
Measuring Maintainability of DPRA Models:
A Pragmatic Approach

Irina Rychkova1, Fabrice Boissier1, Hassane Chraibi2, and Valentin Rychkov2

1 Université Paris 1 Panthéon-Sorbonne,
12, Place du Panthéon, 75005 Paris, France

2 EDF R&D, EDF Lab Paris-Saclay,
7 Bd. Gaspart Monge, Palaiseau, France

Abstract. Dynamic Probabilistic Risk Assessment (DPRA) is a power-
ful concept that is used to evaluate design and safety of complex indus-
trial systems. A DPRA model uses a conceptual system representation
as a formal basis for simulation and analysis. In this paper we consider
an adaptive maintenance of DPRA models that consist in modifying and
extending a simplified model to a real-size DPRA model. We propose an
approach for quantitative maintainability assessment of DPRA models
created with an industrial modeling tool called PyCATSHOO. We review
and adopt some metrics from conceptual modeling, software engineering
and OO design for assessing maintainability of PyCATSHOO models.
On the example of well-known ”Heated Room” test case, we illustrate
how the selected metrics can serve as early indicators of model modi-
fiability and complexity. These indicators would allow experts to make
better decisions early in the DPRA model development life cycle.

Keywords: maintainability metrics, conceptual models, object oriented
design, DPRA models

1 Introduction

Dynamic Probabilistic Risk Assessment is a powerful concept that is used to eval-
uate design and safety of complex systems where the static reliability methods
like fault trees find their limits [2]. A DPRA model is grounded on a concep-
tual representation of a system: it formally describes some aspects of the physical
world (for example, a complex mechanical system) for purposes of understanding
and communication [24]; it serves a formal basis for further system simulation
and analysis. For feasibility, proof of concept, algorithm benchmarking and other
preliminary studies simplified DPRA models are used. Adaptive maintenance is
an important part of a DPRA model life cycle: it consists in modifying and
extending a simplified model to a real-size DPRA model.

In this work, we propose a maintainability assessment approach for DPRA
models created with an industrial modeling tool called PyCATSHOO[6,7]. Py-
CATSHOO is a tool dedicated for dependability analysis of hybrid systems de-
veloped and used by EDF. PyCATSHOO models are executable modules that
can be written in Python or C++ and interpreted by PyCATSHOO engine.

SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes. In: C. Cabanillas, S. España, S. Farshidi (eds.): Proceedings of the ER Forum 2017 and the ER 2017 Demo track, Valencia, Spain, November 6th-9th, 2017, published at http://ceur-ws.org



We define and test a set of metrics that can serve as early indicators of
PyCATSHOO model modifiability and complexity. We review some well-known
metrics from conceptual modeling, software engineering and object-oriented de-
sign, including size measures, complexity measures, lexical measures and OO-
specific measures [9,20,13,26,5]. Based on our review, we select and adapt a set
of metrics applicable to DPRA models and PyCATSHOO models in particular.

We make an assumption that the selected metrics can show a difference be-
tween two PyCATSHOO model designs already at the early phase of model de-
velopment life cycle, helping experts to make better decisions.

To validate this assumption, we apply the selected metrics and assess two
designs of the Heated Room system. ”Heated Room” is a well-known test case
reported in [3,6]. It describes a system that consists of a room and a heater
that can switch on and off to maintain the ambient temperature. This example
illustrates a hybrid system that combines deterministic continuous phenomena
(i.e., temperature evolution) and stochastic discrete behaviour (i.e., functioning
of a heater).

We create two sets of PyCATSHOO models as illustrated in Table 1: Set 1
follows the original design ideas from [6], Set 2 represents an alternative model
design promoting the low coupling design principle. The corresponding models in
two sets are semantically equivalent, i.e., they demonstrate the same simulation
traces. We compare measurements for the model sets and discuss the results.

The reminder of this paper is organised as follows: Section 2 presents DPRA
models and PyCATSHOO modeling tool; Section 3 discusses the related works on
maintainability assessment; Section 4 presents our approach for maintainability
assessment of PyCATSHOO models; In Section 5 we describe two alternative
designs of the PyCATSHOO models for the Heated Room test case. We assess
maintainability of these designs and discuss our results in Section 6; Section 7
presents our conclusions.

Table 1: PyCATSHOO models of the Heated Room test case

Model description:
Set 1

Design 1

Set 2

Design 2

Initial model: 1 heater H + 1 room R Case 0 Case 0a

System level modificaiton: 4 independent heaters H0..H3 + 1 room Case 1 Case 1a

Component level modification: standby redundancy of heaters

H0 - main; H1..H3 - backups
Case 2 Case 2a

2 DPRA Models and PyCATSHOO Modeling Tool

EDF has a long-standing experience in using and developing DPRA tools for
complex systems. PyCATSHOO is one of the tools developed over last few
decades at EDF R&D. PyCATSHOO implements the concept of Piecewise Deter-
ministic Markov Process (PDMP) using distributed stochastic hybrid automata.
The principles of this paradigm are described in details in [6].



PyCATSHOO models are used for advanced risk assessment of EDF’s hydro
and nuclear electrical generation fleet. PyCATSHOO is grounded on the Object-
Oriented (OO) and Multi-Agent System (MAS) paradigms[22]. Following the
OO paradigm, PyCATSHOO defines a system, its subsystem or component as
a class - an abstract entity that can be instantiated into objects. The latter
are concrete entities that communicate by message passing and that are able
to perform actions on their own encapsulated states. This paradigm has been
successfully implemented for modeling and analysis of stochastic hybrid systems
as reported in [21]. Following MAS, PyCATSHOO models a system as a collec-
tion of objects with a reactive agent-like behavior. A reactive agent acts using
a stimulus-response mode where only its current state and its perception of its
environment are relevant.

2.1 DPRA Modeling with PyCATSHOO

PyCATSHOO offers a flexible modeling framework that allows for defining generic
components (classes) of hybrid stochastic automata to model a given system or
a class of systems with a particular behaviour. A hybrid stochastic automaton
may exhibit random transitions between its states according to a predefined
probability law. It may also exhibit deterministic transitions governed by the
evolution of physical parameters.

A modeling process with PyCATSHOO can be summarised as follows:

– Conceptual level: A system is decomposed into elementary subsystems, com-
ponents.

– Component level: Each system component is described with a set of hy-
brid stochastic automata, state variables and message boxes. Message boxes
ensure message exchange between components.

– System level: To define the system, the components are instantiated from
their corresponding classes. Components’ message boxes are connected ac-
cording to the system topology.

A DPRA model in PyCATSHOO combines the characteristics of conceptual
model and a software application: it formally describes some aspects of the
physical world for purposes of understanding and communication [24]; it serves
a formal basis for further system simulation and analysis.

PyCATSHOO offers Application Programming Interfaces (APIs) in Python
and C++ languages. Once the model is designed, the system behaviour is sim-
ulated. An analyst needs to use Monte Carlo sampling if the system exhibits
random transitions. Sequences (time histories of the system evolution) that lead
to desirable end states are traced and clustered.

In [2], various modeling tools for DPRA are discussed. Whereas some mod-
eling tools propose a visual modeling interface, model complexity, high develop-
ment and maintenance costs are considered the main obstacle for efficient use of
DPRA models in industry [8]. Quantitative measures of model maintainability
would be of a great value, helping the experts to make better decisions early in
the DPRA model development life cycle.



3 Maintainability of Models: State of the Art

ISO 9000 is a set of international standards on quality management. It defines
quality as ”the totality of features and characteristics of a product or service that
bear on its ability to satisfy stated or implied needs” [15]. Maintainability is a
quality characteristic that is defined as ”a set of attributes that bear on the effort
needed to make specified modifications.”

3.1 Maintainability in Software Engineering

In Standard Glossary of Software Engineering Terminology [16] software main-
tainability is defined as “the ease with which a software system or component
can be modified to correct faults, improve performance or other attributes, or
adapt to a changed environment”.

According to ISO/IEC 25010, maintainability is a sub-characteristic of prod-
uct quality that can be associated with more concrete, ”measurable”, quality
metrics. Various types of metrics accepted in SE include: size metrics (e.g., Line
of Code), lexical metrics (e.g., Halstead software science metrics [13]), metrics
based on control flow graph (e.g., Mc’Cabe’s cyclomatic complexity [20]) etc.

Metrics specific to Object-Oriented paradigm focus on OO concepts such as
object, class, attribute, inheritance, method and message passing. Chidamber &
Kemerer’s OO metrics [5] are among the most successful predictors in SE. They
include metrics focused on object coupling. In [18] ten software metrics and
their impact on the maintainability are studied. In [27], a systematic review of
software maintainability prediction models and metrics is presented. According
to this review, a list of successful software maintainability predictors include
Halstead metrics[13], McCabe’s complexity[20] and size metrics.

Abreu’s Metrics for Object-Oriented Design (MOOD) are presented in [1] and
evaluated in [14]. According to MOOD, various mechanisms like encapsulation,
inheritance, coupling and polymorphism can influence reliability or maintain-
ability of software.

The maintainability index (MI) is a compound metric [26] that helps to
determine how easy it will be to maintain a particular body of code. MI uses the
Halstead Volume, Cyclomatic Complexity, Total source lines of code.

The models and metrics above address the maintainability at later phases of
software development life cycle. In the next part of this section, we consider main-
tainability at design phase. In particular, maintainability of conceptual models.

3.2 Maintainability in Conceptual Modeling

Conceptual modeling is the activity of formally describing some aspects of the
physical and social world around us for the purposes of understanding and com-
munication [24]. While ISO/IEC 25010 family standards is widely accepted for
evaluating software systems, no equivalent standard for evaluating quality of
conceptual models exist.



In [23,25,4] frameworks for conceptual modeling quality are presented. In
[25], the empirical quality is considered as a good indicator of the maintain-
ability. In [4] maintainability of conceptual schema is defined as ”the ease with
which the conceptual schema can evolve”. Quantitative analysis and estimation
of conceptual model quality remains challenging due to lack of measurement [23].

An important body of knowledge is developed adopting and extending the
metrics from software engineering to the conceptual modeling. These metrics are
used to estimate quality of conceptual models and UML diagrams in particular.
In [11], a survey of metrics for UML class diagrams is presented. In [19], a suite of
metrics for UML use case diagrams and complexity of UML class diagrams is pro-
posed. Directly measurable metrics are used as an early estimate of development
efforts, implementation time and cost of the system under development. In [9], a
set of metrics to measure structural complexity of UML class diagram are pro-
posed and validated. The authors promote an idea that the structural properties
(such as structural complexity and size) of a UML class diagram have an effect
on its modifiability and maintainability. In [10], the same group of researchers
proposes metrics for measuring complexity of UML statechart diagrams.

In [28], ‘Maintainability Estimation Model for Object-Oriented software in
Design phase’ (MEMOOD) is presented. This model estimates the maintain-
ability of class diagrams in terms of their understandability and modifiability.
Modifiability is evaluated using the number of classes, generalisations, aggrega-
tion hierarchies, generalization hierarchies, direct inheritance tree.

4 Maintainability Assessment of PyCATSHOO Models

Intrinsically, maintainability is associated with the maintenance process, which
represents the majority of the costs of a software development life-cycle [27]. It
is valid for the model development life cycle as well.

Assessment of conceptual model maintainability can help designers to antic-
ipate model complexity, to incorporate required enhancements and to improve
consequently the maintainability of the final software [28]. In this work we adapt
and apply several metrics from SE and OO design to evaluate the maintainability
of PyCATSHOO models early at the model development life cycle.

Adapting a maintainability definition from [16], we define maintainability of
a DPRA model as the ease with which a model or its component can be modified
to correct faults, improve performance or other attributes, or adapt to a changed
environment.

According to [17], maintainability consists of five sub-characteristics: modu-
larity, reusability, analyzability, modifiability and testability. Modifiability sub-
characteristic is most relevant for DPRA models; it specifies a degree to which a
product (a DPRA model in our case) can be effectively and efficiently modified
without introducing defects.

Similar to software system maintainability, various types of maintainance for
DPRA models can be identified:

– Adaptive - modifying the model to cope with changes in the environment;



– Perfective – improving or enhancing a model to improve overall performance;
– Corrective – diagnosing and fixing errors, possibly ones found by users;
– Preventive – increasing maintainability or reliability to prevent problems in

the future (i.e., model architecture, design).

In this work, we focus on adaptive maintenance that reflects a transformation
of simplified DPRA models to real-size models.

4.1 Adaptive Maintainability in PyCATSHOO Models

Different classes of modifications can be introduced into a PyCATSHOO model
while adapting it to a real-size model. In this work, we consider two classes of
PyCATSHOO model modifications:

1. Component level modifications - modifications that consist in adapting struc-
ture and/or behavior of a model component (e.g., state variables, PDMP
equation methods for continuous variables, start/stop conditions for PDMP
controller, transition conditions, message boxes etc.).

2. System level modifications - modifications that consist in adapting struc-
ture and topology of the system (e.g., number of component instances, their
parameters, dependencies, connections via message boxes etc.).

Each modification class can be related to different requirements and consequently
different technical solutions [12]. We argue that the ”right” architectural and de-
sign decisions made for a simplified DPRA model pay off, improving maintain-
ability and reducing complexity of the real-size DPRA model and PyCATSHOO
models in particular. The maintainability metrics can serve as indicators for
DPRA domain experts in order to assess their design and architectural decisions
early in the modeling.

4.2 Selecting Maintainability Metrics

After a review of some existing metrics focusing on maintainability, we select
the set of metrics applicable to DPRA models and PyCATSHOO models in
particular. We propose a new metric to measure relative modifications - RLOC.
We summarize the selected metrics in Table 2. Our choice was purely pragmatic:
possibility of seamless integration of metrics into current modeling process with
PyCATSHOO and availability of measurement tools were the main criteria for
our metrics selection. Radon3 is a Python tool which computes various code
metrics. Radon supports raw metrics, Cyclomatic Complexity, Halstead metrics
and the Maintainability Index. Cloc4 - Count Lines of Code - is a tool that
counts blank lines, comment lines, and physical lines of source code in many
programming languages. Given two versions of a code base, cloc can compute
differences in source lines.

3 http://radon.readthedocs.io/en/latest/intro.html
4 https://sourceforge.net/projects/cloc/?source=typ_redirect

http://radon.readthedocs.io/en/latest/intro.html
https://sourceforge.net/projects/cloc/?source=typ_redirect


4.3 Maintainability Assessment Experiment

The goal of our experiment is to validate or refute the following hypothesis:

– H1: The selected maintainability metrics will show the difference between
original and alternative model designs with respect to applied system level
modifications;

– H2: The selected maintainability metrics will show the difference between
original and alternative model designs with respect to applied component
level modifications;

We compare two designs of the Heated Room model reported in [6]:
Set 1: Original design. We take the original system model (Case 0) and
create new versions of this model applying system level modifications (Case 1)
and component level modifications (Case 2) defined above (see Table 1). These
modifications illustrate an adaptive maintenance of a DPRA model in order to
reflect real-size system requirements. This set of three models is created following
the original design ideas from [6] where system components are connected via
PyCATSHOO message boxes, i.e., point-to-point.
Set 2: Alternative design. We create a set of semantically equivalent models
of the Heated Room with alternative design (Case 0a - 2a). We promote the
low coupling design principle by implementing well-known patterns of object-
oriented design (i.e., Mediator, Observer [30]).
Maintainability Assessment and Analysis of Results. We use the metrics
from Table 2 for both sets of models from Table 1 and analyse the results.

In the following sections, we explain the Heated Room test case, provide the
details on this experiment and discuss the maitainability assessment results.

Table 2: Metrics for Maintainabiity Assessment of PyCATSHOO models

Metrics: Tool support:

LOC (lines of code), RLOC (relative modifications) cloc, radon

Cyclomatic Complexity (CC) radon

Halstead (vocabulary, volume, effort, bugs, difficulty) radon

Maintainability Index (MI) radon

5 Case Study: Heated Room

“Heated Room” is the test case reported in [3]. This case is about a room which
contains a heater device equipped with a thermostat. The latter switches the
heater off when the room temperature reaches 20◦C and switches it on when
the room temperature falls below 15◦C. The temperature is governed by a linear
differential equation as: dT/dt = αT + β where α and β depend on the mode
of heater. The heater is assumed to have a constant failure rate λ = 0.01 and
repair rate µ = 0.1.



5.1 Set 1: The Original PyCATSHOO Model of Heated Room

The original model of Heated Room is presented in [6]. It specifies the system
components and their representing classes. The diagram in Fig. 1a shows the
model from [6]. For the moment of this publication, the PyCATSHOO modeling
tool does not have an explicit graphical modeling notation. We use the one that is
adopted by EDF experts working with PyCATSHOO. The Heater class defines

Fig. 1: Heated Room: a) Original design using message boxes. Point-to-point
connection between system components; b) Alternative design using Design Pat-
terns. Communication between components encapsulated by a Mediator

two automata: for functional and for dysfunctional behavior of the heater.
The Room class represents an observed subject: its temperature continuously

evolves. The Heater and the Room communicate via message boxes: the Room
component sends its current temperature to the heater, whereas the Heater
sends its current state (ON or OFF) and its power value to the Room. In the
original model design, the Room class contains the specification of a PDMP
controller that implements the physics of the process - the evolution of the room
temperature over time T (t).

The PDMP controller is a part of the system. Other system components de-
fine the functioning of the PDMP controller in a distributed manner: equation-
Method() for the room temperature is defined by the Room class, stop conditions
stopPDMP() (e.g., when the boundary temperature value is reached) are defined
by the Heater class.

In the initial model (Case 0), the Heated Room System class specifies the
system with one heater and one room connected via corresponding message
boxes (mb Room and mb Heater). The detailed specification of the model and
the Python code listing can be found in in [6] and in our technical report [29].

System level modifications: In Case 1, we modify the structure and topol-
ogy of the Heated Room system by instantiating four heaters (H0..H3) and con-
necting them explicitly to the room via message boxes. The Heater class does
not change: the heater components independently heat the room following their
initial control logic. Several heaters can be ON or OFF at the same time, based
on the room temperature and their functioning state (OK or NOK). We modify
the Room class and generalize the PDMP equation method in order to establish



the connection between the room and multiple heaters.
Component level modifications: In Case 2, we modify the control logic of the
Heater component in order to support the standby redundancy mechanism: one
heater (H0) will be declared as the main heater (the highest priority), whereas
the other heaters will serve as its backups. Backup heaters are switching on only
when all the other heaters with higher priority fail (NOK) and the temperature
drops below Tmin. If a heater with higher priority is repaired (OK), the backup
heaters with lower priority switches off. In this case, only one heater at a time
is heating the room.

We modify the Heater class: ON/OFF transition conditions; stop condition
for the PDMP controller. We add new message boxes to communicate with
other heaters. We modify the Heated Room System class where new heaters are
explicitly connected to the room and to each other via message boxes.

5.2 Set 2: The Alternative Design of Heated Room

We integrate the low-coupling design principles early in modeling phase in order
to anticipate component level and system level modifications. We use well-known
design patterns from OO software development [30].

The Mediator design pattern encapsulates the interactions between system
component and reduces direct dependencies between them. Integrating mediator
early in the model improves system scalability.

The Mediator class maintains the lists of active components (heaters in our
case) and subjects or passive components (i.e., rooms) as shown in Fig. 1b. It
mediates the communication between the PDMP controller, the heater(s) and
the room(s) replacing the point to point connections via message boxes. Note
that an arbitrary number of rooms and heaters per room can be configured with
this design.

The mediator contains the configurePDMP() method that allows to ”as-
semble” the PDMP behavior from the parts defined by the active and passive
components (i.e., startPDMP(), stopPDMP(), equationMethod()).

The Heater class is similar to the original design; the message boxes are
removed. The Mediator object updates the heaters with the new value of the
room temperature.

The Room class contains a current temperature variable that is updated by
the Mediator component. Compared to the original design, the PDMP controller
specification is moved from the Room class to the Mediator class. This allows
to decouple the room and the heater.

In the initial model (Case 0a), the Heated Room System class specifies the
system with one heater and one room attached to a mediator object. config-
urePDMP() method of the mediator terminates the system configuration.

5.3 Adaptive Maintenance of the Alternative Model: Case 1a, 2a

System level modifications: Case 1a is an alternative design of the Heated
Room system with 4 independent heaters. The Heater, the Room and the Me-
diator classes are not changed. In the Heated Room System class new heaters
are instantiated and attached to the mediator.



Component level modifications: Case 2a implements the standby redun-
dancy algorithm for heaters. We modify the Heater class following the logic
described in Case 2: ON/OFF transition conditions are changing; stop condition
for the PDMP controller changes.

Compared to the original design, we do not connect heaters via message
boxes, but implement the Observer design pattern.

The Observer design pattern allows for implementing specific behavior be-
tween a group of system components. It defines a one-to-many dependency be-
tween objects and when one system component changes state, all its dependents
are notified and updated automatically. Due to space limitations, we do not
provide the model details in this paper.

6 Maintainability Assessment: Results

We test the hypothesis from section 4.3 applying the metrics to the model sets
representing the original and the alternative designs. In this paper, we report on
application of the following metrics: Lines of Code (LOC); Relative modifications
(RLOC) - a metric we propose, Cyclomatic Complexity (CC); Halstead’s volume,
difficulty, effort, estimated bugs (V, D, E, B); compound measure Maintainability
index (MI). These metrics are computed statically from the code.

6.1 Size Metrics

LOC (Lines of Code) is a software metric used to measure the size of a computer
program. It is recognised as a valid indicator of complexity and maintainability.
We use LOC as a measure of the size of the PyCATSHOO model. The results of
LOC measurement for two sets of PyCATSHOO models (Case 0-2, Case 0a-2a)
are shown in Fig.2a. Stacked columns illustrate LOC per case; various colors
correspond to various components. The following can be observed:
- The Mediator class in Set 2 doubles the size of the simplified model;
- For the Set 1, the size of all the classes is growing in response to system and
component level modifications;
- For the Set 2, only the Heater and the Heated Room System classes are growing.
RLOC. We propose to measure relative modifications (RLOC) in response to
system and component modifications. We use cloc tool to measure the difference
between pairs of models (Case 0 and Case 1; Case 1 and Case 2) in both model
sets. We calculate total modification as a sum of modified, added and removed
lines in the ”adapted” model. We define RLOC for a case as follows:

RLOCcase =
LOCmodif + LOCadd + LOCrem

LOCcase

Table 3: RLOC comparison: Original vs. Alternative design

Set 1 RLOC Set 2 RLOC

Case0 −→ Case1 82,25% Case0a −→ Case1a 18,57%

Case1 −→ Case2 108,69% Case1a −→ Case2a 83,4%



This metric allows for more precise measurement of modifications as it takes
into consideration not only the total change in model size. Removing or modify-
ing the code (as well as model elements in concept model) are also considered.
Table 3 summarises the RLOC measures. RLOC for the Set 1 shows that the
model was modified on 82.25% to implement scalability (from 1 to 4 heaters)
and further on 108.69% to implement standby redundancy of the heaters.
While having bigger initial size (Fig. 2a), the model in the Set 2 was modified on
18.57% to scale for 4 heaters and on 83.4% to implement standby redundancy.

(a) LOC analysis (b) CC analysis

Fig. 2

6.2 Cyclomatic Complexity

McCabe [20] proposed Cyclomatic Complexity Measure to quantify complexity
of a given software based on its flow-graph. A flow graph is based on decision-
making constructs of a program. Fig.2b illustrates cyclomatic complexity mea-
sure for the model sets. Whereas the absolute CC values for all models indicate
low complexity (below 10), we are interested in the CC evolution in response to
adaptive model modifications. The graph in Fig.2b indicates the faster complex-
ity growth for the Set 1. This corroborates with the previous measures.

6.3 Halstead lexical measures

Halstead metrics consider a program as a sequence of operators and their associ-
ated operands. For a given problem, let: η1 = the number of distinct operators;
η2 = the number of distinct operands; N1 = the total number of operators; N2

= the total number of operands. From these numbers, several measures can be
calculated. In this work, we measured volume (V), difficulty (D), efforts (E) and
delivered bugs (B):

V = N × log2 η, D =
η1
2

× N2

η2
, E = D × V, B =

V

3000

Here D can be related to the difficulty of a PyCATSHOO model to write or to
understand; B is an estimate for the number of errors. Fig.3 illustrates three
metrics for two modeling sets and an evolution of these metrics in response
to adaptive model modifications. The results show that an estimate number of
errors (B) is higher for the Case 0a due to implementation of the Mediator;



however it seems to remain stable after adaptive modifications (Case 1a-2a)
compared to the original design. Idem for the difficulty and effort measures.

Fig. 3: Halstead analysis

Fig. 4: Maintainability Index analysis

6.4 Maintainability Index

Maintainability Index is a software metric which measures how maintainable
(easy to support and change) the source code is. The maintainability index is
calculated as a factored formula consisting of Lines Of Code (LOC), Cyclomatic
Complexity (CC) and Halstead volume (V):

MI = 171 − 5.2 × ln(V ) − 0.23 × CC − 16.2 × ln(LOC)

Fig.4 illustrates MI measure for the model sets:
-Room class of the Set 2 and Heated Room System class of both sets are con-
sidered as 100% maintainable.
-MI of the Heater class decreases for both sets. This can be explained by its
growing complexity and size.
-Average MI, though it remains very high for both sets, drops from 84.2 to
79.2 for the Set 1 and from 86.4 to 85.75 for the Set 2. More metrics and their
discussion can be found in our technical report [29].



7 Conclusion

We proposed a pragmatic approach for maintainability assessment of DPRA
models created with PyCATSHOO modeling tool. We claim that the adopted
metrics can be used as early indicators for estimating maintainability of the
PyCATSHOO models.

To validate our hypothesis, we created two model sets of the ”Heated Room”
system. Models in Set 1 follow the original design reported in [6] and based on
point to point connection between system components. Set 2 promotes the low-
coupling design principles. We used LOC, CC, Halstead and MI metrics on both
sets of models.

The evaluation shows that the PyCATSHOO model based on design patterns
requires more efforts at creation compared to the model that uses point-to-
point connections. Nevertheless, complexity of this model grows slower when
the number of components increases or when new types of dependencies are
introduced. This indicates that the low coupling principle applied early in the
modeling improves scalability and maintainability of the real-size DPRA model.
The results corroborate with an engineering practice showing quantitatively the
difference between designs even for a simple example of ”Heated room” and thus
validate our hypothesis. Based on this, we conclude that the selected metrics can
be further considered for DPRA models assessment.

Despite the encouraging results, we consider them as preliminaries. As the
next step, we plan to replicate our experiment and to assess the maintainability
of the real PyCATSHOO projects. We also plan to extend the list of metrics
integrating the metrics on Structural complexity and other OO-specific metrics.

References

1. Brito e Abreu, F.: The mood metrics set. In: proc. ECOOP. vol. 95, p. 267 (1995)
2. Aldemir, T.: A survey of dynamic methodologies for probabilistic safety assessment

of nuclear power plants. Annals of Nuclear Energy 52, 113–124 (2013)
3. Bouissou, M., Chraibi, H., Chubarova, I.: Critical comparison of two user friendly

tools to study piecewise deterministic markov processes (pdmp). ESREL (2013)
4. Cherfi, S.S.S., Akoka, J., Comyn-Wattiau, I.: Conceptual modeling quality-from eer

to uml schemas evaluation. In: International Conference on Conceptual Modeling.
pp. 414–428. Springer (2002)

5. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on software engineering 20(6), 476–493 (1994)

6. Chraibi, H.: Dynamic reliability modeling and assessment with pycatshoo: Appli-
cation to a test case. PSAM (2013)

7. Chraibi, H.: Pycatshoo:toward a new platform dedicated to dynamic reliability
assessments of hybrid systems. PSAM (2016)

8. Coyne, K., Siu, N.: Simulation-Based Analysis for Nuclear Power Plant Risk As-
sessment: Opportunities and Challenges. In: Proceeding of the ANS Embedded
Conference on Risk Management for Complex Socio-Technical Systems (2013)

9. Genero, M., Manso, E., Visaggio, A., Canfora, G., Piattini, M.: Building measure-
based prediction models for uml class diagram maintainability. Empirical Software
Engineering 12(5), 517–549 (2007)



10. Genero, M., Miranda, D., Piattini, M.: Defining and validating metrics for uml
statechart diagrams. Proceedings of QAOOSE 2002 (2002)

11. Genero, M., Piattini, M., Calero, C.: A survey of metrics for uml class diagrams.
Journal of object technology 4(9), 59–92 (2005)

12. Gilb, T.: Designing maintainability in software engineering: a quantified approach.
International Council on Systems Engineering (INCOSE) (2008)

13. Halstead, M.H.: Elements of software science, vol. 7. Elsevier New York (1977)
14. Harrison, R., Counsell, S.J., Nithi, R.V.: An evaluation of the mood set of object-

oriented software metrics. IEEE Transactions on Software Engineering 24(6), 491–
496 (1998)

15. Hoyle, D.: Iso 9000: quality systems handbook (2001)
16. IEEE: Standard glossary of software ùlengineering terminology. IEEE Software

Engineering Standards Collection. IEEE pp. 610–12 (1990)
17. ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. Tech. rep. (2010)

18. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal of
systems and software 23(2), 111–122 (1993)

19. Marchesi, M.: Ooa metrics for the unified modeling language. In: Software Mainte-
nance and Reengineering, 1998. Proceedings of the Second Euromicro Conference
on. pp. 67–73. IEEE (1998)

20. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
(4), 308–320 (1976)

21. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based
stochastic hybrid systems. In: International Workshop on Hybrid Systems: Com-
putation and Control. pp. 460–475. Springer (2006)

22. Michel, F., Ferber, J., Drogoul, A., et al.: Multi-agent systems and simulation: a
survey from the agents community’s perspective. Multi-Agent Systems: Simula-
tion and Applications, Computational Analysis, Synthesis, and Design of Dynamic
Systems pp. 3–52 (2009)

23. Moody, D.L.: Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. Data & Knowledge Engineering
55(3), 243–276 (2005)

24. Mylopoulos, J.: Conceptual modelling and telos. Conceptual Modelling, Databases,
and CASE: an Integrated View of Information System Development, New York:
John Wiley & Sons pp. 49–68 (1992)

25. Nelson, H.J., Poels, G., Genero, M., Piattini, M.: A conceptual modeling quality
framework. Software Quality Journal 20(1), 201–228 (2012)

26. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-
ity. In: Conference of Software Maintenance. pp. 337–344. IEEE (1992)

27. Riaz, M., Mendes, E., Tempero, E.: A systematic review of software maintainability
prediction and metrics. In: 3rd International Symposium on Empirical Software
Engineering and Measurement. pp. 367–377. IEEE (2009)

28. Rizvi, S., Khan, R.: Maintainability estimation model for object-oriented software
in design phase (memood). arXiv preprint arXiv:1004.4447 (2010)

29. Rychkova, I., Boissier, F., Chraibi, H., Rychkov, V.: A pragmatic approach for
measuring maintainability of dpra models. arXiv preprint arXiv:1706.02259 (2017)

30. Wolfgang, P.: Design patterns for object-oriented software development. Reading,
Mass.: Addison-Wesley (1994)


	Maintainability of DPRA models
	Introduction
	DPRA Models and PyCATSHOO Modeling Tool
	DPRA Modeling with PyCATSHOO

	Maintainability of Models: State of the Art
	 Maintainability in Software Engineering
	Maintainability in Conceptual Modeling

	Maintainability Assessment of PyCATSHOO Models
	Adaptive Maintainability in PyCATSHOO Models
	Selecting Maintainability Metrics
	Maintainability Assessment Experiment

	Case Study: Heated Room
	Set 1: The Original PyCATSHOO Model of Heated Room
	Set 2: The Alternative Design of Heated Room 
	Adaptive Maintenance of the Alternative Model: Case 1a, 2a

	Maintainability Assessment: Results
	Size Metrics
	Cyclomatic Complexity
	Halstead lexical measures
	Maintainability Index

	Conclusion




