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The emergence of self-oscillating modes in data-transmission networks negatively affects
characteristics of these networks. As a result the task of identifying zones of self-oscillations’
origin and studying the self-oscillation parameters becomes relevant. The study of the self-
oscillating modes is complicated by the significant nonlinearity of the original system. The
study of self-oscillating modes could simplify the transition to the linearized model; however,
the self-oscillating mode disappears during the linearization. As an alternative, it is proposed
to use an harmonic linearization approach which takes into consideration both the linearized
part of the equations and the nonlinearity that influences them. This paper describes the
preparation for the application of the harmonic linearization method, namely the linearization
of the original nonlinear model.
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1. Introduction

While modeling technical systems with control it is often required to study character-
istics of these systems. Also it is necessary to study the influence of system parameters
on characteristics. In systems with control there is a parasitic phenomenon as self-
oscillating mode. We carried out studies to determine the region of the self-oscillations
emergence. However, the parameters of these oscillations were not investigated. In this
paper, we propose to use the harmonic linearization method for this task. This method
is used in control theory, but this branch of mathematics rarely used in classical mathe-
matical modeling. The authors offer a methodological article in order to introduce this
method to non-specialists.

2. The RED Congestion Adaptive Control Mechanism

To improve the performance of the channel it is necessary to optimize the queue
management at the routers. One of possible approaches is the application of the random
early detection (RED) algorithm (see [1–5]).

The RED algorithm uses a weighted queue length as the factor determining the
probability of packet drop. As the average queue length grows, the probability of
packet drop also increases (see (1)). The algorithm uses two threshold values of the
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average queue length to control drop function (Fig. 1):

p(Q̂) =


0, 0 < Q̂ 6 Qmin,

Q̂−Qmin

Qmax −Qmin
pmax, Qmin < Q̂ 6 Qmax,

1, Q̂ > Qmax.

(1)

Here p(Q̂) — packet drop function (drop probability), Q̂ — exponentially-weighted
moving average of the queue size average, Qmin and Qmax — thresholds for the weighted
average of the queue length, pmax — the maximum level of packet drop.

Figure 1. RED packet drop function

The RED algorithm is quite effective due to simplicity of implementation in the
network hardware, but it has a number of drawbacks. In particular, for some parameters
values there is a steady oscillatory mode in the system, which negatively affects quality
of service indicators (QoS) [6–8]. Unfortunately there are no clear criteria for RED
parameters values selection, in which the system does not enter self-oscillating mode.

We describe the control system driven by RED algorithm as the continuous model
(see [9–16]): 

Ẇ (t) =
1

T (Q, t)
−
W (t)W (t− T (Q, t))

2T (t− T (Q, t))
p(t− T (Q, t));

Q̇(t) =
W (t)

T (Q, t)
N(t)− C;

˙̂
Q(t) = −wqCQ̂(t) + wqCQ(t).

(2)

Here the following notation is used:
— W — the average TCP window size;
— Q — the average queue size;
— Q̂ — the exponentially weighted moving average (EWMA) of the queue size aver-

age;
— C — the queue service intensity;
— T — full round-trip time; T = Tp + Q

C
, where Tp — round-trip time for free

network (excluding delays in hardware); Q
C

— the time whitch batch spent in the
queue;
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— N — number of TCP sessions;
— p — packet drop function.
For this model we use some simplifying assumptions:

— the model is written in the moments;
— the model describes only the phase of congestion avoidance for TCP Reno protocol;
— in the model the drop is considered only after reception of 3 consistent ACK

confirmations.

3. The Elements of Control Theory

We will use the control theory block-linear approach [17]. According to this ap-
proach, the original nonlinear system is linearized and divided into blocks. These blocks
are characterized by the transfer function linking the input and output values. The
transfer function H(s) ties the input x1 and output x2 functions in following way:

x2(s) = H(s)x1(s).

The graphical notation for this relationship is shown on Fig. 2.

H
x1 x2

Figure 2. Transfer function

In control theory Laplace transformations are used. The Laplace transformation of
real variable function f(t) is the function of complex variable s = σ + iω, that:

F (s) = L[f(t)] =
∞∫
0

e−stf(t) dt .

The inverse Laplace transformation of a complex variable function is the function
f(t) of a real variable, such that:

f(t) = L−1[F (s)] =
1

2πi

σ1+i∞∫
σ1−i∞

estF (s) ds ,

where σ1 is a real number.
The Laplace transformation allows to replace differential equations with algebraic

ones. Formally, the differential operator dna
dtn

is replaced by the degree of the variable
s:

dn

dtn
→ sn. (3)

Also it simplifies the work with functions with lagging argument. The lagging argu-
ment is formally transformed into the multiplicative exponent:

f(t− τ)→ F (s)e−sτ . (4)
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On the block diagram one can select several connection types: series (Fig. 3), parallel
(Fig. 4) and the connection with the opposite link (Fig. 5). Each of these connection
types can be converted into the structure shown in Fig. 2.

H1 H2

x2x1 x3

Figure 3. Series connection of blocks

H1

x2

H2

x1

x3

x4

Figure 4. Parallel connection of blocks

H1

H2

x1 x2 x3

−

x4

Figure 5. Feedback

For series connection (Fig. 3): x2(s) = H1(s)x1(s), x3(s) = H2(s)x2(s). Excluding
x2(s), we will get x3(s) = H2(s)H1(s)x1(s). So, for the series connection the transfer
function of the junction will be the product of the transfer functions of links: H(s) =
H2(s)H1(s), or for n links:

H(s) =
n∏
i=1

Hi(s).

For parallel connection1 (Fig. 4) we have x2(s) = H1(s)x1(s), x3(s) =
H2(s)x1(s), x4(s) = x2(s) + x3(s). Excluding x2(s) and x3(s), we will get x4(s) =
(H1(s) +H2(s))x1(s). Thus, the transfer function of the parallel connection is equal to
the sum of transfer functions of the links, or for n links:

H(s) =
n∑
i=1

Hi(s).

For negative feedback2 (Fig. 5) we have x3(s) = H1(s)x2(s), x4(s) =
H2(s)x3(s), x2(s) = x1(s)x4(s). By excluding x2(s) and x4(s), we will get x3(s) =

H1(s)
1+H1(s)H2(s)

x1(s). Thus, the transfer function of connection with negative feedback
is:

H(s) =
H1(s)

1 +H1(s)H2(s)
.

1Here we used the element “summation unit” (presented in the diagram as a circle).
2Here we used the element “summation unit with subtraction” or “comparator”.
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4. Harmonic Linearization Method

The method of harmonic linearization is an approximate method. It is used for study
of start-oscillation conditions and determination of the parameters of self-oscillations,
for the analysis and evaluation of their sustainability, as well as for the study of forced
oscillations. Harmonically-linearized system depends on the amplitudes and frequencies
of periodic processes. The harmonic linearization differs from the common method
of linearization (leading to purely linear expressions) and allows to explore the basic
properties of nonlinear systems.

The method of harmonic linearization is used for systems of a certain structure (see
figure 6). The system consists of the linear part Hl and the nonlinear part, which is set
by function f(x). It is generally considered a static nonlinear element.

f(x) Hl

g x y

−

Figure 6. Block structure of the system for the harmonic linearization method

We can represent a nonlinear element as follows:

f(x) =

[
κ(A) +

κ′(A)
ω

d

dt

]
x = Hnl(A, ∂t)x, (5)

where Hnl(A, ∂t) is the approximate transfer function of the nonlinear unit, κ(a) and
κ′(a) are the harmonic linearization coefficients.

After finding the coefficients of harmonic linearization for given nonlinear unit, it is
possible to study the parameters of the oscillation mode. The existence of oscillation
mode in a nonlinear system corresponds to the determination of oscillating boundary of
stability for the linearized system. Then A and ω can be found by using linear systems
stability criteria (Mikhailov, Nyquist–Mikhailov, Routh–Hurwitz). Thus, the study of
self-oscillation parameters can be done by one of the methods of determining the limits
of stability of linear systems.

The Nyquist-Mikhailov criterion [18, 19] allows to judge about the stability of the
open-loop automatic control system by using Nyquist plot (amplitude-phase character-
istic) of the open-loop system.

Make the substitutions ∂t → iω and s → ∂t → iω in the transfer function. Un-
damped sinusoidal oscillations with constant amplitude are determined by passing the
amplitude-phase characteristics of the open-loop system through the point (−1, i0).

The characteristic function of the system is:

1 +Ho(iω) = 0,

Ho(iω) := Hl(iω)Hnl(A, iω),

where Ho — the transfer function of the open-loop system.
Thus:

Hl(iω)Hnl(A, iω) = −1. (6)
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Given by (5) from (6) the equality is obtained:

Hl(iω) = −
1

κ(A) + iκ′(A)
. (7)

The left part of the equation (7) is the amplitude-phase characteristic of the linear
unit, and the right part is the inverse of the amplitude-phase characteristic of the first
harmonic non-linear level (with opposite sign). And the equation (7) is the equation of
balance between the frequency and the amplitude.

This type of criterion is also called as a Goldfarb method.
Sometimes it is more convenient to write the equation (7) in the following form:

κ(A) + iκ′(A) = −
1

Hl(iω)
. (8)

This type of criterion is also called as a Kochenburger method.

5. Linearization of the Model

We will carry out the linearization near the equilibrium point (the balance point is
denoted by f index). At the equilibrium point time derivatives turn to zero, so the
system of equations (2) will be as follows:

0 =
1

Tf
−
W 2
f

2Tf
pf ;

0 =
Wf

Tf
Nf − C;

0 = −wqCQ̂f + wqCQf .

(9)

From the system of equations (9) we get the bound equation for the equilibrium
values of the variables: 

pf =
2

W 2
f

;

Wf =
CTf

Nf
;

Q̂f = Qf .

(10)

Let us denote the variables: W := W (t), WT := W (t− t), Q := Q(t), p := p(t− t).
We write out the right part of the system (2):

LW (W,WT , Q, p) =
1

T
−
WWT

2T
p;

LQ(W,Q) =
W

T
N − C;

LQ̂(Q̂,Q) = −wqCQ̂+ wqCQ.

(11)
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The variation of the right part (11) for all variables in a neighborhood of the equi-
librium point is:

δLW

δW

∣∣∣∣
f

= −
WT

2T
p

∣∣∣∣
f

= −
Wf

2Tf
pf ;

δLW

δWT

∣∣∣∣
f

= −
W

2T
p

∣∣∣∣
f

= −
Wf

2Tf
pf ;

δLW

δQ

∣∣∣∣
f

= −
1

T 2

δ
(
Q
C

+ Tp
)

δQ
+
WWT

2T 2
p
δ
(
Q
C

+ Tp
)

δQ

∣∣∣∣∣∣
f

= −
1

CT 2
f

+
W 2
f

2CT 2
f

pf ;

δLW

δp

∣∣∣∣
f

= −
WWT

2T

∣∣∣∣
f

= −
W 2
f

2Tf
;

δLQ

δW

∣∣∣∣
f

=
1

T
N

∣∣∣∣
f

=
N

Tf
;

δLQ

δQ

∣∣∣∣
f

= −
W

T 2
N
δT

δQ

∣∣∣∣
f

= −
W

T 2
N
δ
(
Q
C

+ Tp
)

δQ

∣∣∣∣∣∣
f

= −
W

CT 2
N

∣∣∣∣
f

= −
Wf

CT 2
f

N ;

δLQ̂

δQ̂

∣∣∣∣∣
f

= −wqC
∣∣∣∣
f

= −wqC;
δLQ̂

δQ

∣∣∣∣∣
f

= wqC

∣∣∣∣
f

= wqC.

Considering the equation (10), we can rewrite this system in the following form.

δLW

δW

∣∣∣∣
f

= −
Wf

2Tf

2

W 2
f

= −
1

WfTf
= −

N

CT 2
f

;

δLW

δWT

∣∣∣∣
f

= −
Wf

2Tf

2

W 2
f

= −
1

WfTf
= −

N

CT 2
f

;

δLW

δQ

∣∣∣∣
f

= −
1

CT 2
f

+
2

2CT 2
f

= 0;

δLW

δp

∣∣∣∣
f

= −
C2T 2

f

N2

1

2Tf
= −

C2Tf

2N2
;

δLQ

δW

∣∣∣∣
f

=
N

Tf
;

δLQ

δQ

∣∣∣∣
f

= −
CTf

N

N

CT 2
f

= −
1

Tf
;

δLQ̂

δQ̂

∣∣∣∣∣
f

= −wqC;
δLQ̂

δQ

∣∣∣∣∣
f

= wqC.
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Thus, we received from the initial system (2) the linearized one:

δẆ (t) =
δLW

δW

∣∣∣∣
f

δW (t) +
δLW

δW T

∣∣∣∣
f

δW (t− Tf ) +

+
δLW

δQ

∣∣∣∣
f

δQ(t) +
δLW

δp

∣∣∣∣
f

δp(t− Tf ) =

= −
N

CT 2
f

(
δW (t) + δW (t− Tf )

)
−
C2Tf

2N2
δp(t− Tf ) ;

δQ̇(t) =
δLQ

δW

∣∣∣∣
f

δW (t) +
δLQ

δQ

∣∣∣∣
f

δQ(t) =
N

Tf
δW (t)−

1

Tf
δQ(t) .

δ
˙̂
Q(t) =

δLQ̂

δQ̂

∣∣∣∣∣
f

δQ̂(t) +
δLQ̂

δQ

∣∣∣∣∣
f

δQ(t) = −wqC δQ̂(t) + wqC δQ(t) .

(12)

In addition, let us to linearize the drop function (1):

δp(Q̂, t) =


0, 0 < Q̂ 6 Qmin,

pmax

Qmax −Qmin
δQ̂(t) , Qmin < Q̂ 6 Qmax,

0, Q̂ > Qmax.

(13)

The (13) may be denoted as

δp(Q̂, t) = PRED δQ̂(t) ;

PRED :=


0, 0 < Q̂ 6 Qmin,

pmax

Qmax −Qmin
, Qmin < Q̂ 6 Qmax,

0, Q̂ > Qmax.

(14)

Let us perform on (12) the transformation (3) and (4).

s δW (s) = −
N

CT 2
f

(
δW (s) + δW (s) e−sTf

)
−
C2Tf

2N2
δp(s) e−sTf =

= −
N

CT 2
f

(
1 + e−sTf

)
δW (s)−

C2Tf

2N2
δp(s) e−sTf ;

s δQ(s) =
N

Tf
δW (s)−

1

Tf
δQ(s) .

s δQ̂(s) = −wqC δQ̂(s) + wqC δQ(s) .

(15)
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Let’s simplify (15):

δW (s) = −
1

s+ N
CT2

f

(
1 + e−sTf

) C2Tf

2N2
e−sTf δp(s) ;

δQ(s) =
1

s+ 1
Tf

N

Tf
δW (s) ;

δQ̂(s) =
1

1 + s
wqC

δQ(s) .

(16)

Considering the formula δQ̂(s) from the system of equations (16), we can write
out (14) in the following form:

δp(s) = PRED
1

1 + s
wqC

δQ(s) . (17)

The function PRED has the form shown in Fig. 7

Qmin Qmax

pmax

Qmax −Qmin
x

f(x)

Figure 7. The function PRED

Based on (16) and (17) the block representation of the linearized RED model (Fig. 8)
is constructed.

C2Tf

2N2

s+ N

CT2
f
(1+e−sTf )

1
s+ 1

Tf

N
Tf

δw

PRED
1

1+ s
wqC

e−sTf

δq

−

δp

Figure 8. Block representation of the linearized RED model

For clarity, it is possible to plot parametric graphs on the complex plane separately
for left Hl(i, ω) and right −1/Hnl(A) parts of the equation (7) (of ω and A respectively)
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(see figures 9 and 10). The intersection of the curves gives the point of emergence of
self-oscillations.
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Figure 9. Nyquist plot for system (7)
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Figure 10. Nyquist plot for system (8)

For the example of the calculation we have chosen the following parameters: Qmin =
100 [packets], Qmax = 150 [packets], pmax = 0.1, Tp = 0.0075 s, wq = 0.002, C = 2000
[packets]/s, N = 60 (the number of TCP sessions).

As a result we obtained the following values for the amplitude and the cyclic fre-
quency: A = 1.89 [packets], ω = 16.55s−1.

6. Conclusion

The authors demonstrated the technique of oscillatory modes research for the sys-
tems with control. We tried to explain this technique for mathematicians unfamiliar
with the control theory formalism. We plan to apply this technique to the study of a
wide range of traffic active control algorithms. Also it is interesting to compare these
results with the previous results obtained for self-oscillation systems with control.
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