
Management of sensitive data on NoSQL databases

Carlos M. García-Ruiz1, Alejandro Oliver1, Jesús Peral1, Juan Trujillo1, Carlos

Blanco2, Eduardo Fernández-Medina3

1 Lucentia Research Group, Alicante University, San Vicente del Raspeig – Alicante, Spain.
2 University of Cantabria. Spain

3 Alarcos Research Group. University of Castilla La Mancha. Spain
{cmgr4,aor14}@alu.ua.es, {jperal,jtrujillo}@dlsi.ua.es

cblanco@ucan.es, eduardo.fernandez@uclm.es

Abstract. Nowadays, NoSQL databases are winning popularity through

all the e-commerce related sites and it is becoming a tendency to migrate

from a relational model to others without schema. NoSQL databases are

more flexible since they allow an easier adaptation of the database struc-

ture and the capability of refactoring the schema on the fly for any project

without having to stop the database service and evolving the database

schema. Finally, the query optimization is designed to manage large

amounts of data, whereas on relational databases it is more focused on

operations rather than on data. In this paper, we intend to make a demon-

stration on how security can be implemented on the database layer focus-

ing on the permissions of users, this could be applied to databases where

some fields can contain sensitive data that certain users should not have

access to. We also test the capability of trimming determined fields of a

database to have a more secure environment. For this implementation,

we have chosen MongoDB for its schema less property and the lack of

internal mechanisms to automatically apply Access Control Rules. In this

paper, the user restrictions are implemented using a Role-Based Access

Control model on MongoDB. This means that a user can be granted one

or more roles previously defined, where each role would have authoriza-

tions defined to make operations in specific databases, collections or doc-

uments.

1 Introduction

MongoDB [1] is an open-source multiplatform NoSQL database system. It is a docu-

ment-oriented database with no predefined schema that implies every registry can have

a different structure, e.g. a structure called Address could contain a plain-text field re-

ferring to the address and in some instances, it could or could not have a number.

This technology pretends to increase horizontal scalability of the data layer with a

simple development complexity and the possibility of storing enormous amounts of

data. When the necessity of scaling is given through several machines, NoSQL results

very impressive on performance, and MongoDB is one of the NoSQL databases with

highest performance rates. The BSON/JSON document model of MongoDB intends to

mailto:cblanco@ucan.es
mailto:eduardo.fernandez@uclm.es

2

be easy to develop and manage, and it offers high performance with the inner aggrupa-

tion of relevant data [1-3].

Every instance or combination of data is named by Document, and documents can

be grouped into Collections (equivalent to tables in relational databases) with no pre-

defined schema. Some fields can be indexed in documents for higher performance.

The main hierarchy of MongoDB is given by the previously presented elements. The

main difference between MongoDB and relational database tools is that the concepts

of tables, rows and columns do not exist, instead documents are used with different

structures. An aggrupation of fields would form a document and in case this document

is grouped with other documents it would result in a collection. The databases will be

composed by collections. Finally, in a real scenario, a server can host many databases.

As mentioned before, MongoDB does not have a standard schema of data, but this

does not mean that the data would be inconsistent. In fact, structured documents are

very common in MongoDB, so it will not be difficult to manage all the data. For data

transfer of documents in MongoDB, the BSON (Binary JavaScript Object Notation) is

used. It consists of a binary representation of data structures, designed to be lighter and

more efficient than JSON (JavaScript Object Notation). MongoDB has a series of tools

that allow a very intuitive interaction with the databases, between the most popular are:

 Mongod: MongoDB database server.

 Mongo: Client of MongoDB that allows direct interaction with the databases.

 Mongofiles: tool for working with files directly over the databases.

 Regarding security aspects and accessing sensitive data, MongoDB (and other

schema less NoSQL databases) presents the serious problem that it is difficult to auto-

matically or semi-automatically control the access to sensitive data due to the fact that

several different structures of documents can coexist in the same database.

 Therefore, in this paper, we propose the basis for semi-automatically implementing

security rules on MongoDB (and other NoSQL databases in the future). In concrete, we

have defined a security approach focused on NoSQL document databases. Our ap-

proach allows us the specification of both structural and security aspects related to doc-

ument databases. Therefore, new collections of documents can easily be added and the

new security and access-control rules can be more easily defined. In order to check the

applicability of our proposal, we use it in to generate the required code to implement

the defined security rules on MongoDB.

The rest of the paper is structured as follows. Section 2 summarizes the most relevant

concepts and challenges on NoSQL databases security. Section 3 presents our proposal

to establish security constraints on: collection, field and field content. Subsequently,

Section 4 shows a case study with a dataset about patient clinical reports. Finally, the

main contributions and our directions for future work are explained in Section 5.

3

2 Related Work

2.1 NoSQL databases security

NoSQL databases can be classified in four different categories depending on the type

of model selected to store the data:

─ Key/Value: data is stored and accessible by a unique key that references a value, e.g.

DynamoDB, Riak, Redis. “Amazon” and “Best Buy”, among others, use this kind

of implementation.

─ Columns: similar to the key/value model, but the key consists of a combination of

column, row and a trace of time used to reference groups of columns (called fami-

lies). This model is the most related to relational databases due to its similar imple-

mentation, e.g. Cassandra, BigTable, Hadoop/HBase. Companies like “Twitter” or

“Adobe” use this model of database.

─ Documents: Data is stored in documents that encapsulate all the information follow-

ing a standard format (XML, YAML, JSON, etc.). Documents have field names per-

forming as key values and the content of the field is considered the value associated

to its key. This is a more complex implementation of the key/value model, e.g. Mon-

goDB, CouchDB. As case uses of this technology we can find “Netflix”.

─ Graphs: This applies the graph theory expanding between multiple computers. This

model is appropriated for structures of data that have a pattern similar to a graph.

For example, transportation networks, maps, etc. E.g. Neo4J, GraphBase.

With regard to the incorporation of security policies in these NoSQL databases (used

in Big Data technologies) several work have been defined. However, they usually do

not consider security at the modelling stages [4-6].

Other contributions present a complete secure development of information systems.

Although they do not focus specifically on NoSQL databases and their specific security

problems, they present interesting ideas: (1) Secure TROPOS [7] is an extension that

includes security in the TROPOS methodology for software development based on the

intentional goals of agents. (2) Mokum [8], which is an active object-oriented

knowledge-based system for modelling, allows the specification of security and integ-

rity constraints. (3) UMLsec [9] uses formal semantics in order to evaluate security

specifications; it defines the specification of confidentiality, the integrity requirements

and the accessing control policies. (4) The application of the model-driven approach to

include security properties in high-level system models and the automatic generation

of secure systems are carried out in MDS (Model-driven Security) [10].

2.2 Security challenges in NoSQL databases

Given the wide variety of NoSQL databases, it is almost compulsory to consider the

generic weaknesses of these data models, and for each particular case apply the con-

venient strategies. Compared to relational databases we can find the following security

measures to consider:

4

 Authentication: The main weakness of NoSQL databases is authentication because

they usually come with default credentials or with no required authentication at all

(e.g. Redis). In many cases the databases are supposed to be running in trusted envi-

ronments, due to this supposition many implementations are in serious danger.

 Data integrity: NoSQL’s philosophy is based on high availability and performance.

Because of this, data integrity is usually penalized. Therefore, it is necessary the

usage of external mechanisms in order to ensure integrity.

 Confidentiality and storage encryption: Generally, data storage is placed in plain

text except certain cases like Cassandra and its technology “Transparent Data En-

cryption”. In most of the cases is inevitable to delegate the data encryption to the

application layer or to the file system used.

 Data auditing: Most of the NoSQL database technologies lack their own auditing

system, therefore they are exposed to attacks due to the incapability of monitoring

concrete events over registries.

 Data exchange security: Encrypted communications and the use of the SSL proto-

col is usual in relational databases. However, in NoSQL systems it is generally dis-

abled by default and it is optional (Cassandra), or a complex configuration is re-

quired (MongoDB).

 Classic vulnerabilities in databases: even more injection: Finally, the most ex-

ploded aspect of NoSQL databases is the command injection, requests are executed

through an API formatted according to a convention, usually JSON or XML. At this

point, an incorrect verification of the parameters can lead to the execution of unde-

sired commands. The possibilities of injection and its risks when using an API are

even stronger when using a procedural programming language, whereas in relational

databases the risk is high because of the SQL language, but not as dangerous as in

NoSQL databases.

Concluding, NoSQL is growing higher and higher in popularity between innovative

technologies and is inevitable to expect an increase of resources in security is going to

be used in all kind of production environments. Furthermore, after analyzing the previ-

ous work, it is necessary to define a complete secure approach focused on NoSQL da-

tabases.

3 Our proposal

One of the contributions of this proposal is the establishment of the security privileges

needed to access each field of the data set. It is carried out by using Natural Language

Processing (NLP) and lexical ontological resources. We have used the lexical resource

WordNet1. By analyzing the values of each field we establish tree kinds of security

constraints.

1 http://wordnetweb.princeton.edu/perl/webwn (visited on February, 2017).

5

0. Security collection. All users are not allow to access all site collections, a given

level of security is required in order to limit the collections users can access.

1. Security constraints. There are fields in which all the information is sensitive at

the same security level, that is, it does not depend on their specific values.

For instance, the information of the address field is sensitive and a certain security

level (for instance, SL = 1) could be required for queries. This level is the same for all

the values of this field, that is, there are not instances of address more sensitive than

others.

2. Fine-grain security constraints. Nevertheless, there are special cases in which it is

necessary to define fine-grain security constraints to establish higher security privileges

for certain values of the field. For instance, to query a field representing diseases could

require a specific security level in general (for instance, SL = 1), but certain values that

represent terminal diseases could require a higher security level (for instance, SL = 2).

In this way, a user with security level of 1 could only see diseases not related to terminal

diseases.

Once the security constraints have been established, the designer models the data set

according to our security approach. In this paper we have defined an approach focused

on a kind of NoSQL databases, document databases. It allows the specification of both

structural and security aspects related with document databases. It permits modeling

structural aspects such as Databases (as Packages), Collections (as Classes) and Fields

(as Properties).

The security configuration of the system which we want to model is defined by using

three points of view: a hierarchical structure of Security Roles; a list of Security Levels

with the clearance levels of the users; and a set of horizontal Security Compartments or

groups. We can define security rules associated with structural elements. Each rule in-

dicates the actions that certain subjects can carry out over certain objects. Furthermore,

we can define fine-grain security rules which affect specific fields of a collection. This

kind of rules allows us to establish different security privileges when the values of a

field satisfy a condition.

4 Case study

4.1 Description

The dataset used for the demonstration is a custom adaptation from the UCI Machine

Learning Repository that represents the patient clinical reports of 130 hospitals between

the years 1999 and 2008 [11].

6

4.2 Data-set definition

With MongoDB started as a service, the creation of the test database “Hospital” is very

simple, we just use the command “use Hospital”. For the example, we will work with

the “Patient” and “Admission” collections. In Fig. 1 we can observe the document val-

idation restriction implemented in the “Patient” collection.

Fig. 1. Patient collection structure.

In both collections, pre-loaded data can be found. The documents contain data of

different patients with their admissions. Fig. 2 shows the insertion of the test documents

in the “Patient” collection, while in the “Admission” collection it has been used a ref-

erence technique insertion.

Fig. 2. Example documents insertion into the Patient collection

7

4.3 Restriction model implementation

Once the database and its collections are created, we will restrict collections user can

access and set the restriction policies to the fields. Thanks to MongoDB native views

system, we are able to set restrictions to control which kind of information a user can

access, and also thanks to the aggregation pipelines, we can determine if a field contains

sensitive data and trim every result of a concrete field.

In order to create the view we will use the following syntax: “db.creat-

eView(viewName, collectionName, pipeline, options)”. In Fig. 3 we observe the crea-

tion of a view with a security level 2, where the field “medical_specialty” is restricted

if the data on this field is “Oncology” as we considered it restricted data for this level

of access to the database.

Fig. 3. View creation for level 2 restriction access.

The next step is to implement the creation of the role that will have access to this

View. For this we will use the command: “db.createRole(roleName, privileges, other-

Roles)”. In Fig. 4 it is shown that the role will only be applied to security level 2. The

“Collection: Admission2” is the view defined with restrictions and as we can see we

treat it as if it was a collection of the database.

Fig. 4. Role creation for access level security 2.

Finally, the users are created, this way the environment will be entirely prepared for

testing. In Fig. 5 we use the “createUser” command to define a user that would be ca-

pable of applying the security role 2 over the “Hospital” database.

Fig. 5. User creation with level 2 security.

8

In order to manage the access of users to the database and collections it is mandatory

to include in the configuration file “mongod.conf”, inside “#security” the following

sentence: “security.authorization : enabled”. The file is located in “/etc/mongod.conf”,

accessible via terminal.

4.4 Environment restrictions demonstration

In this section, we will prove that the restrictions defined on the database are completely

functional. The first step is to login as a user, with the previously defined user, and

since we activated the authentication protocol on the service mongod, now it is com-

pulsory to log in as a user to access the databases and collections.

Fig. 6. Level 0, security collection.

9

For the demonstration, we created users with restriction levels 1, 2 and 3.

1. Level 0, security collection: At level 0 a user has access to certain collections, in

this case to the ''Patient'' collection (Fig. 6).

In case someone tries to access to the collection "Admission" we would receive a

message on the screen which informs that required permissions to access to the already

stated collection are not owned (Fig. 7).

Fig. 7. Level 0, security collection(2).

2. Level 1, security constraints: The level 1 can only access the defined views of “Pa-

tient” and “Admission” since it is the lowest permission level allowed for the data-

base. Fig. 8 shows how the system will not authorize to enter any database if the user

does not have permission and the view will only show the fields to what the user has

permission.

Fig. 8. Level 1, security constraints.

10

3. Level 2, fine-grain security constraints: The level 2 user is defined to be able to

access the collection “Patient”, but with restrictions on the “Admission” collection.

Fig. 9 shows the user has total access to “Patient” and it does not show specific fields

on “Admission”. Furthermore, on the “Patient” collection with this level of security,

if the data in the field “medical_specialty” of “Admission” is “oncology” the data

will be treated as sensitive and it will not be shown in any result of queries made by

this user (Fig. 10).

Fig. 9. Level 2, fine-grain security constraints.

11

Fig. 10. Level 2, fine-grain security constraints (2).

4. Level 3: Finally, the user with access level 3 will be able to see all the fields and all

the data. As shown in Fig. 11, the result query displays all the available fields and

data in both “Patient” and “Admission” collections.

12

Fig. 11. Level 3 restriction demonstration.

Despite the level 3 is the highest security level, for the sake of investigation it has a

restriction on the CRUD (Create, Read, Update, and Delete) operations over the data-

base, it will not be able to remove any data from the collections, this way we can demon-

strate that the restrictions concerning commands can also be defined. Fig. 12 shows an

attempt to execute an unauthorized command from this user level of security running

into an error.

Fig. 12. Level 3 unauthorized execution example.

13

5 Conclusion

In this paper, we have made a demonstration on how security can be implemented on

the database layer focusing on the permissions of users. We have applied our proposal

to a real case study where some database fields can contain sensitive data that certain

users should not have access to. The results of implementing restriction security on a

clinical database can be concluded into a success.

The first reason to consider it an achievement is that we were able to implement user

security to the database level, when the majority of production implementations use

higher layers such as the application layer to implement the user security restrictions.

The second one is that the usage of Views is interesting since they are natively re-

stricted to make read-only operations. This could be very useful when we want to give

access to data to our clients and for example, in this case study, using views, a patient

that tried to access his data could only be able to see the data concerning the patient,

with no additional data of the hospital management or the doctor’s management.

Due to the success of this experiment, our intention is to make a wider look into

NoSQL security issues and try to implement the described security model in a more

complex environment with MongoDB, and once we observe that it is capable of man-

aging the security restrictions, our target would be to emulate the security environment

in other NoSQL database technologies based in different structures, such as graph da-

tabases.

6 Acknowledgements

This work is part of the Final Degree Project in the Computer Science Degree, pre-

sented by Carlos M. García-Ruiz, Alejandro Oliver, and Jorge Espinosa in June 2017,

and adviced by Jesús Peral, Juan Trujillo, Eduardo Fernández, and Carlos Blanco. This

work is partially funded by the funded projects SEQUOIA-UA (TIN2015-63502-C3-

3-R) and the SEQUOIA-UCLM (TIN2015-63502-C3-1-R) from the MINECO.

7 References

1. https://docs.mongodb.com/manual/core/views/#create-view

2. https://blog.pandorafms.org/nosql-vs-sql-key-differences/

3. https://docs.mongodb.com/manual/reference/method/db.createRole/

4. N. Kshetri. Big data's impact on privacy, security and consumer welfare. Telecommunica-

tions Policy, 38(11):1134-1145, 2014.

5. K. Michael and K. Miller. Big data: New opportunities and new challenges [guest editors'

introduction]. Computer, 46(6):22-24, 2013.

6. R. Toshniwal, K.G. Dastidar, and A. Nath. Big data security issues and challenges. Interna-

tional Journal of Innovative Research in Advanced Engineering (IJIRAE), 2(2):15-20, 2015.

7. L. Compagna, P.E. Khoury, A. Krausová, F. Massacci, and N. Zannone. How to integrate

legal requirements into a requirements engineering methodology for the development of se-

curity and privacy patterns. Artificial Intelligence and Law, 17(1):1-30, 2009.

https://docs.mongodb.com/manual/core/views/#create-view
https://blog.pandorafms.org/nosql-vs-sql-key-differences/
https://docs.mongodb.com/manual/reference/method/db.createRole/

14

8. R.P. van de Riet. Twenty-five years of mokum: For 25 years of data and knowledge engi-

neering: Correctness by design in relation to mde and correct protocols in cyberspace. Data

& Knowledge Engineering, 67(2):293-329, 2008.

9. J. Jurjens and H. Schmidt. Umlsec4uml2 - adopting umlsec to support uml2. Technical re-

port, Technical Reports in Computer Science. Technische Universitat Dortmund,

http://hdl.handle.net/2003/27602, 2011.

10. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: from uml models to access

control infrastructures. ACM Transactions on Software Engineering and Methodology,

15(1):39-91, 2006.

11. A. Frank and A. Asuncion. UCI machine learning repository [http://archive. ics. uci.

edu/ml]. Irvine, ca: University of California. School of Information and Computer Science,

213, 2010.

