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Abstract. This paper describes an algorithm to perform keyword search over 
federated RDF datasets. The algorithm compiles keyword-based queries into fed-
erated SPARQL queries, without user intervention, under the assumption that the 
RDF datasets and the federation have a schema. The compilation process is ex-
plained in detail, including how to synthesize external joins between local que-
ries, how to combine local queries with UNION clauses, and how to construct the 
WHERE and TARGET clauses. The paper then presents the architecture of a sys-
tem that implements the algorithm. Finally, the paper describes experiments with 
three real-world datasets to validate the implementation and to help understand 
the different situations faced by the compilation process.  
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1 Introduction 

The Resource Description Framework (RDF) was adopted as a W3C recommendation 
in 1999 and today is a standard for exchanging data on the Web. Indeed, a huge amount 
of data has been converted to RDF [15] and published openly on the Web, following 
the Linked Data principles [2]. These datasets frequently have an RDF schema, often 
under the form of a standard ontology, such as the Music Ontology, and are intercon-
nected. 

The SPARQL Protocol and RDF Query Language (SPARQL) was officially intro-
duced in 2008 to specify queries over RDF datasets. The SPARQL 1.1 Federated Query 
extension offers services for executing queries distributed over different RDF datasets. 
SPARQL is a sophisticated language, which is difficult to master, though.  

Keyword-based queries offer an alternative way to access databases, which is attrac-
tive when users are unaware of the way data is organized, or do not know the syntax of 
the query language. Specifically, keyword-based queries for RDF datasets has been 
extensively investigated, but most approaches assume that the RDF triples are stored in 
a centralized repository [6,8,10,20].  

By contrast, this paper addresses the problem of processing keyword-based queries 
over federated RDF datasets. The main contributions of this paper are: (i) An algorithm 
to compile keyword-based queries into federated SPARQL queries, without user inter-
vention, under the assumption that the RDF datasets and the federation have a schema; 
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(ii) An implementation of the algorithm; (iii) Experiments with the implementation to 
assess its usability. 

The reminder of this paper is organized as follows. Section 2 summarizes related 
work. Section 3 contains basic definitions and introduces the example used throughout 
the paper. Section 4 details the algorithm to compile keyword-based queries into fed-
erated SPARQL queries. Section 5 covers experiments with an implementation of the 
algorithm. Finally, Section 6 presents the conclusions and proposes future work. 

2 Related Work 

Keyword Search over RDF Graphs in Centralized Environments. Several ap-
proaches have been developed to help solve the keyword search problem over RDF 
datasets. The main challenge addressed in many of these approaches has been to syn-
thesize SPARQL queries from a set of keywords, since users are generally unaware of 
the query language and the RDF schema to be queried.  

For example, the Konduit tool [4, 10] provides non-expert users with a way to visu-
ally specify SPARQL queries. However, this tool has the disadvantage that the user 
must have a basic knowledge of SPARQL. 

The QUICK (QUery Intent Constructor for Keywords) [20] helps users construct 
queries in a given domain. The tool combines the convenience of keyword search with 
the expressiveness of semantic queries. Users start with a keyword query and are then 
guided through an incremental refinement process to specify the query intention. The 
intermediate queries are listed and ranked. QUICK has the drawback that the user must 
have some knowledge of the RDF schema.  

SPARKLIS [7] helps users explore and query RDF datasets by interactively explor-
ing the RDF schema, in a questions and answers process. SPARKLIS combines the 
fine-grained guidance of faceted search, most of the expressiveness of SPARQL, and 
the readability of natural languages. It has the advantage that no specific endpoint con-
figuration is required, since the schema is discovered on the fly. However, unlike our 
proposal, in SPARKLIS, the query is built by selecting query elements, and only a sin-
gle RDF dataset is accessed. 

The tools described in [8, 20] synthesize SPARQL queries by exploring the under-
lying RDF schema. Unlike [20], the tool described in [8] is fully automatic, and allows 
users to specify a keyword-based query with filters, that involve comparison operators.  

Frameworks supporting federated SPARQL queries. Research on querying distrib-
uted RDF datasets with SPARQL-like queries typically explores optimizations based 
on structural information (i.e., graph partitioning) [9,13,19]. Furthermore, according to 
[15], the tools and systems designed to address federated queries focus mostly on da-
taset selection and join optimization during federated SPARQL query execution. 

Well-known federation systems are ANAPSID [1], FedSearch [11], and FedX [17]. 
But all these systems focus on improving the performance of the SPARQL query exe-
cution, and not on the construction of the queries. 

A comparison of existing SPARQL federation frameworks can be found in [14,16]. 
Several frameworks, such as ARQ, Sesame and Virtuoso, have been built on top of 



SPARQL query engines supporting SPARQL 1.1, but this field is still far from ma-
turity. The existing frameworks for SPARQL 1.1 Federation Extension support the 
SERVICE keyword, but not all of them support the BIDING and VALUES operators. 
For instance, ARQ is a query engine processor for Jena that supports federated queries, 
providing SERVICE and VALUES operators. The framework implements nested loop 
joins to retrieve and combine result from multiple RDF datasets. Also, it provides a set 
of Java packages to build SPARQL queries programmatically. 

The work reported in this paper extends the centralized algorithm developed in [8] 
to compile keyword-based queries into federated SPARQL queries. The implementa-
tion reported in the paper follows the architecture for federations of SPARQL endpoints 
described in [15], uses the Java packages that ARQ provides, and stores the RDF 
schema of each available RDF dataset in auxiliary tables. 

3 Definitions and Examples 

3.1 Basic Definitions  

A link between RDF datasets Ti and Tj, with i ¹ j, is an RDF triple of the form (si,p,sj), 
where si and sj are URIs occurring in Ti and Tj. A linkset between Ti and Tj is simply a 
set of links between Ti and Tj. 

Assume that Ti and Tj have RDF schemas. A linkset schema for a linkset Lk between 
Ti and Tj is a triple (ci,p,cj), where ci and cj are classes of the RDF schemas of Ti and Tj. 
It restricts the links in Lk to be of the form (si,p,sj), where si and sj are instances of the 
classes ci and cj in Ti and Tj, respectively.  

An RDF dataset federation is a collection T = {T1, …, Tm} of RDF datasets and a 
collection L = {L1, …, Ln} of linksets between the datasets in T, denoted simply as  
T È L. The RDF graph of the RDF dataset federation T È L is the RDF graph induced 
by the set of triples T1 È …È Tm È L1 È…È Ln. 

A keyword-based query K is a set of literals, or keywords. An answer for K over  
T È L is defined as in [8], except that the RDF graph is that induced by the set of triples 
T1 È …È Tm È L1 È…È Ln. A detailed definition is omitted for brevity. The problem 
of finding answers for keyword-based queries over RDF dataset federations (or, briefly, 
the RDF-FKwS problem) is defined as: “Given an RDF dataset federation T È L and 
a keyword-based query K, find an answer for K over T È L”.  

In this paper, we assume that each RDF dataset Ti follows an RDF schema Si, for  
1 ≤ i ≤ m, and that each linkset Lj follows a linkset schema Mj, for 1 ≤ j ≤ n. We also 
assume that the RDF dataset federation T È L has a federated schema, which consists 
of the schemas of its datasets and linksets, a set of metadata matches, and a set of in-
stance match definitions. Section 3.2 provides an example of a federated schema.  

More precisely, a federated schema for the RDF dataset federation T È L is a quad-
ruple F = (s,l,µ,d), where:  
1) s = (S1,…,Sm) and l = (M1,…,Mn). 



2) µ is a set of metadata matches, that is, a set of pairs of the form (xi,xj) such that xi 
is a class (datatype property or object property) defined in Si and xj is a class (re-
spectively, datatype property or object property) defined in Sj, for 1 £ i ¹ j £ m; in 
this case, we say that xi and xj match. 

3) d is a set of instance match definitions, that is, a set of pairs of the form 
(q,(ci,(pi1,…, pik),cj,(pj1,…,pjk))) such that: 
a) q is an object property; 
b) ci and cj are classes defined in Si and Sj, respectively; 
c) (pi1,…,pik) is a list of datatype properties defined in Si whose domain is ci, and 

likewise for (pj1,…,pjk). 
By (1), the federated schema simply contains all dataset and linkset schemas. By 

(2), it admits just one-to-one metadata matches (also called schema mappings).  
An instance match definition (q,(ci,(pi1,…,pik),cj, (pj1,…,pjk))) specifies a set of links 

L of the form (si,q,sj) such that si is an instance of class ci in Ti, sj is an instance of class 
cj in Tj, and there are triples in Ti of the form (si,piu,vu) and triples in Tj of the form 
(sj,pju,vu), for 1 ≤ u ≤ k. That is, (si,q,sj) is a link in L iff the value of property piu for si 
is equal to the value of property pju for si, for 1 ≤ u ≤ k. A common type of inter-dataset 
property definition specifies that si and sj denote the same real-world entity iff the val-
ues of their properties (pi1,…,pik) and (pj1,…,pjk) are equal; these definitions are usually 
called sameAs definitions. 

We could account for more complex metadata matches or instance match defini-
tions at the expenses of a more complex keyword federated translation algorithm, which 
we leave for future work. In particular, sameAs definitions could incorporate transfor-
mations (e.g. lower case to upper case) and similarity measures (e.g. Levenshtein dis-
tance), as in tools such as Silk [18]. 

3.2 An Example  

Consider the following RDF datasets: the drug and enzyme data in DBpedia, with 
11.198 triples; DrugBank, with 765.936 triples; and the Kegg Drug, with 713.737 tri-
ples. We assume that these datasets have the RDF schemas described in Figure 1.  

Consider a federation of these three datasets with the federated schema described in 
Figure 2, where dotted arrows represent metadata matches and dashed arrows indicate 
instance match definitions. In more detail, we have: 
• RDF schemas: (as described in Figure 1).  
• linkset schemas: (the federation has no linksets).  
• metadata matches: drug in DBpedia with drug in DrugBank; enzyme in DrugBank 

with Metabolism in Kegg Drug; and drugInteraction in DrugBank with Interaction 
in Kegg Drug. 

• instance match definitions: a sameAs definition that relates enzyme instances in 
DrugBank and enzyme instances in DBpedia; a sameAs definition that relates Drug 
instances in DBpedia and drug instances in DrugBank; a definition for a new object 
property that relates drug instances in DrugBank with drug instances in Kegg Drug.  



 
Table 1 illustrates the types of federated queries the federated translation algorithm 

generates. The table is organized as follows: 
• Column 1: examples of keyword-based queries with the time to compile and 

run each query (see Section 5). 
• Column 2:  SPARQL queries over the federation that translate the keyword-

based queries.  
• Column 3: a schematic description of each query.  
Section 4 discusses how to compile the keyword-based query in each row into the 

corresponding federated SPARQL query. The rows of the table show: 
• Row 1: a query over DrugBank only.  
• Row 2: a federated query with two local queries over DBpedia and Drugbank 

that are combined with the help of a sameAs definition that relates the DBpedia 
instance for “ibuprofen” with the DrugBank instance for the same drug.  

• Row 3: a federated query with two local queries over Kegg Drug and Drugbank 
that are combined with the help of a UNION clause; the synthesis of the UNION 
clause is possible since drugInteraction in DrugBank matches Interaction in 
Kegg Drug. 

• Row 4: a more complex federated query with three local queries over DBpedia, 
Kegg Drug and DrugBank; the local queries over DBpedia and DrugBank are 
combined with the help of a sameAs definition that relates the DBpedia in-
stances of type enzyme with DrugBank instances also of type enzyme; the local 
query over Kegg Drug and the query formed by the external join between the 
local queries over DBpedia and DrugBank are combined with the help of a 
UNION clause. 

c) b) 

Figure 1 - RDF Schema of: (a) DBpedia; (b) DrugBank; (c) Kegg Drug. 
TargetInteractionMetabolism

KEGG drugdrugdrug interaction enzyme

referencedrug target

a)  drug	 enzyme	

 
Figure 2 - Federated Schema of DBpedia, DrugBank and Kegg Drug. 



Table 1 – Sample keyword-based queries and their translations. 
Keywords Generated Query Federated SPARQL Query Structure Runtime (s) 
indication  
backache 

SELECT ?C_0_0 ?P_0_0 
WHERE{  
  SERVICE SILENT <drugbank> {  
    ?I_C_0_0 rdf:type drugbank:drugs .  
    ?I_C_0_0 drugbank:indication ?P_0_0 
    FILTER oracle:textContains 
     (?P_0_0, "fuzzy({backache}, 70, 1)", 1) 
    ?I_C_0_0 rdfs:label ?C_0_0 
} } 

 

0.34s 

'drug target'  
ibuprofen 

SELECT  ?C_0_0 ?C_1_1 
WHERE{  
 SERVICE SILENT <dbpedia>{ 
    ?I_C_0_0 rdf:type dbpedia:Drug .  
    ?I_C_0_0 dbpedia:name ?sA_1_0 
    FILTER oracle:textContains  
      (?C_0_0, "{\"ibuprofen\"}", 0) 
    ?I_C_0_0 rdfs:label ?C_0_0    } 
 SERVICE SILENT <drugbank>{ 
      ?I_C_1_0 drugbank:target ?I_C_1_1 .  
      ?I_C_1_0 rdfs:label ?sA_1_0 
      FILTER oracle:textContains  
         (?sA_1_0, "{\"ibuprofen\"}", 0) 
      ?I_C_1_1 rdfs:label ?C_1_1    } 
}  

1.32s 

interaction SELECT  ?U_0 
WHERE{ 
{ SELECT  (?C_1_0 AS ?U_0) 
  WHERE{  
    SERVICE SILENT <drugbank>{ 
      ?I_C_1_0 rdf:type  
                drugbank:drug_interactions.  
      ?I_C_1_0 rdfs:label ?C_1_0   } } 
 UNION{ 
   SELECT  (?C_0_0 AS ?U_0) 
     WHERE{ 
      SERVICE SILENT <kegg>{ 
       ?I_C_0_0 rdf:type kegg:Interaction .  
       ?I_C_0_0 rdfs:label ?C_0_0   }  
    } }  
}  

1.54s 

interaction  
enzyme  

metabolism 

SELECT  ?U_0 ?U_1 
WHERE { 
 { SELECT  (?C_2_0 AS ?U_0) (?sA_1_0 AS ?U_1) 
   WHERE {  
    SERVICE SILENT <drugbank>{ 
       ?I_C_2_1 drugbank:enzyme ?I_C_2_2 . 
       ?I_C_2_0 drugbank:interactionDrug ?I_C_2_1 .  
       ?I_C_2_2 rdfs:label ?sA_1_0 .  
       ?I_C_2_0 rdfs:label ?C_2_0 .   } 
     SERVICE SILENT <dbpedia>{ 
       ?I_C_0_0 rdf:type dbpedia:Enzyme .  
       ?I_C_0_0 dbpedia:name ?sA_1_0 . } } } 
 UNION { 
   SELECT  (?C_1_0 AS ?U_0) (?C_1_1 AS ?U_1) 
   WHERE{  
     SERVICE SILENT <kegg>{ 
       ?I_C_1_0 kegg:metabolism ?I_C_1_2 . 
       ?I_C_1_0 kegg:interaction ?I_C_1_1 .  
       ?I_C_1_1 rdfs:label ?C_1_0 .  
       ?I_C_1_2 rdfs:label ?C_1_1   } } } }  

3.55s 
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4 The Federated Translation Algorithm 

The key problems to compile keywords into federated queries are: (1) How to generate 
local queries that cover the input keywords as much as possible; (2) How to combine 
the local queries, using the metadata matches and instance match definitions of the fed-
erated schema. The first problem was addressed in [8] and the second problem is the 
focus of this section. 

4.1 Overview of the Federated Translation Algorithm 

This section details the federated translation algorithm that compiles keyword based-
queries into federated SPARQL queries (see Figure 3). It has as input a keyword-based 
query K and a federated schema F and returns a federated RDF query Q.  

Stage 1 runs the centralized translation algorithm, for each dataset Ti. The result 
may be a local query, Qi, if dataset Ti contributes to answering K, or NULL, otherwise. 
It also returns, for each variable vk, with 1 £ k £ n:  

1. the set of keywords Kk that vk covers; 
2. the URIs of the elements that vk binds to, as follows: 

• if vk binds to instances of a class ci, then the URI of ci is returned; 
• if vk binds to property values of a property pi, then the URIs of pi and ci, are 

returned, where ci is the domain of pi. 
The set of keywords that Qi covers is then Ki = K1 È … È Kn. By construction of the 

centralized translation algorithm, we have Ki Í K. 
The following sections detail how Stage 2 synthesizes a federated SPARQL query 

Q from the local queries. Very briefly, Step 2.1 finds the set of external joins that are 
candidates to link the set of local queries. Step 2.2 creates the federated query multi-
graph GF=<VF, EF, WF> such that the nodes are the local queries, the edges are the 

FEDERATED TRANSLATION ALGORITHM 
Input:     A keyword-based query K 
                A federated RDF schema F 
Output:  A federated SPARQL query Q 
STAGE 1 Compute the set of local SPARQL queries:      
     For each endpoint ei: 
     1.1. Run the Centralized Translation Algorithm. 
     1.2. Return the local SPARQL query Qi or NULL. 
STAGE 2 Synthesize the federated SPARQL query Q: 
     2.1. Discover the external joins which are candidates to link the local queries. 
     2.2. Create a federated graph GF and compute a maximum spanning forest TF of GF,  

to select the external joins that will be present in the federated query. 
     2.3. Insert the triple patterns corresponding to the selected external joins into the respective 

queries. 
     2.4. If TF is not connected, then check if it is possible to compute the UNION clauses. 
     2.5. Synthesize and return Q. 

Figure 3 - Outline of the Federated Translation Algorithm. 
 



candidate external joins, and the weights are as in Section 4.3; then, Step 2.2 computes 
a maximum directed spanning forest TF of GF. Step 2.3 inserts into the local queries the 
triple patterns corresponding to the arcs of TF. If TF is not connected, then Step 2.4 tries 
to combine the local queries represented by the connected components of TF through 
UNION clauses. Step 2.5 synthesizes the federated SPARQL query Q. 

4.2 Overview of the Centralized Translation Algorithm 

This section briefly overviews the centralized translation algorithm, introduced in [8]. 
The algorithm accepts a keyword-based query K and an RDF dataset T, and outputs a 
SPARQL query Q, which is a correct interpretation for K, in the sense that any result 
of Q is an answer for K over T. It assumes that T follows an RDF schema S.  

The algorithm starts by computing a set of metadata matches and a set of property 
value matches between the keywords and elements of T. It organizes the matches into 
nucleuses, which have a class c, together with a list of properties whose domain is c 
and whose values match keywords.  

The centralized translation algorithm implements two heuristics, called the scoring 
and the minimization heuristics. Briefly, the scoring heuristic: (1) considers how good 
a match is, say “city” matches “Cities” better than “Sin City”; (2) assigns a higher score 
to metadata matches, on the grounds that, if the user specifies a keyword, say “city”, 
that matches both a class label, say, “Cities”, and the property value of an instance, say 
the film title “Sin City”, then the user is probably more interested in the class labelled 
“Cities” than the specific film “Sin City”; (3) assigns a higher score to nucleuses that 
cover a larger number of keywords. The heuristic is formalized by defining a score 
function for the nucleuses.  

The minimization heuristic tries to generate minimal answers, in two stages. Ideally, 
we should try to find the smallest set of nucleuses that covers the largest set of keywords 
and that has the largest combined score. However, this is an NP-complete problem (by 
a reduction to the bin packing problem). The first stage of the minimization heuristic 
then implements a greedy algorithm that prioritizes the nucleuses with the largest scores 
that cover a large subset of K. The second stage of the minimization heuristic then con-
nects the classes in such nucleuses, using a small number of equijoins. This is equiva-
lent to generating a Steiner tree ST of the graph of the RDF schema of T that covers the 
classes in the prioritized nucleuses. Then, the algorithm uses the edges of ST to generate 
equijoin clauses of the SPARQL query Q. 

4.3 Computing External Joins 

Recall that the result of executing the centralized translation algorithm for a dataset Ti 
is a local query Qi or NULL. For the sake of simplicity and without loss of generality, 
by reordering the datasets, we may assume that Stage 1 returns queries Q1, Q2, …, Qk, 
with k £ n. Let Ci denote the set of classes present in Qi, for 1£i£k. Also, for each ciÎCi, 
let score(ci) be the score of the nucleus that contains ci, as computed by the centralized 
translation algorithm. 

For each pair of local queries Qi and Qj, with 1 £ i ¹ j £ n, Step 2.1 creates a candidate 
external join, denoted (Qi,Qj), between Qi and Qj iff the federated schema has a linkset 



schema of the form (ci,p,cj) or an instance match definition of the form (q,(ci,(pi1,…, 
pin),cj,(pj1,…,pjn))) such that ciÎCi and cjÎCj. We say that the external join is generated 
by the linkset schema or by the instance match definition. Step 2.1 computes the score 
of (Qi,Qj) as the sum of the scores of ci and cj.  

Step 2.2 first creates the federated query multigraph GF = <VF, EF, WF>, where: 
• VF = {Q1,…,Qk} is the set of non-null local queries that Stage 1 returns; 

• there is an arc (Qi,Qj) in EF, with score WF((Qi,Qj)) = s, iff (Qi,Qj) is a candidate 
external join, returned by Step 2.1, whose score is s. 

Note that GF is indeed a multigraph, since there might be more than one candidate 
external join between the same pair of local queries. Also, GF may not be connected.  

Step 2.2 then computes a maximum spanning forest TF of GF. The arcs in TF repre-
sent the selected external joins that will be used to combine the local queries.  

After selecting the external joins, Step 2.2 computes the score of a local query Qi as: 

score(Qi) = max{ WF((Qi,Qj)) / (Qi,Qj)ÎTF } 
Then, for each selected external join (Qi,Qj), Step 2.3 synthesizes external join triple 

patterns as follows. There are two cases to consider. If the external join is generated by 
a linkset schema (ci,p,cj), then a triple pattern of the form (si p sj) is included in Qi. If 
the external join is generated by an instance match definition of the form (q,(ci,(pi1,…, 
pin),cj,(pj1,…,pjn))), then triple patterns of the forms (si pik vk) and (sj pjk vk) are included 
in Qi and Qj. Note that the use of the same variable vk in both triple patterns forces the 
property values to be equal.  

For example, row 2 of Table 1 shows a federated query with two local queries, Q1 
and Q2, respectively over DBpedia and DrugBank. These queries are combined by ex-
ternal join triple patterns, which are in turn generated by a sameAs definition. Let C1 
and C2 be the sets of classes present in Q1 and Q2, respectively. So, corresponding to 
the sameAs definition, the triple pattern (?I_C_0_0 dbpedia:name ?sA_1_0) is added 
to Q1 and (?I_C_1_0 rdfs:label ?sA_1_0) to Q2. The score of Q1 is given by 

score(Q1) = WF((Q1,Q2)) = score(Drug)+score(drugs) 
where we recall DrugÎC1 and drugsÎC2 and the values of score(Drug) and 
score(drugs) are computed by the centralized translation algorithm in Stage 1. 

4.4 Computing UNIONs 

Recall that Step 2.2 creates a federated graph GF and computes a maximum spanning 
forest TF of GF. However, TF may not be connected, that is, TF may consist of several 
trees, in which case Step 2.4 tries to compute UNION clauses, under certain conditions.  

Let Q1 and Q2 be two SPARQL queries in different trees of TF. Assume that S1 = {v1, 
v2, …, vm} is the set of variables in the TARGET clause of Q1, S2 = {w1, w2, …, wn} is 
the set of variables in the TARGET clause of Q2, S1 covers the set of keywords K1 and 
S2 covers the set of keywords K2. It is possible to combine Q1 and Q2 with the help of a 
UNION clause iff 
(1) S1 and S2 have the same number of variables, that is, m=n; 
(2) There is a permutation p of 1,…,m such that each pair of variables vi and wp(i) are 

bound to instances of classes (or properties) that match; in this case, we also say 
that vi and wp(i) match. 



To generate a federated SPARQL query with a UNION clause, a bind variable us, 
for s=0,…,m, is created. 

For example, row 3 of Table 1 shows a federated query with a UNION clause that 
combines two local queries, Q1 and Q2, respectively over DrugBank and Kegg Drug. 
Note that, the number of variables in the TARGET clause of Q1 is equal to that of Q2. 
Variable ?C_1_0 in Q1 binds to instances of the class drug_interactions and variable 
?C_0_0 in Q2 binds to instances of the class Interaction. According to the federated 
RDF schema depicts in Figure 2, drug_interactions and Interaction match. Therefore, 
variables ?C_1_0 and ?C_0_0 also match. Thus, a variable ?U_0 is created, which binds 
to the values in ?C_1_0 and ?C_0_0, and Q1 and Q2 are combined via a UNION clause. 

4.5 Defining the WHERE clause 

This section schematically describes how the WHERE clause of the federated queries 
are synthesized. 

Let “Q1 ⋈ Q2” represent an external join between two queries Q1 and Q2. Assume 
that Stage 1 returns queries Q1, Q2, …, Qk, with k £ n. Let Q be the federated SPARQL 
query to be constructed, and WQ be the WHERE clause of Q. In general, WQ is a union 
of queries combined by external join patterns, which is denoted as  
WQ = (⋈#

$%& '%&
() 𝑄$,'). 

For a better understanding of the above definition, consider the following case. Sup-
pose that the local SPARQL queries are Q1, Q2, Q3 and Q4. Assume that Q1 and Q2 are 
combined by external join triple patterns, and likewise for Q3 and Q4. Let P1 = Q1 ⋈ Q2 
and P2 = Q3 ⋈ Q4. Assume that P1 and P2 can be combined by a UNION clause. Then, 
the WHERE clause of the federated query would be: 

WQ = P1 ⋃ P2 = (Q1 ⋈ Q2) ⋃ (Q3 ⋈ Q4)		
Note that, when P1 and P2 cannot be combined by a UNION clause, that is, when 

they do not meet the conditions defined in Section 4.4, then the federated translation 
algorithm will generate only one of the queries, P1 or P2. 

For example, row 4 of Table 1 shows a federated query whose WHERE clause cor-
responds to a union of queries combined by external join triple patterns. Indeed, let Q1, 
Q2, and Q3 denote the local queries over DBpedia, Kegg Drug and DrugBank, respec-
tively. Observe from row 4 of Table 1 that Q1 and Q2 are combined by external join 
triple patterns generated by a sameAs definition, denoted P1 = Q1 ⋈ Q2. Note that:  

(1) Corresponding to the sameAs definition, the triple patterns (?I_C_2_2 
rdfs:label ?sA_1_0) and (?I_C_0_0 dbpedia:name ?sA_1_0) are included 
in Q1 and Q2, respectively; 

(2) Variables ?C_2_0 and ?sA_1_0 cover the keyword set K1 = {“interaction”, 
“enzyme” }; 

(3) The results in variable ?C_2_0 represent instances of the class drug_interaction 
in DrugBank; 

(4) The results in variable ?sA_1_0 represent instances of the class enzyme that 
occurs in DBpedia and DrugBank. 

As the example shows, the TARGET clause of Q3 contains variables ?C_1_0 and 
?C_1_1, which cover the set of keywords K2 = {“interaction”, “metabolism”}. Variable 
?C_1_0 represents instances of the class Interaction, and variable ?C_1_1 binds to the  



labels of the instances of the class Metabolism. Then, the TARGET clauses of both P1 
and Q3 have the same number of variables and, according the federated schema defined 
in Figure 2, variables ?C_2_0 and ?C_1_0 are bound to classes that match. Then, the 
results of both variables are bound to the new variable ?U_0. Likewise, variables 
?sA_1_0 and ?C_1_1 match, and the results are bound to a variable, ?U_1. So, the 
WHERE clause of the federated query is given by WQ = P1 ⋃	Q3 = (Q1 ⋈ Q2)	⋃	Q3. 

4.6 Defining the TARGET clause 

Let Q be a federated query with TARGET clause SQ and WHERE clause WQ. The con-
struction of SQ consists mainly in the computation of a subset Var(SQ) of the set of 
variables Var(WQ) present in WQ. The computation of Var(SQ) depends on WQ and the 
coverage of the keywords set K. The different cases are explained in what follows. 
Federated Query with a WHERE clause without external join triple patterns or 
UNION clauses 

Suppose that the centralized translation algorithm outputs a single local query Q1. Then, 
the federated SPARQL query Q will be Q1, with an additional “SERVICE SILENT” 
clause to query the target dataset, and Var(SQ)=Var(SQ1). Row 1 of Table 1 illustrates 
this case. 
Federated Query with a WHERE clause with only external join triple patterns 
Suppose that the WHERE clause of the federated query Q is of the form  
WQ = Q1⋈…⋈Qn. 

To compute the set of variables Var(SQ) of the TARGET clause of Q, a greedy strat-
egy is used, based on the score of the local queries, and taking into account the coverage 
of the keywords set K by the variables in Var(SQ).  

Let CQ ={Q1, …, Qm} be the set of local queries. The strategy starts with Var(SQ)=Æ 
and a set of covered keywords K’ = Æ. Assume that the local query Qi, with 1 ≤ i ≤ m, 
has the highest value score. Then, the variables in Var(SQi) are added to Var(SQ), and 
the keywords covered by Var(SQi) are added to K’. If K = K’ or all local queries have 
been analyzed, the process stops. Otherwise, the next local query Qj in decreasing score 
order is analyzed and, if there is a variable vj ÎVar(SQj) such that vj covers a set of 
keywords Kj  Í K, and there is a keyword kÎKj such that kÏK’, then vj is added to 
Var(SQ) and k is added to K’. 

For example, row 2 of Table 1 shows a federated query Q such that the set of varia-
bles Var(SQ) is equal to Var(SQ1), because Q1 is the query with the highest score and 
the variables in Var(SQ1) cover the set of keyword K3. 
Federated Query with a WHERE clause with only UNION clauses 
Suppose that the WHERE clause WQ of the federated query Q is of the form  
WQ = Q1⋃…⋃Qn. 

For brevity, consider only the case of two local queries, that is, Q = Q1⋃Q2. Assume 
that SQ1 = {v1, …, vm}, SQ2 = {w1, …, wm}, and there is a permutation p of 1,…,m such 
that each pair of variables vi and wp(i) match. Then, a new variable ui is created to bind 
the results of variables vi and wp(i) and the TARGET clause SQ of Q is composed of the 
bind variables u1,…,um. 



For example, row 3 of Table 1 shows a federated query Q such that the set of varia-
bles Var(SQ) consists of a new bind variable ?U_0. 

Federated Query with a WHERE clause with external join triple patterns and 
UNION clauses 

Suppose that the WHERE clause WQ of the federated query Q is of the form  
WQ = (⋈#

$%& '%&
() 𝑄$,'). 

The strategy for choosing the variables in the TARGET clause of Q is similar to the 
previous case and is based on the structure of WQ. As an example, suppose that  
Q = (Q1⋈Q2)	⋃	(Q3⋈Q4) and that the sets of variables of Q1⋈Q2 and Q3⋈Q4 are 
Var(SQ1⋈Q2)={v1,…,vm} and Var(SQ3⋈Q4)={w1,…,wm}, respectively. Assume that these 
sets satisfy Conditions (1) and (2) defined in Section 4.4 and that they cover the key-
word set K. Then, the results of Q1⋈Q2 and Q3⋈Q4 can be combined via a UNION 
clause, and a new variable ui is created to bind the results of variables vi and wp(i), for 
i=1,…,m. The set of variables Var(Q) is composed of the new bind variables u1,…,um. 

For example, Row 4 of Table 1 shows a federated query Q such that  
WQ = (Q1 ⋈ Q2)	⋃	Q3 and Var(Q)={?U_0, ?U_1}. 

5 Implementation and Experiments 

We implemented a complete federated keyword search system, which incorporates the 
federated translation algorithm. The architecture of the system has the following com-
ponents: (1) a Web interface, which allows users to submit keyword-based queries to 
the federation; (2) a Mediator, which orchestrates the processing of the keyword-based 
queries; (3) a Storage Component, which stores data and metadata about the RDF da-
tasets of the federation; (4) a Federated Schema Component, which saves the federated 
schema of the federation; and (5) the RDF datasets that compose the federation. 

Briefly, the processing of a keyword-based query goes as follows. The Mediator 
receives the set of keywords specified by the user and executes the federated translation 
algorithm, which: (1) uses the Storage Component to find the data and metadata that 
matches the keywords; (2) uses the Federated Schema Component to find the external 
joins between the computed subqueries; (3) if necessary, it creates UNION clauses to 
combine the result of queries that are not linked by inter-dataset property definitions; 
(4) synthesizes the federated SPARQL query. Then, the Mediator executes the feder-
ated SPARQL query and returns the response to the user. 

We ran a suite of keyword-based queries to assess the performance of the federated 
translation algorithm. All experiments were conducted using the Web interface of the 
system, develop in Java. The APP ran on a desktop machine with OS Windows 7 Ulti-
mate, a quad-core processor Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz, 4 GB of 
RAM. In the same desktop machine, all system components were allocated to an Oracle 
Database version 12c, configured with a PGA size of 324 MB and an SGA size of 612 
MB with 148 MB of cache size and 296 MB of buffer cache.  

As introduced in Section 3.2, three RDF datasets were selected for the experiments: 
the drug and enzyme data in DBpedia, with 11.198 triples; DrugBank, with 765.936 
triples; and the Kegg Drug, with 713.737 triples. These datasets were stored in different 



station nodes, located in the same local network, configured using the Oracle Spatial 
and Graph for Semantic Technologies, available in Oracle 12c. Data and metadata 
stored in the Storage Component were indexed using Oracle Text to facilitate full text 
search and each remote RDF graph was indexed using the B-Tree indexing for RDF 
models and entailments supported by the Semantic Network feature of Oracle.  

The keyword-based queries were selected to show the different configurations of the 
WHERE clause of the federated query, and the coverage of the set of keywords by the 
variables in the TARGET clause. Table 1 shows some of the queries run in the test suite. 
In particular, Column 1 of Table 1 shows that all queries were successfully executed in 
less than 4 seconds (the time reported is the average of 10 executions for each sample 
query). This is quite reasonable, considering: the size of the datasets; the fact that the 
system returns 750 results as a limit; and the fact that the subquery results come from 
different datasets stored in a local network.  

Indeed, the results obtained by running the complete test suit suggest that the algo-
rithm performs well for the keyword-based search over federated RDF graphs. 

6 Conclusions and Future Work 

We presented an algorithm, called federated translation algorithm, to perform keyword 
search over federated RDF datasets by exploring their schemas. The algorithm extends 
the centralized translation algorithm described in [8] and generates a federated 
SPARQL query such that: (1) the local queries only access the datasets whose indexed 
data and metadata match the keywords; and (2) the variables in the TARGET clause of 
the federated SPARQL query cover a subset of the set of keywords submitted.  

We detailed the design decisions that support the construction of the federated 
SPARQL query, based on the information of the federated schema and on the local 
queries generated by the centralized translation algorithm. We defined the conditions 
to combine, with the help of external join patterns and UNION clauses, the local que-
ries. We explained how the TARGET clause is constructed, according to the composi-
tion of the WHERE clause.  

Finally, we briefly described the implementation of a federated keyword search sys-
tem, which includes the federated translation algorithm, and conducted experiments to 
test the performance of the system, using three freely accessible RDF databases, with 
metadata matches and instance match definitions specified between them. The experi-
ments suggest that the proposed algorithm performs well for keyword-based search 
over federated RDF datasets. 

As future work, we are developing a benchmark for RDF federated keyword search 
systems, which we plan to use to further test the system described in this paper. The 
benchmark will include scenarios with a larger number of RDF datasets and more com-
plex federated schemas. Finally, we plan to extend the current implementation to other 
federated RDF storage systems and to make the tool publicly available.  
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