
Towards Automating Relational Data Wrangling

Gust Verbruggen and Luc De Raedt

Department of Computer Science, KU Leuven
gust.verbruggen@cs.kuleuven.be

luc.deraedt@cs.kuleuven.be

Abstract. It is well-known in data science that 80% of the work is
devoted to preprocessing and only 20% to the actual machine learning or
data mining step. This motivates us to explore different ways to (help)
automate that preprocessing step. This note focusses on the question
whether it is possible to (help) automate the data wrangling process for
tabular data in data science.

1 Introduction

One long term goal of automatic machine learning and data science is to empower
naive end-users to automatically analyse their data. Today we are far away from
reaching that goal. In this note we explore how to help end-users with getting
their data in the right format for analysis. As non-experts often gather their data
in spreadsheets, we focus on the question whether it is possible to take such a
spreadsheet and to automatically transform it into a format that can be used
by standard machine learning software such as Weka [4]. Thus we want to help
fully automating the data wrangling process [1].

Several approaches for data wrangling already exist. For example, the Wran-
gler [7] system provides an interactive interface for creating transformation
programs without needing to write code. Instantiations of the FlashMeta [8]
framework allow synthesising many data transformation programs by providing
the system with input-output examples. A notable instantiation is FlashRe-
late [3] which allows for extracting relational data from spreadsheets. More
recently, Foofah [6] aimed at a combination of these two: transforming a spread-
sheet based on examples.

In this note we want to take the next step in these developments and explore
whether these processes can be automated while focussing on data in tabular
form. Relational data in tabular form has distinct properties that we exploit in
order to mediate the need for examples describing the desired output. In contrast
to previous approaches – where the subset of desired relational data is described
by examples or intent – we aim to extract all relational data from the spreadsheet
itself. We provide an initial approach to tackle this problem.

2 Problem

In this section we formulate the problem of wrangling relational data from
spreadsheets that we focus on.



2.1 Spreadsheet Notation and Properties

We only consider spreadsheets that contain one table, but any rectangle finder
can be used to extract multiple tables from spreadsheets. A spreadsheet with m
columns and n rows is naturally represented by an n×m matrix in which each
element is a cell.

Each cell has a known and given type. Because semantics of types aren’t
used, types are simply labels such as integer and string or just natural numbers.
Empty cells get a distinct type ∅. The types are stored in a separate matrix.

2015 OCT NOV DEC
Hot

Coffee 305 340 480
Tea 205 260 255
Hot Chocolate 301 364 470

Cold
Fanta 103 164 101
Ice Tea 181 129 133
Coke 147 120 96
Coke Light 191 162 119
Orange Juice 102 168 103

Beer
Stella Artois 601 573 951
Duvel 99 120 179

(a) Spreadsheet with beverage sales
data for the fourth quarter of 2015.
Similar spreadsheets exist for all quar-
ters over different years.

year mth mth mth
type

drink amt amt amt
drink amt amt amt
drink amt amt amt

type
drink amt amt amt
drink amt amt amt
drink amt amt amt
drink amt amt amt
drink amt amt amt

type
drink amt amt amt
drink amt amt amt

(b) Type spreadsheet for Table 1a.

Fig. 1

An m-ary relation R ⊆ (A1, . . . , Am) of n tuples can be easily embedded in
a spreadsheet, represented by an n × m matrix. Each tuple simply becomes a
row in the matrix and each attribute corresponds to a type.

Conversely, any spreadsheet S can be converted to a relation RS by construct-
ing tuples from the rows. Each column becomes an attribute of the relation. We
can see that the resulting relation will only be meaningful if each column only
consists of elements of the same type. Such a column is called type-consistent
and a spreadsheet is type-consistent if all of its columns are.

2.2 Spreadsheet Transformation Programs

We limit ourselves to transformations that change the layout of the spreadsheet
as in [5]. Such a transformation takes a matrix, optionally some arguments,
and returns a new matrix which contains the same elements but repositioned,
replicated or removed.



An example is the fold transformation, which takes a set of column indices
as argument and folds them into one column by adding rows and using the
column headers to indicate where it came from.

fold




1 2
A x i1 j1
B i2 j2
C j3

 ; {2, 3}

 =


A x 1 i1
A x 2 j1
B 1 i2
B 2 j2
C 1
C 2 j3


The list of all such transformations that we consider to construct spreadsheet
transformation programs is given in Table 1. It is heavily inspired from those
used by existing approaches [7,6,9]. We can extend this list of transformations
in order to support more complex spreadsheets.

Applying a transformation results in a reconstruction error. This is a mea-
sure of how well it can be inverted given its arguments; or how much information
is lost when applying the transformation on an n×m spreadsheet. For example,
the fold transformation has a reconstruction error of zero as it can be perfectly
inverted, while delete has a reconstruction error that depends on of the num-
ber of non-empty cells it removes. The reconstruction errors for all operations
are given in Table 1.

A spreadsheet transformation program P is then an ordered list of trans-
formations (t1, . . . , ta) that are applied in order on a spreadsheet S such that
P(S) = ta(. . . t1(S) . . .). The reconstruction error of a program is the sum of
reconstruction errors of its transformations.

2.3 Problem

Given a spreadsheet S and a set of spreadsheet transformation operators, the
task is to learn a program P over the operators such that P(S) is type-consistent
while keeping the reconstruction error caused by P at 0.

We start from the assumption that a relation R was embedded in spreadsheet
space and then restructured using a transformation program over an unknown
set of transformations. The result is a spreadsheet S for which RS is not equal
to R, but for which we know that R can still be extracted by recovering the
structure. A program that successfully transforms an arbitrary spreadsheet into
a type-consistent one is believed to have uncovered this underlying structure.
Keeping reconstruction error at 0 is necessary to discourage trivial results. For
example, only keeping one arbitrary row from the spreadsheet will always result
in type-consistency, but will probably not be a desired relation.

As we are only given an input example, this can be seen as a form of predictive
program synthesis. The desired output is not given but predicted together with
the program that produces it by using the type-consistency constraint, similar
to using delimiter alignment in predicting text splitting tasks [10]. Strong en-
forcement of the type-consistency constraint results in rectangular output tables,
another property of relational tables.



Simplifications In these first experiments some simplifications are taken into
account. We assume that the types are known up to a granularity that distin-
guishes each attribute of the relation. For example, a binary relation having
types int and int is not valid, but types Age and Weight or 1 and 2 are. The
input spreadsheet furthermore contains no noisy, nor missing values.

3 Predictive Program Synthesis

This section explains the naïve algorithm used to perform predictive synthesis.
First, we introduce an heuristic that allows to perform a greedy search. Next,
this algorithm is presented.

3.1 Heuristic

The type-consistency constraints alone is not useful when searching the program
space. We introduce a measure of how well the constraint is satisfied that can
serve as a heuristic. Three main properties are taken into account.

First, columns that contain different types need to be punished. Empty values
are a wildcard because they are not necessarily wrongly typed. For example, type
might still have to be made explicit by a forward fill. This leads to the type-
consistency tcc of a column c to be defined as the joint proportion of the most
occurring type and empty type over the total number of elements in the column.

Second, empty cells are addressed by rescaling tcc with the inverse propor-
tion of missing values mc. While these first two properties already result in fully
type-consistent tables, they don’t take the shape of the table into account. A
table with two columns of the same type will get the maximal heuristic value,
but it still violates the fact that each column has to contain a distinct attribute.

Finally, let the type of a column be the type that occurs most often in that
column. We scale the heuristic a second time by the proportion of unique column
values u. The heuristic value for a table TS with m columns then becomes

H(TS) =

(
1

m

m∑
c=1

tcc(1−mc)

)
u. (1)

We get H(TS) = 1 for a table TS that satisfies all constraints, providing a
stopping criterium for the algorithm.

3.2 Naïve Algorithm for Predictive Synthesis

As we have a heuristic that we can optimise and a constraint to be satisfied, a
naïve approach for predictive synthesis is a best-first search until the constraint
is satisfied.

The parameter space for each transformation can be pruned based on the
current table. Most transformations have a computable set of parameters that
are useful to apply on a certain table. For example, if no empty values exist in a



column, forward filling that column has no effect. Similarly, when folding some
columns together we can assume their headers to be of the same type as they
will be grouped in one column. Table 1 lists the pruned list of possible arguments
for each transformations.

The naïve synthesis algorithm for a table TS is then a very simple greedy
search. As long as no program P is found for which H(P(TS)) = 1, the best
program so far is extended with all useful transformations.

4 Results

Assume a bar has gathered spreadsheets as in Table 1a over the course of a few
years. They now want to get insights in their data such as correlations between
the month and sales of hot beverages or a prediction of sales. These are easy
tasks that can be performed using e.g. Weka – given that the data is in an
appropriate format. Unfortunately, it will not be able to handle the raw data
from Table 1a.

Running the naïve synthesis algorithm on this spreadsheet proceeds like the
search tree in Figure 2. It can be seen that parameter pruning is highly effective
at only trying parameter sets that make sense. The desired STP

Fold(1, 3)
Delete(0)
Split(0)
ForwardFill(1)
Delete(0)

is found without backtracking. Running this program on Table 1a results in a
relation

(year, type, drink, month, amount).

Different tables for all quarters can be easily joined. The results can be used by
standard tools as the relation could be stored in a simple .csv file.

Other simple spreadsheets, based on real world spreadsheets such as those
from the Fuse [2] corpus, are similarly wrangled correctly into a relational for-
mat. An additional use case is shown in Appendix 1.B.

5 Comparison to other approaches

In general, by trying to extract all relational information rather than a subset, we
aim to wrangle relational data from spreadsheets without any user interaction.
Previous approaches require some manual effort, but allow for a subset of the
output space to be extracted. In the context of automated data analysis this
tradeoff in flexibility is reasonable, if not beneficial, as features extraction and/or
construction will still take place.

Wrangler enables the user to synthesise transformation programs by vi-
sually specifying regions of the spreadsheet that are to be fixed, for which an



[]

Drop(0)
Error 16
Htc 0.75

Drop(1)
Error 12
Htc 0.5

Drop(2)
Error 12
Htc 0.5

Drop(3)
Error 12
Htc 0.5

Fold(1, 3)
Error 0
Htc 0.046

Fold(0, 2)
Error 0
Htc 0.456

Drop(0)
Error 48
Htc 0.125

Drop(1)
Error 48
Htc 0.25

Drop(2)
Error 36
Htc 0.125

Split(0)
Error 0
Htc 0.035

ForwardFill(2)
Error 0
Htc 0.263

ForwardFill(1)
Error 0
Htc 0.1125

Delete(0)
Error 0
Htc 0.0

Delete(1)
Error 0
Htc 0.08

Delete(4)
Error 0
Htc 0.0

ForwardFill(1)
Error 0
Htc 0.3

Delete(2)
Error 24
Htc 0

Split(0)
Error 0
Htc 0.639

Delete(1)
Error 4
Htc 0.5

Delete(0)
Error 4
Htc 0.5

Delete(0)
Error 4
Htc 0.5

Fig. 2: Search tree for running the naïve synthesis algorithm on the spreadsheet
in Table 1a. After the second level, only possible transformations with 0 recon-
struction error are shown.

ordered list of transformations is suggested. For many spreadsheets that are sim-
ilar but not entirely uniform, the scripts might not generalise well and a lot of
effort is required. An example of this case is discussed in Appendix 1.B.

FlashRelate learns an extraction program rather than a transformation
program. In cases where many sparse columns have to be folded together, many
examples might still be needed.

Foofah is closest to the approach presented here, as it synthesises trans-
formation programs similar to ours. It requires complete input-output examples
which might not be easy to specify for large tables.

6 Conclusion

In this paper we introduced the problem of automatically wrangling relational
data from spreadsheets. We presented a simple heuristic greedy algorithm that
is able to synthesise STPs for simple spreadsheets. Parameter pruning for the
transformations in the transformation language is an important property of the
algorithm. Real world spreadsheets can be correctly wrangled into a relational
format, given a distinction in types is known.

In future work, we want to expand on the set of used transformations and the
way their parameters are pruned. More specifically, we want to perform extended
analysis of their completeness with respect to real world spreadsheets. For now,
parameter pruning is largely based on intuition. Furthermore, we are looking
at how the type spreadsheet can be automatically generated using hierarchical
clustering.



7 Acknowledgements

This work is part of the ERC Advanced Grant SYNTH – Synthesising inductive
data models, see http://synth.cs.kuleuven.be.

References

1. Data Wrangling Automation, IEEE International Conference on Data Mining
(2016), http://users.dsic.upv.es/~flip/DWA2016/

2. Barik, T., Lubick, K., Smith, J., Slankas, J., Murphy-Hill, E.: Fuse: a reproducible,
extendable, internet-scale corpus of spreadsheets. In: Proceedings of the 12th Work-
ing Conference on Mining Software Repositories. pp. 486–489. IEEE Press (2015)

3. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: Flashrelate: extracting relational
data from semi-structured spreadsheets using examples. In: ACM SIGPLAN No-
tices. vol. 50, pp. 218–228. ACM (2015)

4. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

5. Harris, W.R., Gulwani, S.: Spreadsheet table transformations from examples. In:
ACM SIGPLAN Notices. vol. 46, pp. 317–328. ACM (2011)

6. Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.: Foofah: Transforming data
by example. In: Proceedings of the 2017 ACM International Conference on Man-
agement of Data. pp. 683–698. ACM (2017)

7. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual spec-
ification of data transformation scripts. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. pp. 3363–3372. ACM (2011)

8. Polozov, O., Gulwani, S.: Flashmeta: A framework for inductive program synthesis.
ACM SIGPLAN Notices 50(10), 107–126 (2015)

9. Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system.
In: VLDB. vol. 1, pp. 381–390 (2001)

10. Raza, M., Gulwani, S.: Automated data extrac-
tion using predictive program synthesis (January 2017),
https://www.microsoft.com/en-us/research/publication/
automated-data-extraction-using-predictive-program-synthesis/

11. The World Bank: World development indicators. http://databank.worldbank.
org/data/reports.aspx?source=world-development-indicators (2016)

http://synth.cs.kuleuven.be
http://users.dsic.upv.es/~flip/DWA2016/
https://www.microsoft.com/en-us/research/publication/automated-data-extraction-using-predictive-program-synthesis/
https://www.microsoft.com/en-us/research/publication/automated-data-extraction-using-predictive-program-synthesis/
http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators
http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators


Appendix 1.A Transformations

Operation Explanation Error Arguments
Delete Delete all rows which

have an empty value in
a given column c.

The number of non-
empty deleted cells of
rows that are less spe-
cific than a row that is
kept. A row is less spe-
cific than another row
if it contains less values
and all of its non-empty
values are equal.

(1, . . . ,m)

Drop Delete column c. Number of no-empty
cells in the deleted col-
umn.

(1, . . . ,m)

Fold Fold x columns into
two columns by replac-
ing each row with x
new rows where all other
columns have the same
value and the two new
columns contain the old
column name and value.

0 All sets of sub-
sequent columns
that have the
same type.

ForwardFill Fill each empty cell in
a column with the first
preceding non-empty
value.

0 All columns with
at least one miss-
ing value that do
not have the first
element missing.

Split Split a column on type. 0 All columns with
at least two dif-
ferent types that
are not ∅.

transpose Transpose rows and
columns.

0 ∅

Table 1: Spreadsheet layout transformations, their reconstruction error and pos-
sible arguments.



Appendix 1.B Example Use Case: World Development
Indicator Data

The World Bank provides an interface to download World Development Indicator data
in spreadsheet format [11], some exports of which were also found in Fuse. Using
default parameters and the codes only option, an example exported spreadsheet is
shown in Figure 3a. We can also find a classification for income groups of countries –
already in relational format – as shown in Figure 3b.

Suppose we want to learn a classifier for income groups using a relational learner
such as Tilde, using the WDI data as features. A desired format for the WDI data
could be a relation

(country, indicator, year, value)

which the learner can associate with the (country, class) relation to learn a classifier.
Running our naïve synthesis algorithm on Figure 3a results in a simple STP

Fold(2, 6)
Delete(3)

that does the job. It managed to prune missing data as well. Other subsets of WDI
data can be wrangled in the same way, not requiring any examples or intent.

Country Code Series Code 2012 2013 2014 2015 2016
AFG PA.NUS.PPP.05
AFG PA.NUS.PRVT.PP.05
AFG EG.CFT.ACCS.ZS 18.132 17.7192 17.3057
DZA PA.NUS.PPP.05
DZA PA.NUS.PRVT.PP.05
DZA EG.CFT.ACCS.ZS 99.99 99.99 99.99

(a) A sample of World Development Indicator data from [11].
Types are indicated using grayscales colors.

AFG Low income
ALB Upper middle income
DZA Upper middle income
ASM Upper middle income
AND High income
AGO Lower middle income
ATG High income

(b) Excerpt of an in-
come group classifica-
tion spreadsheet.

Fig. 3


	Towards Automating Relational Data Wrangling

