitly) that instances must belong to a class to exist in a database [6].

Based on this assumption, the main body of research on resolving semantic

heterogeneity focuses on schema mapping techniques [1-3]. Second, as a result of being

schema-oriented, database design approaches assume there is a clear and fundamental

SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes. In: C. Cabanillas, S. España, S. Farshidi (eds.): Proceedings of the ER Forum 2017 and the ER 2017 Demo track, Valencia, Spain, November 6th-9th, 2017, published at http://ceur-ws.org

2

distinction between classes and properties of instances (i.e., instances belong to the

classes and possess properties).

In this paper, we propose a schema-free (i.e., liberated from fixed schemas)

conceptual modeling grammar that can be used to resolve semantic heterogeneity. Our

approach is based on the premise that the semantics of data is a function of human

cognition. Therefore, this approach uses cognitively-based instance-level constructs

(attributes of instances and relations among them) to represent classes and properties in

a lattice structure. We argue that the notion of property or class is contextual, such that

a specific attribute (node in a lattice) can designate either a property of an instance or a

class, depending on the context (the immediately connected section of the lattice).

Our approach is based on the instance-based data model (IBDM) [6]. In conformance

with principles from cognitive psychology and philosophical ontology [7], the IBDM

argues that instances (things) exist independent of classes, and classes are derived

constructs that provide useful abstractions [6]. The IBDM proposes a two-layered

structure in which one layer is responsible for the storage of data about individual

entities (instances) and their attributes, and the other keeps track of the definition of

classes in terms of attributes of instances. In the IBDM approach, instances are stored

only with their attributes, rather than classes [6]. By freeing data from predefined

classes, this approach simplifies the semantic integration of data by eliminating the

need to map class-level constructs between heterogeneous data sources.

We use the concept of property precedence [8-11] to propose a graph-based

structure that we call an attribute lattice. The attribute lattice provides a formalism to

express subsumption relationships between attributes. If r and s are two attributes, s

precedes r (denoted as r→s) if and only if any instance possessing r also possesses s.

For instance, if r is “ability to walk” and s is “ability to move,” every instance that

possesses “ability to walk,” also possesses “ability to move” (“ability to

walk”→“ability to move”).

In an attribute lattice, nodes represent attributes, and arcs show precedence relations

among attributes. The attributes represent concepts. Depending on its pattern of

inbound and outbound arcs, an attribute can designate a property, a category, or a class1.

The key distinguishing feature of the attribute lattice (compared to other graph-based

data models) is that the difference between the type of concept (property, category, or

class) is purely contextual. The type of attributes in the lattice are interpreted solely

based on the structure of precedence relations, reflecting a human view of links among

attributes.

In the following, we begin by discussing related literature (Section 2). Then we

formally define the proposed attribute lattice and examine some of its properties

(Section 3). Finally, we summarize our research contribution and discuss opportunities

for further research (Section 4).

2 Related Research

In this section, we discuss principles from cognitive psychology and philosophical

ontology that guide us in defining an attribute lattice conceptual modeling grammar.

1 Hereafter in this paper, attribute refers to the node itself, and property denotes one type of node.

3

Then, we briefly review approaches for resolving semantic heterogeneity through data

integration to highlight a common assumption underlying many approaches – the

reliance on class-based schemas – and to point out that this dependency in turn leads to

several known challenges in these approaches. (For comprehensive reviewer of

semantic integration approaches, see, for example, [12, 13].)

2.1 Principles from cognitive psychology and philosophical ontology

In this paper, we use principles from philosophical ontology and cognitive psychology.

In particular, we use Bunge’s ontology [8], as elaborated for conceptual modeling by

Wand and Weber [7], [14], which is widely known and used. In particular, three

ontological principles are central to our approach: (1) the world consists of substantial

things that are assumed to exist physically; (2) things possess attributes; and (3)

subsumption relations between attributes can be expressed by property precedence [7,

9, 14]. The concept of property precedence has been used for improving the semantics

of conceptual models [11].

Principles of human cognition provide additional grounding in developing the

concept of attribute lattice. Lakoff [15] argues that humans understand the world by

classifying things. In contrast to the common assumption in schema-based and domain

ontology-based approaches, classes do not exist independent of human cognition.

Indeed, classes are useful abstractions that support inferences about instances based on

partially observed information [16, 17].

2.2 From Traditional to Domain Ontology-based Data Integration

Semantic data integration is an approach for providing integrated access to disparate

and semantically heterogeneous data [18]. The field has been an active area of research

since the 1980s [19, 20]. However, in spite of abundant literature, concerns about the

lack of “consistent theory and methodology”, and “in-depth understanding of

semantics” have persisted [5].

Traditional semantic data integration can be divided into two main steps [2, 21]. The

first step, a match operation, takes two schemas as input and provides a semantic

mapping between schema elements. The second step proceeds to define mapping

expressions formally. Depending on the context, the mapping can be expressed in

different languages such as SQL, LAV (local as view), or GAV (global as view). In

these methods, the data reside in data sources, while the global schema provides a

unified, integrated, and virtual view [22].

Generally speaking, matcher types can be categorized into schema level and data

(instance) level matchers [2]. As argued by [6], in traditional data models, classification

is inherently part of data management and storage. In this regard, schema reconciliation

is a prerequisite to accessing data. Not surprisingly, then, the main body of semantic

data integration literature focuses on schema integration and data integration based on

a so-called global schema (or a mediated schema). Data level matchers are often used

as a complementary method or for semi-structured data when a schema cannot be

constructed from data. These methods are either based on linguistic characteristics (for

4

text elements) such as keywords relative frequency and string match (e.g. [23]), or

constraint characteristics (for more structured data), such as value ranges and averages

[2]. Probabilistic and statistical models are the key common approaches used in data

level matchers (e.g. [24, 25]).

The initial approach for data integration was hard-coding the integration points. In

this approach, developers were supposed to implement separate and specific code to

get access to components of other schemas. Therefore, it had no flexibility, and it was

hard to maintain. Although subsequent methods were loosely coupled and easier to

manage, data semantics was a missing component in the integration process [4].

Domain ontology-based approaches were introduced to address this lack of semantics.

A domain ontology has two primary roles to play in these methods [26]: first, creating

a mapping between concepts with fixed classes (ontology) and the content; and second,

integrating these concepts from different ontologies. Although schemas and ontologies

have differences (for a detailed comparison see [4]), since both using fixed classes,

similar techniques were used for schema mapping and ontology mapping [12]. The

ontology mapping techniques, like their ancestors (schema mapping), suffer from a lack

of deep (cognitive) semantics and their ties to schema and fixed classes.

2.3 Semantic Web and Linked-Data

The notion of Semantic Web, first coined by Tim Berners-Lee [27], has been introduced

to semantically integrating semi-structured data on the web. To achieve this goal,

Linked Data provides a set of best practices (new paradigm), and offers principles [28,

29] to publish and interlink machine-readable data on the web [29]. In brief, Linked

Data uses URIs [30] to define uniquely identifiable web resources and RDF [31] triples

(subject, predicate, and object) to encode how these resources are related [32].

As a semantic extension of the RDF data model, RDF schema [33] provides a data

model vocabulary (schema) for RDF-based data sets. It provides mechanisms to

describe groups of resources in terms of classes and properties by using RDF-based

syntax [33]. During the past two decades, multiple web ontologies such as OIL [34],

DAML + OIL[35], OWL [36], and OWL2 [37] have been introduced to represent

information about the structure of these resources. The primary goal of these ontologies

is to provide structured data that can be used for inference and reasoning. Although

some of these ontologies improved the capability of RDF schema in important ways

such as adding subsumption hierarchy to the classes and properties [38], the clear

distinction between class and property is a key assumption in all schemas.

2.4 Known Issues in Schema-Based Approaches

There are several well-known problems in schema-based approaches that potentially

can be addressed by the proposed model: (1) merging one or more properties in one

schema with a class in another (e.g. [39-41]; (2) matching more general concept (class

or property) to more specific concept (e.g. [42-44]); and (3) complex matching in which

possessing several concepts (class or property) at the same time in one schema is

5

semantically equal to possessing one concept (or several concepts) in the second

schema (e.g. [42, 43] .)

In the following, first, the attribute lattice is defined, and then, the possible ways that

this model can tackle to above mentioned longstanding issues are discussed.

3 Attribute Lattice Definitions and Components

This study has two key premises. First, classification guidelines based on human

cognition [17] contribute to gaining a deeper understanding of data. Second, a barrier

to semantic integration is the dependency on schemas or fixed classifications [6, 9].

Classification is a mechanism to identify instances and infer further information

about them [45]. We argue that classes and properties express statements about

instances and whether a particular statement is considered a class or a property is based

on the relationship between a statement (attribute) and other attributes linked to it. In

other words, the first premise states that an attribute (node) in the lattice expresses a

statement about instances; the type of attribute expressed in the statement (class,

category, property) depends on the pattern of arcs and nodes linked to it. Thus, the type

of any attribute is determined by the pattern of attributes connected to it via arcs, and

may change over time.

Definition 1 (Semantic neighbourhood): The semantic neighbourhood of an

attribute A is the set of nodes and arcs reachable from A where an arc is either directly

connected to A, or connected via the attributes in its full expansion [17].

As discussed later, in an attribute lattice, the union of all attributes in the base(s) of

a class and derived attributes constitutes the full expansion of a class attribute, and the

union of all subcategories of a category attribute constitutes its full expansion. In other

words, the first definition asserts that nodes and arcs which are connected to a

class/category via its full expansion are considered as the semantic neighbourhood of

the A.

Principles from philosophical ontology suggest that property precedence can

provide semantics for attributes. Property precedence provides a formalism to represent

subsumption relations between attributes. Assume r,s∈P are two attributes; s precedes

r (denoted as r→s) if and only if any instance that possesses r also possesses s (see [17]

for a detailed discussion.)

Attributes in a lattice can be manifestations of higher-level attributes [9], and, such

higher-level attributes can also support semantic integration of lattices. In particular,

the relation between specialized and general attributes is a precedence relationship [9].

For example, ‘is a student’ (Stu) precedes ‘is a graduate student’ (Grd), meaning that

anyone who is a graduate student is a student.

 Eq. (a) {Grd}→{Stu}

In the following, the components of the attribute lattice are formally defined. In

addition, examples from a university context are used to illustrate the lattice concepts.

6

3.1 Attribute Lattice Component Definition

Definition 2 (domain of interest): A domain of interest is a set of phenomena

(instances), X, and a set of attributes, P, possessed by the instances in X (each attribute

in P is possessed by at least one instance in X) [9, 17].

Also, we use f(xi)={P1,P2,…,Pj} to denote a function that returns all attributes

possessed by specific instance xi. In this definition, attribute (property - using the

notation in [17]) refers to any true statement (predicate) describing instances.

An attribute lattice has two main components. Nodes (circles) represent attributes

(true statement describing instances). Directed arcs (arrows) represent precedence

relations between attributes.

Definition 3 (Multiple property precedence): Assume R and S are non-empty sets

of attributes such that R,S⊆P, and R∪S≠R and R∪S≠S. A (multiple) property

precedence (MP) exists between R and S (denoted by R→S) if and only if every

instance that possesses all attributes in R (for brevity, ‘possesses R’) also possesses all

attributes in S [9, 17].

Definition 4 (Category): Assume R is a non-empty set of attributes. R is a category

if and only if there exists at least one instance that possesses all attributes in R[9, 17].

A category is also referred to as a potential class using the terminology in [17].

For example, in a university context, assume that an instructor is either a faculty

member or a graduate student. Three attributes are expressed here ‘is a faculty member’

(Fac), ‘is an instructor’ (Ins), and ‘is a graduate student’ (Grd).2 Since instances that

possess {Ins}, also possess either {Fac} or {Grd}, it is reasonable to have categories to

have shorthand access to these sets of attributes. Two possible categories are ‘is a

graduate instructor’ (GrdIns) and ‘is a faculty instructor’ (FacIns).

Definition 5 (Subcategory precedence): Assume R and S are two sets of attributes

such that S⊂R⊆P. Since S⊂R, by definition, any instance that possesses R possesses

S. A subcategory precedence exists between R and S if and only if S⊂R and at least

one instance exists that possesses R and one instance that possesses S but not R. This

particular type of precedence is denoted by an arc labeled with S (R S).

To illustrate, consider the example mentioned above. The following subcategory

relations exist:

 Eq. (b) {FacIns} {Fac}; and {FacIns} {Ins}

 {GrdIns} {Grd}; and {GrdIns} {Ins}

Based on cognitive economy and inference, [16] offers criteria for evaluating these

possible categories and choosing among them. A category (potential class) is a useful

class whenever it has a base - a strict subset of attributes that is sufficient to identify an

instance as a member of the class, and from which the remaining attributes of the class

can be inferred [17]. In other words, to be useful, a class must provide information (in

term of new attributes) about its members beyond the attributes required to identify

2 Note that these labels might be considered “classes” in many contexts. For our purposes (and

as discussed later), we do not distinguish between properties and classes at the node level (all

nodes are attributes), but only distinguish a node as a class based on patterns in its semantic

neighbourhood.

7

members as belonging to the class. In the attribute lattice, an attribute will be considered

as a class only if it is a useful class with this definition.

Definition 6 (Base precedence): Assume R and S are two sets of attributes such that

S⊂R⊆P. If S → R (R precedes S), R is a class and, S is a base for R. This is called base

precedence and denoted by R S.

For instance, assume all (and only) instructors (either graduate or faculty) have a

separate contract for their teaching and get a course-based salary for the course. In this

situation, ‘is an instructor’ is a class; and ‘has an instructor’s contract’ (InsCnt) is a

base for this class. Also, ‘has a course-based salary’ (CbSlry) and ‘has a course to

teach’ (Crs) are two derived attributes for this class.

 Eq. (c) {Ins} is a class; {InsCnt} {Ins}; {InsCnt}→{CbSlry, Crs};

Simple and multiple precedence are semantically equivalent, so simple arcs

represent them in the lattice (Fig 1.a). Subcategory precedence is shown by an arc

labeled with S (Fig 1.b). Base precedence is represented by an arc labeled with B (Fig

1.c).

a. Single/Multiple precedence b. Subcategory precedence c. Base precedecene

Fig. 1. Types of precedence

3.2 Attribute Lattice Characteristics

Lattice characteristics and rules contribute to reasoning about attributes and creating

a valid attribute lattice. Consider that, in the attribute lattice, the type of an attribute

depends on its semantic neighbourhood. The first set (of lattice characteristics) specifies

how to infer the type of any node. The second set (of lattice rules) ensures that the

lattice is valid and eliminates redundancies.

Examples based on the lattice representations of equations (a) to (c) above are shown

in Fig 2.

a. Property precedence b. Subcategory precedence c. Base precedence

Fig. 2. Lattice representation of the precedences

Type of Attributes.

Characteristic 1 (Node type): An attribute (node) S in a lattice can be a property,

category or class, based on the semantic neighbourhood of the node (its incoming and

outgoing precedences). Each node in a lattice has only one type at a time.

8

Characteristic 2 (Class): A node S in the lattice represents a class if and only if it

has incoming base precedence. In other words, S is a class if and only if it precedes R

such that R is a base for S.

For instance, in Fig.2(c), {Ins} precedes {InsCnt} with base precedence relation

between {Ins} and {InsCnt}; therefore, {Ins} is a class. In this example, the class has

only one base, and a property (a single attribute) is a base for it. However, it is possible

for a class to have several attributes (a category) as a base and have more than one base

(Fig.3). The union of base attributes and derived attributes defines the full expansion of

a class [17]. When a class has more than one base, all bases form part of the class

definition. Figure 3.b and 3.c show classes with more than one base. Note that, although

for representation simplicity bases and derived attributes are shown as independent sets

in Fig.3.c, these sets may have shared attributes.

Characteristic 3 (Category): A node R in the lattice denotes a category if and only

if it has outgoing subcategory precedence.

A category in a lattice is a set of attributes (possessed by at least one instance). These

attributes (sub-categories) can be property, class or even category. For instance, Fig.2.b

shows two simple categories. In this figure, {FacIns} is a category with two

subcategories, {Fac} and {Ins}. In other words, this part of the lattice states that any

instance that ‘is a faculty instructor,’ ‘is a faculty member’ and ‘is an instructor.’

A category in the lattice can, at the same time, be a base for a class. For instance, in

Fig.3.c the class {Cls} has two bases – one of them {P2} is a category.

Cls

P1

P1n

P1i

B
.
.
.

Cls

P1P1n

P1i

B
.
.
.

P2

B

P2m

P2j

.

.

.

Pk1 Pkk...

Cls

P1

P1n

P1i
B

.

.

.P2

B
P2j

...

P2m

S

S

P2k P2o

Base: {P1};

Derived: P1i,…,P1n}

{P1,P1i,…,P1n}⊆P

Base: {P1};

Derived: {P1i,…,P1n,Pk1,…,Pkk}

Base: {P2};

Derived: {P2j,…,P2m,Pk1,…,Pkk}

{P1,P1i ,…,P1n,P2,P2i,…,P2n,Pk1,…, Pkk}⊆P

Base: {P1};

Derived: {P1i,…,P1n}

Base: {P2j,…,P2m};

Derived: {P2k,…,P2o}

{P1,P1i,…,P1n,P2,P2j,…,P2m,P2k,…,P2o}⊆P

a. Class

with one base
b. Class with two bases

c. Class with two bases;

one property and one category

Fig. 3. Class with one and more than one base

Characteristic 4 (Property): An attribute R in the lattice represents a property if and

only if it is neither a category nor a class.

Based on the first characteristic, attributes are class/category or property based on

their semantic neighbourhood. Also, attributes can have one type at a time. Classes and

categories are easily inferable based on the 2nd and 3rd characteristics and by considering

their semantic neighbourhood (incoming and outgoing arcs). Consequently, the

remaining attributes are properties.

9

Validation and Redundancy Rules.

Rule 1 (Class validation): Assume S precedes R with the base precedence relation (R

can be a property or a category). S is a valid class if and only if, it has at least one

attribute T that precedes R.

This rule ensures that the class provides information (in term of attributes) for class

members beyond what is needed to identify the members (base attributes). For instance,

consider Fig.4.a, in which R is preceded by S with base precedence. However, S is not

a valid class. Attributes {R1,…,Rm} are used to identify the class members, but no further

attribute is inferable from class membership. In contrast, Fig.4.b shows a valid class.

a. Not valid class
(No derived attributes)

b. Valid class
with derived attributes c. Redundant precedence

d. Redundant precedence e. Redundant precedence f. Redundant precedence

Fig. 4. Redundant Precedences

Rule 2 (Redundancy Rule): One desirable quality (for simplicity) of an attribute

lattice is to represent only non-redundant relationships. The precedence relation (an

arc) in the lattice is considered redundant if it can be inferred from (i.e., is implied by)

other precedence relations. The following guidelines provide mechanisms to eliminate

unnecessary precedences in the lattice.

First, the precedence between two nodes is redundant if the precedence relationship

can be inferred from a transitive chain of other precedences. To illustrate, assume that

R→S and S→T. The precedence definition, R→T is thereby implied (Fig.4.c), so

showing this precedence in an attribute lattice is redundant. In general, we propose to

construct attribute lattices such that they retain only the longest chain of precedences

between any two nodes.

Second, a precedence relation in the lattice is considered non-redundant if no proper

subset of preceded attributes is sufficient to infer the preceding attribute [17]. Given

R→S, R is non-redundant if no R′⊂R exists, such that R′→S. To illustrate, assume

that T is a class/category, R′ is a subset of this class/category (R′⊂T), and R′→S.

Although S precedes T (T→S), this precedence is redundant (Fig.4.d and Fig.4.e).

Third, a subcategory precedence or multiple precedence from a class to its bases and

all derived attributes is redundant. In other words, depicting direct precedences (either

subcategory or multiple precedence) from the class to the attributes that belong to its

full expansion is redundant (Fig.4.f).

10

3.3 Example

To demonstrate the attribute lattice concept, consider the following example in the

context of a university (Fig.5). Assume, in this domain, ‘is a student’ (Stu) is an

attribute. Also, ‘is registered’ (Reg) is a sufficient condition to be a student, so that

{Reg} is a base for {Stu} and {Stu} is a class. Moreover, a student ‘has a degree

program’ (Deg) and ‘has a start date’ (StrtDt); these two attributes are shown in Fig.5

as derived attributes for this class.

{Stu}={Reg, Deg, StrtDt} is a class;

Base attributes: {Reg}; Derived attributes: {Deg, StrtDt};

GrdIns

Ins

Grd

S

S

FacIns

Fac

SS

InsCnt

Crs

CbSlry

B

Stu

Reg

B

Deg

HiCnt

B

StrtDt

FacSlry

Fig. 5. Attribute lattice

Likewise, assume ‘has a hiring contract’ (HiCnt) is a base for ‘is a faculty member’

(Fac). Also, assume faculty member ‘has a faculty base salary’ (FacSlry) and ‘has a

start date’ (StrtDt) for her/his contract.

{Fac} = {HiCnt, FacSlry, StrtDt} is a class;

Base attributes: {HiCnt}; Derived attributes {FacSlry, StrtDt};

Furthermore, assume instructors have a separate contract for their teaching.

Correspondingly, ‘is an instructor’ (Ins) is another class in the attribute lattice. This

attribute is a class because it has ‘has an instructors contract’ (InsCnt) as a base. This

class, as shown in the Fig.5, has two derived attributes which are; ‘has a course based

salary’ (CbSlry), and ‘has a course to teach’ (Crs).

{Ins}={InsCnt, CbSlry, Crs} is a class;

Base attributes: {InsCnt}; Derived attributes:{CbSlry, Crs};

Moreover, assume that both graduate students and faculty members can be

instructors. ‘Is a graduate student’ (Grd) is a specialized attribute of the existing one

{Stu}. In this situation, it is reasonable to have another attribute {Grd} preceded by

{Stu}. Since instances possess either {Fac} and {Ins} or {Grd} and {Ins} at the same

time, two categories (FacIns, GrdIns) are defined in the lattice (Fig.5) to have the

shorthand access to these sets.

{FacIns} = {Fac, Ins} {GrdIns} = {Grd, Ins}

Table1 provides the full list of all attributes in the lattice (Fig.5) in addition to their

types and their full expansions.

11

The type of attributes represented in Table 1 considers the semantic neighborhood

of nodes. However, based on the lattice fundamental assumptions, these types may

change by integrating lattices or by additional domain-related information.

Furthermore, higher-level attributes can be added to the lattice for lattice integration.

Table 1. The list of attributes in the Fig.5 and their types

GrdIns

B

CmpCrs

Ctg1

Ins

Grd

S

S

FacIns

Fac

SS

InsCnt

Crs
CbSlry

B

Stu

Reg

B

Deg

HiCnt

B

StrtDt

FacSlry

Crtf

Slry

Fig. 6. Updated attribute lattice

For example, assume for a graduate student, ‘completed all courses’ (CmpCrs) and

‘has teaching certificate’ (Crtf) are two prerequisites to be eligible for being an

instructor. This new information about ‘is a graduate instructor’ changes its semantic

neighbourhood and, consequently, changes the type of {GrdIns} from category to class.

Instances that possess {GrdIns} or, equally, possess {Grd} and {Ins} at the same time,

also possess ‘completed all courses’ (CmpCrs) and ‘has teaching certificate’ (Crtf).

{Grd} and {Ins} → {CmpCrs, Crtf} or

{GrdIns} → {CmpCrs, Crtf}

As mentioned earlier, higher-level attributes can be used for semantic data

integration. For instance, ‘Has salary’ (Slry) is a potential higher-level attribute for

Attribute description Label Type Full Expansion

is a student Stu Class {Reg, Deg, StrtDt}

is registered as a student Reg Property

has a degree Deg Property

has a start date StrtDt Property

has a hiring contract HiCnt Property

is a faculty member Fac Class {HiCnt, FacSlry, StrtDt}

has a faculty base salary FacSlry Property

is an instructor Ins Class {InsCnt, Slry, Crs}

has an instructors contract InsCnt Property

has a course based salary CbSlry Property

has a course to teach Crs Property

is a graduate student Grd Property

is a faculty instructor FacIns Category {Fac, Ins}

is a graduate instructor GrdIns Category {Grd, Ins}

12

{CbSlry} and {FacSlry}. Fig.6 depicts the above-discussed type change and higher-

level attributes (updated attributes are surrounded by dotted circles.)

4 Discussion and future directions

Resolving semantic data heterogeneity has been an active area of research in several

disciplines for the past three decades. In this paper, using the premise that data

semantics is inherently tied to data itself rather than schemas and borrowing principles

from ontology and human cognition, we offer a new approach for representing data.

We propose a formalism that represents subsumption relationships among attributes,

leading to a lattice structure. In this paper, we defined the notion of the attribute lattice,

its components, construction rules, and validation rules. We then illustrate these

concepts with an example. A key contribution of the attribute lattice is its semantic

relativism – whether a node represents a class or property depends entirely on its

semantic neighbourhood – the pattern of incoming and outgoing arcs and nodes

connected to these arcs. This uniformity of representation affords much greater

flexibility in viewing information (multiple perspectives can co-exist), which in turn

supports integration.

We envision several core uses for attribute lattices. First, as alluded to above lattices

provide a semantic foundation for data integration. In traditional approaches, an

impediment to data integration is structural heterogeneity between independent data

sources. Known sources of heterogeneity include: what is an attribute in one source

may be a class in another; concepts can be expressed at different levels of granularity

in different sources; and the equivalence of attributes in different sources may be

complex. In all cases, the definition of a node’s semantics as the neighborhood of nodes

to which it is connected provides a uniform foundation for resolving heterogeneity

among data sources.

Second, attribute lattices are well-suited for analysis. Given a lattice, it is possible to

automatically analyze it to determine which nodes are classes, and which inferences

can be made using these classes. This analysis can be incorporated in a tool for lattice

visualization (currently being developed) that enables users of data to view the data

structure from various perspectives, thereby contributing to gaining insights from data.

We anticipate this approach will be useful in exploring large data sets.

In this paper, we have focused on attribute lattice definition and rules. A unified

attribute lattice-based data integration framework, methods for integrating lattices,

possible challenges during integration, and evaluation of the effectiveness of lattice

integration constitute opportunities for future research.

References

1. Noy, N.F., Semantic integration: a survey of ontology-based approaches. ACM Sigmod

Record, 2004. 33: p. 65–70.

2. Rahm, E. and P.A. Bernstein, A survey of approaches to automatic schema matching. The

VLDB Journal, 2001. 10: p. 334-350.

3. Dong, X.L. and D. Srivastava. Big data integration. in 2013 IEEE 29th International

Conference on Data Engineering (ICDE). 2013.

13

4. Uschold, M. and M. Gruninger, Ontologies and semantics for seamless connectivity. ACM

SIGMod Record, 2004. 33: p. 58-64.

5. Haas, L., Beauty and the beast: The theory and practice of information integration, in

Database Theory–ICDT 2007. 2007, Springer. p. 28–43.

6. Parsons, J. and Y. Wand, Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems (TODS), 2000. 25: p. 228–

268.

7. Wand, Y. and R. Weber, On the ontological expressiveness of information systems analysis

and design grammars. Information Systems Journal, 1993. 3: p. 217–237.

8. Bunge, M., Treatise on Basic Philosophy: Ontology I: The Furniture of the World. 1977,

Dordrecht: Springer Netherlands.

9. Parsons, J. and Y. Wand, Attribute-based semantic reconciliation of multiple data sources,

in Journal on Data Semantics I. 2003, Springer. p. 21–47.

10. Chen, T. and J. Parsons. Using Property Precedence to Enhance The Effectiveness of

Queries of Unstructured Data. in Workshop on Information Technologies and Systems.

2008.

11. Parsons, J., An Experimental Study of the Effects of Representing Property Precedence on

the Comprehension of Conceptual Schemas*. Journal of the Association for Information

Systems, 2011. 12: p. 401.

12. Shvaiko, P. and J. Euzenat, A survey of schema-based matching approaches, in Journal on

data semantics IV. 2005, Springer. p. 146-171.

13. Rahm, E., Towards large-scale schema and ontology matching, in Schema matching and

mapping. 2011, Springer. p. 3-27.

14. Wand, Y. and R. Weber, An Ontological Model of an Information System. IEEE

Transactions on Software Engineering, 1990. 16: p. 1282-1292.

15. Lakoff, G., Women, fire, and dangerous things. 1987: Chicago: University of Chicago

Press.

16. Parsons, J. and Y. Wand, Choosing classes in conceptual modeling. Communications of

the ACM, 1997. 40: p. 63–69.

17. Parsons, J. and Y. Wand, Using cognitive principles to guide classification in information

systems modeling. MIS Quarterly, 2008: p. 839–868.

18. Bergamaschi, S., S. Castano, and M. Vincini, Semantic integration of semistructured and

structured data sources. ACM Sigmod Record, 1999. 28: p. 54-59.

19. Batini, C., M. Lenzerini, and S.B. Navathe, A Comparative Analysis of Methodologies for

Database Schema Integration. ACM Comput. Surv., 1986. 18: p. 323–364.

20. Doan, A. and A.Y. Halevy, Semantic integration research in the database community: A

brief survey. AI magazine, 2005. 26: p. 83.

21. Doan, A., N.F. Noy, and A.Y. Halevy, Introduction to the special issue on semantic

integration. ACM Sigmod Record, 2004. 33: p. 11-13.

22. Lenzerini, M. Data integration: A theoretical perspective. 2002. ACM.

23. Clifton, C., E. Housman, and A. Rosenthal, Experience with a combined approach to

attribute-matching across heterogeneous databases, in Data Mining and Reverse

Engineering. 1998, Springer. p. 428-451.

24. Doan, A., et al., Learning to match ontologies on the semantic web. The VLDB Journal—

The International Journal on Very Large Data Bases, 2003. 12: p. 303-319.

14

25. Kang, J. and J.F. Naughton. On schema matching with opaque column names and data

values. 2003. ACM.

26. Wache, H., et al. Ontology-based integration of information-a survey of existing

approaches. 2001. Citeseer.

27. Berners-Lee, T., J. Hendler, and O. Lassila, The Semantic Web. 2001.

28. Berners-Lee, T., Linked data-design issues. URL

http://www.w3.org/DesignIssues/LinkedData.html, 2006. 10: p. 11.

29. Heath, T. and C. Bizer, Linked data: Evolving the web into a global data space. Synthesis

lectures on the semantic web: theory and technology, 2011. 1(1): p. 1-136.

30. Berners-Lee, T., R.T. Fielding, and L. Masinter, Uniform resource identifier (URI):

Generic syntax. 2005.

31. Consortium, W.W.W., RDF 1.1 concepts and abstract syntax. 2014.

32. Bizer, C., T. Heath, and T. Berners-Lee, Linked Data: The Story So Far. 2011: p. 205-227.

33. Brickley, D. and R. Guha, RDF schema 1.1. W3c recommendation, W3C. 2014.

34. Fensel, D., et al., OIL: An ontology infrastructure for the semantic web. IEEE intelligent

systems, 2001. 16(2): p. 38-45.

35. Connolly, D., et al., DAML+OIL (march 2001) reference description. 2001.

36. McGuinness, D.L. and F. Van Harmelen, OWL web ontology language overview. W3C

recommendation, 2004. 10(10): p. 2004.

37. Hitzler, P., et al., OWL 2 web ontology language primer. W3C recommendation, 2009.

27(1): p. 123.

38. Horrocks, I., P.F. Patel-Schneider, and F. van Harmelen, From SHIQ and RDF to OWL:

the making of a Web Ontology Language. Web Semantics: Science, Services and Agents

on the World Wide Web, 2003. 1(1): p. 7-26.

39. Ghidini, C. and L. Serafini. Reconciling concepts and relations in heterogeneous

ontologies. in ESWC. 2006. Springer.

40. Omelayenko, B. RDFT: A mapping meta-ontology for business integration. in Proc. of the

Workshop on Knowledge Transformation for the Semantic Web at the 15th European

Conference on Artificial Intelligence (KTSW2002). 2002.

41. Šváb-Zamazal, O. and V. Svátek. Towards ontology matching via pattern-based detection

of semantic structures in owl ontologies. in Proceedings of the Znalosti Czecho-Slovak

Knowledge Technology conference. 2009.

42. Barrasa Rodríguez, J., Ó. Corcho, and A. Gómez-Pérez, R2O, an extensible and

semantically based database-to-ontology mapping language. 2004.

43. Dragut, E. and R. Lawrence, Composing mappings between schemas using a reference

ontology. On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and

ODBASE, 2004: p. 783-800.

44. Lammari, N., I. Comyn-Wattiau, and J. Akoka, Extracting generalization hierarchies from

relational databases: A reverse engineering approach. Data & Knowledge Engineering,

2007. 63(2): p. 568-589.

45. Parsons, J., An information model based on classification theory. Management Science,

1996. 42: p. 1437–1453.

http://www.w3.org/DesignIssues/LinkedData.html

