
Performance Evaluation of Large Table
Association Problem Implemented in Apache
Spark on Cluster with Angara Interconnect

Alexander Agarkov and Alexander Semenov

JSC NICEVT, Moscow, Russia
{a.agarkov,semenov}@nicevt.ru

Abstract. In this paper we consider an association problem with con-
straints for two dynamically enlarging tables. We consider a base full
association algorithm and propose a partial association algorithm that
improves efficiency of the base algorithm. We implement and evaluate
the algorithms in Apache Spark for a particular case on the cluster with
Angara interconnect.

Keywords: association problem · dynamically enlarging tables · Apache
Spark · Angara interconnect · performance evaluation

1 Introduction

In the recent years data intensive applications have become widespread and ap-
peared in many science and engineering areas (biology, bioinformatics, medicine,
cosmology, finance, social network analysis, cryptology etc.). They are charac-
terized by a large amount of data, irregular workloads, unbalanced computations
and low sustained performance of computing systems. Development of new algo-
rithmic approaches and programming technologies are urgently needed to boost
efficiency of HPC systems for similar applications, thus enabling advancing of
HPC and Big Data convergence [10].

In the paper we consider an association problem with constraints for two
dynamically enlarging tables. We have two large tables and an ordered set of
rule groups which determine associations between entries from the first table
and the second table. When two table entries compose an association by a rule
in the current rule group, then these entries must be excluded from association
process for the following rule groups. Each entry is associated with other entries
from the both tables directly or indirectly through the other associations. It is
needed to determine the association type and to list of the associated entries for
each entry. Tables are dynamically enlarging, the goal is to improve potential
performance of the association process by using of the associations, built on the
original tables.

Apache Spark [1] is a popular open-source implementation of Spark. Spark
[12] is a framework which optimizes programming and execution models of
MapReduce [7]. Current implementation of Apache Spark can not efficiently



Large Table Association Problem Implemented in Apache Spark 93

use advanced features (e.g. RDMA) on clusters with high-performance inter-
connects. Researchers from Ohio State Univercity proposed a high-performance
RDMA-based design for accelerating the Spark framework [9, 8]. Chaimov et al.
from Cray ported and tuned Spark on Cray XC systems developed in produc-
tion at a large supercomputing center [6]. The Mellanox company presented an
open-source Spark RDMA implementation [2]. We consider a high-speed Angara
interconnect [4] as a target of Spark optimization. But in the current work we
run Apache Spark through the TCP/IP interface on the Angara interconnect.

In the paper we describe a base full association approach to the problem,
propose a partial association approach that improves efficiency of the base ap-
proach, implement corresponding algorithms using Apache Spark and present
evaluation results on a cluster with the Angara interconnect.

2 Table Association Problem

We consider two large tables with M rows. The tables have identical structure,
each table has N fields. The table unique key consists of all N fields of the table.

We consider an ordered set of rule groups, which determine associations be-
tween entries from the first table and entries from the second table:

– Rule is a set of fields, which are used to compare two table entries. It is
required to build associations between the tables: to find matches between
different table entries by the rule.

– Group is a set of rules; rules of a group are applied to the table entries
independently of each other. When two table entries compose the association
by a rule in the current rule group, then these entries are marked by the
current group number and must be excluded from association process for
the following rule groups.

Each table entry can be associated with one or many entries of another table.
Moreover, association is a transitive relation. Associations for each entry can be
classified into one of four association types: one from the first table to one from
the second table, one to many, many to one and many to many (1: 1, 1: M, M:
1, M: N). Therefore each entry is associated with other entries from the both
tables directly or indirectly through the other associations.

The goal of the table association problem is to determine the association
type and to list of the associated entries for each entry.

After we build associations between the tables, K new entries are added to
each table. Added entries differ from original entries by a given subset of fields.
Association process is needed to repeat to make the augmented tables associated
too.

Full association approach can generate associations between given tables by
the mentioned set of rules from scratch. It is required to build associations be-
tween the augmented tables.

The goal of the dynamically enlarging table association problem is to
improve potential performance of the full association approach on the augmented
tables by using of the associations, built on the original tables.



94 Alexander Agarkov and Alexander Semenov

For the sake of simplicity in the paper we consider a particular case of the
problem.

2.1 Data Structure and Association Rules

In our work each table entry has 5 fields, where the first and the second fields
are integer identifiers, three other fields are data fields. The unique key for every
entry is all of the five fields. Each entry has a unique synthetic identifier.

In the work the considered ordered set of rule groups consists of 5 groups
and 15 rules, see Table 1. Symbol ‘+’ denotes equality requirement of the corre-
sponding fields of the two table entries. Symbol ‘–’ denotes that fields of the two
table entries are not matched. For example, a key that determines an association
between two table entries is specified for each rule and consists of the fields, that
are marked with the ‘+’ symbol.

group rule ID 1 ID 2 #1 #2 #3

1 1 + + + + +

2 2 + + + + –
2 3 + + + – +
2 4 + + – + +

3 5 + + – + –
3 6 + + + – –
3 7 + + – – +

4 8 + – + + +
4 9 + – + + –
4 10 + – + – +
4 11 + – – + +

5 12 – + + + +
5 13 – + + + –
5 14 – + + – +
5 15 – + – + +

Table 1. The description of the considered rules groups

The full association approach is matching each entry from the first table
with each entry of the second table by each rule from the current rule group.
If matching is successful then we create and store an association between the
entries; the association is marked by the current group number. Entries that do
not have any associations are marked by the group number six.

3 Algorithms

3.1 Full Association Algorithm

The full association algorithm consists of two stages: associations matching and
transitive closure. The first stage actually implements the full association ap-



Large Table Association Problem Implemented in Apache Spark 95

proach. All possible pairs are found by the first group of rules, then every entry
that is included in the pairs is excluded from the tables. This procedure is re-
peated for each group of rules. The result of the stage is a set of associations (it
will be graph edges) between entries (it will be graph vertices).

At the second stage the transitive closure (TC) algorithm is executed for each
selected group. At first, we construct a bipartite graph. Vertices in the left vertex
set are unique identifiers of the entries from the first table, in the right vertex set
there are unique identifiers of the entries from the second table. There exists an
edge between two vertices of the different graph parts if the association between
corresponding entries has been found during the first stage of the algorithm.

Transitive closure [3] TC is performed by the following formula:

TC = ∪i=1,2..Ri, where Ri+1 = Ri join E,

R1 = E,E − set of graph edges. (1)

The transitive closure is built by repetitive merging result of a join operation
between previous resulting set of edges and original set of graph edges until the
result is not changed, i.e. fixed point is reached. Thus, for each vertex in TC
there exist vertex pairs that connect current vertex with other vertices in the
connected component.

Finally, the association type of each vertex is defined (1:1, 1:M, M:1, M:N).

3.2 Partial Association Algorithm

There are original (old) tables, the associations that have been built for old
tables, and there are new tables that are smaller than original. The added entries
differ from original entries by the #3 field.

When new entries are added to the original tables, one can apply full asso-
ciation algorithm to the augmented tables from scratch. We propose a partial
association algorithm to improve performance by using of associations that are
built for the original tables.

The partial association algorithm is executed also in two stages: association
matching and transitive closure.

It is important that added (new) entries differ from the original entries by
the #3 field. The main idea of the first stage is matching only new entries of
the tables for each rule with matching requirement by the #3 field, in that case
there will be no associations between new and old entries. For each rule without
matching requirement by the last field new and old entries must be matched, see
Figure 1.

The association matching stage differs from the same stage in the full as-
sociation algorithm. Each entry included in new associations must be excluded
from old associations. As seen in Figure 2, if a new entry is associated with an
old entry, and the association group number new gn is smaller than the group
number old gn of the association between the old entry with another entry, then
these old associations must be removed; if new gn is equal to old gn then the
new entry should be added to the component.



96 Alexander Agarkov and Alexander Semenov

Old

a. b.

Fig. 1. Partial association algo-
rithm. Processing a. with (b. with-
out) #3 field matching requirement

Fig. 2. Association of new entry
with old entry and removing of old
associations

The transitive closure stage is executed only for new associations. The re-
sulting graph of transitive closure is combined with the old graph with invalid
associations excluded during the matching stage.

4 Implementation Details

Apache Spark [1] is a popular open-source implementation of Spark. It provides
programmers with an application programming interface centered on a data
structure called the resilient distributed dataset (RDD), a read-only multiset of
data items distributed over a cluster of machines, that is maintained in a fault-
tolerant way [12]. It was developed in response to limitations in the MapReduce
cluster computing paradigm [7], which forces a particular linear dataflow struc-
ture on distributed programs: MapReduce programs read input data from disk,
map a function across the data, reduce the results of the map, and store re-
duction results on disk. Spark’s RDD function as a working set for distributed
programs that offers a (deliberately) restricted form of distributed shared mem-
ory [11]. The latest Spark program interface DataFrame [5] seems to be more
efficient than the RDD interface, but in the current work we use RDD, and we
suppose to use DataFrames in the next research works.

We use Java 8 and Apache Spark 1.6.1 for implementation of the full and par-
tial association algorithms. We use RDD of Tuple5<Long, Long, Long, Long,

Long> type for table structure representation, the sequence of types in Tuple5

corresponds to the table fields ID1, ID2, #1, #2, #3. We attach unique identifier
(Long) to the Tuple5 of each entry.

After the association stage we have RDD of Tuple2<Long, Long> that rep-
resents association between the unique identifiers of two table entries.

4.1 Synthetic Table Generator

Synthetic table generator creates distributed random tables and works as follows.
First, two identical tables of the required size are generated. Each field value is
a uniformly distributed random integer number in the following intervals:



Large Table Association Problem Implemented in Apache Spark 97

– ID1, ID2 – [0; 10000),
– #1 – [0; 1000000),
– #3 – [0; 1000).

Value of the #2 field is a position number of the entry.
We randomly modify second table entries in order to create possibility of

association between entries from the first and the second tables for each rule. We
modify entry fields that are marked with the ‘–’ symbol in Table 1. Distribution
of modifications in the rules is shown in Table 2. 72% of the second table entries
remain unchanged. In 2% of the table entries there are random modifications in
the #3 field values. In 6% of the table entries there are random modifications in
the #2 field values and so on. As a result 72% of the table entries correspond to
the first rule, 2% – to the second rule, 6% – to the third rule and so on.

rule % in tables

1 72
2 2
3 6
4 12
5 0.1
6 0.5
7 0.4
8 0.5
9 0.01
10 0.04
11 0.35
12 0.83
13 0.02
14 0.12
15 0.26

no associations 4.86
Table 2. Distribution of the second table modifications in the rules implemented in
the synthetic table generator

We generate the augmented tables as follows. First, we add new entries to the
first table, field values of each entry is a uniformly distributed random integer
number in the following intervals:

– ID1, ID2 – [0; 10000),
– #1 – [0; 1000000),
– #3 – [1000; 2000).

Value of the #2 field is a position number of the new entry in the whole
table. As can be seen, the old table and the new table have different values in
the #3 field.

Second, we copy augmented part of the first table to the second table and
randomly modify it as well as is described in Table 2.



98 Alexander Agarkov and Alexander Semenov

5 Performance Evaluation

Cluster Angara-K1

Chassis SuperServer 5017GR-TF

Processor E5-2660 (8 cores, 2.2 GHz)

Memory DDR3 64 GB

Number of nodes 36

Interconnect Angara 4D-torus 3× 3× 2× 2
1 Gbit/s Ethernet

Operating system SLES 11 SP4

Spark Apache Spark 1.6.1
Table 3. System configuration of the Angara-K1 cluster

All presented results are obtained on the Angara-K1 cluster. We use 12 out 36
nodes. All Angara-K1 nodes are linked by the Angara interconnect. Russian high-
speed Angara interconnect is developed in NICEVT, performance evaluation of
the Angara-K1 cluster with the Angara interconnect on scientific workloads is
presented in [4]. In the current work we run Apache Spark through the TCP/IP
interface on the Angara interconnect. Table 3 provides an architecture and a
software overview of the Angara-K1 partition.

Figures 3, 4, 5 and 6 show the comparison results of the full and partial
association algorithms. The reported running times do not include reading data
and writing the result to the filesystem. Table 4 presents the total table sizes in
GB during implementation executing for different entry numbers.

table size, mln entries in memory, GB

300 200
100 70
50 35
25 20
10 12

Table 4. Table size in GB depending on the number of table entries

The algorithm running times are shown in Figure 3, we use 8 cores per node
and 8 nodes of the cluster, table size is varied. Old table size is 300 million
entries, new table size is 75 million entries. The figure shows that performance
difference between the algorithms grows with table size.

Strong scaling is shown in Figure 4. Old table size is 100 million entries, new
table size is 25 million entries. The speedup of the full and partial association al-
gorithms is approximately 3 on 8 nodes. Among the possible reasons of moderate
performance there is a single one: Spark configuration is not optimal. Further



Large Table Association Problem Implemented in Apache Spark 99

0 50 100 150 200 250 300
Table size, millions of entries

0

100

200

300

400

500

600

T
im

e
, 
s

Partial Association
Full Association

0 2 4 6 8 10 12
Nodes number

0

50

100

150

200

250

300

350

400

450

T
im

e
, 
s

Partial Association
Full Association

Fig. 3. Running times of the full
and partial association algorithms
on the different table sizes. 8 cores
per each of the 8 Angara-K1 cluster
nodes

Fig. 4. Strong scaling for the old ta-
bles with 100 million entries and the
new tables with 25 million entries

tuning can address the problem. Horizontal line from 8 to 12 nodes indicates
that the table size is small for further performance increasing.

In Figure 5 profiling results are shown. Shaded color denotes the association
matching stage (stage #1), normal color denotes the transitive closure stage
(stage #2). Old table size is 300 million entries, new table size is 50 million en-
tries. It can be seen that the partial algorithm optimizes primarily the transitive
closure stage.

Running time on 4 nodes is more than two times faster than on 2 nodes,
because the problem size is too large for 2 nodes and Garbage Collector occupies
a significant part of the time.

2 4 8
Nodes number

0

500

1000

1500

2000

Ti
m
e,
 s

FullAssociation, stage #2
FullAssociation, stage #1
PartialAssociation, stage #2
PartialAssociation, stage #1

0 20 40 60 80 100 120
New entries / all entries, %

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
, 
s

Partial Association
Full Association

Fig. 5. Profiling results for the old
tables with 300 million entries and
the new tables with 50 million en-
tries

Fig. 6. Algorithm performance
comparison for a various ratio of
new and all table entries



100 Alexander Agarkov and Alexander Semenov

The dependence of algorithm running times on the amount of new data is
shown in Figure 6. We use 6 nodes, 300 million entries in the each table, the
fraction of the new table entries varies from 12.5 to 100 percents of the total table
size. The smaller the percentage of new data is, the faster the partial association
algorithm is executed. The running time of the full association algorithm does
not change, because the total amount of data does not change.

6 Conclusion

In the paper we propose the partial association algorithm for the table asso-
ciation problem of two dynamically enlarging tables with specific constraints.
For the sake of simplicity we consider a particular case of the problem. We
implement the base full association algorithm and the proposed algorithm us-
ing Apache Spark and present performance evaluation of the algorithms on the
cluster equipped with the Angara interconnect. Performance of the proposed
algorithm exceeds performance of the full association algorithm for a variety of
data sets.

In future work we plan to make detail profiling of the implemented algorithms
in terms of Apache Spark internal operations and to optimize Apache Spark on
the Angara interconnect.

Acknowledgments. The work was supported by the grant No. 17-07-01592A
of the Russian Foundation for Basic Research (RFBR).

References

1. Apach Spark Homepage, http://spark.apache.org/

2. Mellanox Spark RDMA, https://github.com/Mellanox/SparkRDMA

3. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edn.
(1995)

4. Agarkov, A., Ismagilov, T., Makagon, D., Semenov, A., Simonov, A.: Per-
formance evaluation of the Angara interconnect. In: Proceedings of the In-
ternational Conference Russian Supercomputing Days. pp. 626–639 (2016),
http://www.dislab.org/docs/rsd2016-angara-bench.pdf

5. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaf-
tan, T., Franklin, M.J., Ghodsi, A., et al.: Spark SQL: Relational data processing
in Spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. pp. 1383–1394. ACM (2015)

6. Chaimov, N., Malony, A., Canon, S., Iancu, C., Ibrahim, K.Z., Srinivasan, J.:
Scaling Spark on HPC systems pp. 97–110 (2016)

7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
and Implementation - Volume 6. OSDI’04, USENIX Association, Berkeley, CA,
USA (2004)



Large Table Association Problem Implemented in Apache Spark 101

8. Lu, X., D., S., Gugnani, S., Panda, D.: High-performance design of apache spark
with rdma and its benefits on various workloads (December 2016)

9. Lu, X., Rahman, M.W.U., Islam, N., Shankar, D., Panda, D.K.: Accelerating spark
with rdma for big data processing: Early experiences. In: Proceedings of the 2014
IEEE 22Nd Annual Symposium on High-Performance Interconnects. pp. 9–16.
HOTI ’14, IEEE Computer Society, Washington, DC, USA (2014)

10. Reed, D., Dongarra, J.: Exascale computing and Big Data: The next frontier.
Communications of the ACM 57(7), 56–68 (2014)

11. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation. NSDI’12, USENIX
Association, Berkeley, CA, USA (2012)

12. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. HotCloud 10, 7 (2010)


