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Abstract. This paper introduces the methods employed by University
of Houston team participating in the CL-SciSumm 2017 Shared Task at
BIRNDL 2017 to identify reference spans in a reference document given
sentences from citing papers. The following approaches were investigated:
structural correspondence learning, positional language models, and tex-
tual entailment. In addition, we refined our methods from BIRNDL 2016.
Furthermore, we analyzed the results of each method to find the best
performing system.

1 Introduction

The CL-SciSumm 2017 shared task [11] focuses on the problem of auto-
matic summarization of scientific papers in the Computational Linguis-
tics domain. In this problem, inputs are a set of reference documents
and sets of citing documents associated with each reference document.
Moreover, in each citing document, sentences which refer to the reference
document (called citances) are marked. There are a couple of tasks de-
fined in the shared task. Task 1a is, given a citance, to identify the span
of reference text that best reflects what has been cited. Task 1b asks us
to classify the cited span according to a predefined set of facets: hypoth-
esis, aim, method, results, and implication. Finally, Task 2 is generating
a structured summary.
Three main approaches are investigated for Task 1a: positional language
models, structural correspondence learning, and textual entailment sys-
tems. The details of each method are explained in the following sections.
Two methods are employed to address task 1b: a rule-based method
which is basically a comparison-based method augmented by WordNet
expansion and a classification method.

2 Related Works

Citations are considered an important source of information in many text
mining areas [9]. For example, citations can be used in summarization



to improve a summary [23]. It is thought that citations embody the
community’s perspective on the content of said paper [22].

In [26], the authors illustrate the importance of citations for summariza-
tion purposes. They made their summaries based on three sets of infor-
mation including only the reference article; only the abstract; and, only
citations. Finally they showed that citations produced the best results.
In another study, Mohammad et al. [20] also showed that the informa-
tion from citations is different from that which can be gleaned from just
the abstract or reference article. However, it is cautioned that citations
often focus on very specific aspects of a paper [8].

Properly tagging/marking the actual citation has also attracted a great
deal of attention to this area of reserach. Powley and Dale [25] give
insight into recognizing text that is a citation. Siddharthan and Teufel
also introduce a new concept called “scientific attribution” which can
help in discourse classification. The importance of discourse classification
is further developed in [1]; in this paper, they showed the importance of
discourse facet identification for producing good summaries.

In terms of what has been attempted at CL-SciSumm in past years, the
methods are diverse. Aggarwal and Sharma [2] use bag-of-words bigrams,
and compute scores to rank reference sentences based on their relevance
to the citance using bigram overlap counts between citance and refer-
ence sentences using some heuristics. In [12], researchers generate three
combinations of an unsupervised graph-based sentence ranking approach
with a supervised classification approach. Cao et al. [5] model Task 1a
as a ranking problem and apply SVM Rank for this purpose. In [16],
the citance is treated as a query over the sentences of the reference doc-
ument; the authors then used learning-to-rank algorithms (RankBoost,
RankNet, AdaRank, and Coordinate Ascent) with lexical and topic fea-
tures, in addition to TextRank scores, for ranking sentences. Lei et al.
[14] used SVMs and rule-based methods with lexicon features and simi-
larities (IDF, Jaccard, and context similarity). In [24], authors propose a
linear combination between a TFIDF model and a single layer neural net-
work model. Saggion et al. [28] used supervised algorithms with feature
vectors representing the citance and reference document sentences. Fea-
tures include positional and rhetorical features, in addition to WordNet
similarity measures.

3 Dataset

The dataset for CL-SciSumm 2017 [11] is divided into 30 training docu-
ments and 10 testing documents, each with multiple citances. In the rest
of this section, some statistics about the raw dataset (with no prepro-
cessing) are reported.

This dataset contains 148,669 words and 11,114 unique words among
the reference documents. There are 6,700 reference sentences and their
average length is 23 words. The average reference document length is
4955 words in this dataset. Furthermore, the average number of sentences
in each reference document is approximately 223 sentences.



4 Task 1a Individual Methods

In this task, we are asked to identify the reference sentences referred
to by a given citance. In general, we rank the sentences in the refer-
ence document according to some method, then return the top 3. This
year, the following new methods were attempted by our team: Positional
Language Models, Structural Correspondence Learning, and Textual En-
tailment techniques.

4.1 Positional Language Model Approach

Positional language model was proposed with the idea of employing prox-
imity information in documents to retrieve better results in response to
a query[17]. In task 1a, we consider each reference text a document and
each citance a query. Using PLM approach, a separate language model
is constructed for each position of the reference sentence and computes
the score of the reference sentence based on the similarity between its
positional language models and citances language model. The elements
of PLM (Positional Language Model) are the propagated counts of all
words within the reference sentence which are estimated using a density
function. With this idea, the closer words to the position, the higher the
weight of the word in the PLM. Therefore, the PLM of reference sentence
d at position i is estimated as follows:

p(w|d, i) =
c
′
(w, i)∑

w
′
εV
c′(w′ , i)

where V is the vocabulary and c
′
(w, i) is the propagated count of word

w at position i from all of its occurrences in the reference sentence.
Finally, PLM of each position in the reference sentence is compared with
the language model of citance using KL-divergence to obtain a position
specific similarity score as follows:

S(q, d, i) = −
∑
wεV

p(w|q) log
p(w|q)
p(w|d, i)

where p(w|q) is the language model of the citance q, p(w|d, i) is the posi-
tional language model of reference sentence d at position i and S(q, d, i)
is the similarity score between the position i in the reference document
and the citance. These scores are used to find the final similarity score of
reference sentence(as a document) in response to the citance(as a query).
Thus, we can apply PLM approach as a retrieval process to find the most
relevant reference sentences in response to each citance.

4.2 Structural Correspondence Learning Approach

SCL is a method of transfer learning that attempts to learn a joint repre-
sentation for two different domains [4]. The reasoning behind using SCL
in this task is that citances and the sentences to which they refer be-
long to different domains, yet correspond to each other. Thus, it seemed
plausible that such a method would be beneficial.



Structural Correspondence Learning seeks to find a joint representation
by focusing on pivot features, i.e. features that are frequent in occurrence
in both domains. The key to SCL is to predict the occurrence of pivot
features from the non-pivot features of an example. One can learn a
machine learning model, such as an SVM, for this purpose. The next
step is to reduce the dimensionality of these predictors; this forces some
generalization. The joint representation consists of the predicted pivot
features (non-pivot features are thrown away). For our purposes, these
new feature vectors are used to calculate cosine similarity scores with
the citance.

4.3 Textual Entailment Approach

The property of textual entailment between two pieces of text can be
described as a directional relationship which can only be True when the
information contained in one text fragment is directly or indirectly de-
rived from the other text fragment. The derived text fragment is then
said to be textually entailed by the other. In Textual Entailment3, the
entailing fragment is termed the text and the possibly entailed frag-
ment is the hypothesis. For example, the following pair of text fragments
demonstrate entailment:

Text: The cat ate the rat.

Hypo.: The cat is not hungry.

The task of deriving inference from pairs of text is called Recognizing
Textual Entailment (RTE)4. The proposed approach uses textual entail-
ment as a measure of extracting the reference sentences relevant to a
given citance. We build textual pairs using the given citance (text) and
the sentences extracted from the reference document (hypothesis). We
use an RTE system TIFMO [7, 29] to measure textual entailment be-
tween a given pair of citance and reference text. TIFMO uses Dependency-
based Compositional Semantics (DCS) [29] based trees to represent a
text body. The system derives an inference for entailment prediction
by considering logic based relations between ‘abstract denotations’ or
relational expressions generated from the queries in the DCS trees. A
further improvement to the system was proposed in [7], where General-
ized Quantifiers (GQs) present in text are taken into account to evaluate
lexical and/or syntactical relations between pairs of sentences (text and
hypothesis) to predict the presence of entailment between them and also
the type of entailment. We have used the TIFMO system proposed in [7]
for our evaluation of citances and extraction of their relevant reference
sentences.

3 https://aclweb.org/aclwiki/Textual_Entailment_Portal
4 https://aclweb.org/aclwiki/Recognizing_Textual_Entailment



4.4 Previous Methods

We present an overview of the methods that were previously employed
on this task in [21].

TFIDF. In this method we rank sentences in the reference document
according to the cosine similarity between each sentence and the citance.
Both the sentences and the citance are represented as a TFIDF vector,
i.e. a word vector where the weights are the TFIDF values calculated
from the reference document.
Although TFIDF has been evaluated before in [21], this time we exper-
iment with using more than just unigrams. We include variations that
make use of bigrams and trigrams as well. Our naming convention for
these systems includes the range of n-grams they use (for example, tfidf-
1:3 uses unigrams, bigrams, and trigrams).

LDA. Latent Dirichlet Allocation is a topic modeling method [3] that
models the interaction between topics and words as a statistical process.
Topics within this model are drawn from a multinomial distribution. In
turn, every topic has its own multinomial distribution for the words in
the vocabulary. Thus, the model can capture the fact certain topics favor
certain words.
For our task, we represent each sentence by the topic membership vector,
which assigns to the sentence a probability of membership for each topic.
These vectors are then ranked by cosine similarity, similar to TFIDF.

Word Embeddings. Word embeddings assign to each word a real-
valued vector [18]. Through continuous iteration, the similarity between
these vectors starts to approximate the similarity between the words
they represent. Thus, since ‘dog’ and ‘pet’ are similar, their respective
real-valued vectors will be similar as well.
Our task concerns the similarity between sentences, however. To generate
sentence similarities from word similarities, we employ the Word Mover’s
Distance [13].
In addition to embeddings learned through the ACL anthology, we tested
the performance of embeddings that were pretrained on the Google News
corpus [18].

4.5 Evaluation

The evaluation of our systems in task 1a uses the metrics: Precision@3,
Recall@3 and F1-score. In addition to the results of the PLM method,
two well known information retrieval methods including KL-divergence
and Okapi are employed to compare with the results of PLM. In all of the
retrieval methods and PLM method, reference sentences are documents
and citances are queries. Okapi is known as a ranking function which
is based on the probabilistic retrieval framework. KL-divergence is a
language modeling retrieval approach which compares language models



of document with the query and ranks them based on their KL-divergence
score. The results of all three methods for task 1a on training and test set
2017 are reported in Table 1. Runs with an asterisk (∗) were submitted.

As Table 1 shows, TFIDF is still a top performer. A few of the results are
different from previous work due to the fact these results are obtained
from all 30 training documents. For instance, in comparison to the re-
sults in [21], LDA and word embeddings show worse performance. It is
surprising that SCL performs better than LDA. TIFMO does not per-
form as well as expected. Positional language model is performing better
than KL-divergence and Okapi. However, none of these methods per-
form desirably well. One of the important reasons for this performance
can be the difficulty of queries which are citances in our problem defini-
tion. Since citances may not include any of the reference text’s words, it
makes the retrieval process more difficult.

Train Test
Method P@3 R@3 F1 F1

tfidf-1:1∗ 11.05% 21.20% 14.53% 6.84%
tfidf-1:2 11.39% 21.85% 14.97% 7.70%
tfidf-1:3∗ 11.05% 21.20% 14.53% 6.84%
tfidf-2:3 10.86% 16.57% 13.12% 7.13%
word2vec∗ 10.88% 20.88% 14.31% 9.12%
LDA 2.63% 5.05% 3.46% 1.99%

SCL 4.03% 6.02% 4.13% 2.28%
TIFMO 2.02% 3.88% 2.66% 1.99%

PLM 3.03% 5.81% 3.98% 0.84%
KL-div 2.63% 5.05% 3.46% 0.84%
Okapi 3.03% 5.81% 3.98% 1.13%

Table 1. Scores for individual systems on the 2017 dataset.

5 Task 1b

In Task 1b, for each cited text span, we pick the facet to which it belongs
from a predefined set of facets. Two different approaches are employed
in this task: A rule-based approach and a machine learning approach.

Rule-based Approach. The Rule-based approach consists of three
consecutive steps. Each one is designed to find the correct facet through
some comparisons, in case a match was not found in any of the previous
steps. In the first step, citance words are compared with all five facet
labels: Method, Implication, Result, Hypothesis and Aim. If none of the
words in the citance match a facet label, then we move on to the second
step. In the second step of the rule-based approach, an expanded form



of the citance is compared with the facet labels. We expand the citance
by adding all WordNet synsets [19] of each word found in the citance. In
the third step, if no matched facet label is found in steps one and two,
we expand the facet labels with their synsets and once again compare
with the words in the citance.

Machine Learning Approach. In this approach, each citance is
represented by a feature vector containing TFIDF values of its words and
a classification model is learned using our training set. Then, the trained
model is used to classify citances of the testing set. Machine learning
methods used in this approach include Support Vector Machines (SVMs)
[6], Random Forests [15], Decision Trees [27], MLP, and Adaboost [10].

5.1 Evaluation

As explained in section 5, we have employed two different approaches
in Task 1b: a rule-based approach and a machine learning approach.
The rule-based approach has different variations: 1) Rule based-V1: In
this variation, all three sets of comparisons (comparing citance words
with facet labels, comparing expanded form of citances with facet labels
and comparing expanded form of facets with citance words) are done
while non-relevant synsets of all facets are excluded. 2) Rule based-V2:
In the second variation, all three sets of comparisons are done while only
non-relevant synsets of “Method” facet are excluded. 3) Rule based-V3:
In the third variation, only first and second comparisons are done. The
results of first approach of Task 1b on training set 2017 and testing
set 2017 are represented in Table 2. A ”Method only” approach which
assigns ”method” to all of the citances is also employed to be compared
with the rule-based approach.

Train Test
Method P R F1 F1

Rule based-V1 34.34% 31.43% 32.82% 28.84%
Rule based-V2 58.41% 53.46% 55.83% 68.33%
Rule based-V3 67.50% 61.70% 64.50% 78.99%
Method only 69.36% 63.48% 66.29% 95.29%

Table 2. Recall, Precision, and F1 score of rule-based method variations.

As Table 2 shows, the third variation of the rule-based approach out-
performs other variations on both training and test sets. It means that
expansion of facet labels does not help in finding the correct facet la-
bel of citances. Furthermore, the higher performance of Rule based-V2
over Rule based-V1 shows that excluding non-relevant synsets of the
“Method” facet has a positive impact on the final results of the method.
It might be due to the fact that “Method” is the most frequent facet label



in both the training and test set for 2017. The results of the Method-only
approach also verify this fact.

Table 3 shows the results of Task 1b for machine learning methods on
the training and test set. For classification experiments on the training
set, the training set is split into two separate datasets: a subset of 20
documents is used as train data and the remaining 10 documents are
used as test data. For the classification experiments on the test set, the
whole training set is used for the learning phase.

Train Test
Method P R F1 F1

SVM 66.7% 59.0% 62.7% 73.35%
Random Forest 61.6% 54.5% 57.8% 72.50%
Decision Tree 50.0% 53.4% 51.6% 56.89%
MLP 61.4% 54.5% 57.7% 65.83%
Adaboost 54.0% 54.1% 54.1% 61.72%
Rule based-V1 47.82% 42.30% 44.89% 28.84%
Rule based-V2 63.24% 55.94% 59.36% 68.33%
Rule based-V3 68.37% 60.48% 64.19% 78.99%
Method only 69.16% 61.18% 64.93% 95.29%

Table 3. Recall, Precision, and F1 score of classification methods.

As Table 3 shows SVM outperforms other classification methods in Task
1b and the lowest results among classification methods belongs to Deci-
sion Tree. Furthermore, comparison between the results of Table 2 and
Table 3 shows that third variation of rule-based approach is our best
performing method in Task 1b among all rule-based and classification
methods.

6 Task 1a Method Combinations

In this section, we attempt to improve on the performance of the methods
found in Section 4.5 by combining them. We combine methods in three
ways: 1) through a linear combination of the methods, 2) through the
use of one method as a “filter” for another, and 3) through the use
of learning-to-rank algorithms that are fed the scores of our individual
methods.

Linear Combination. A linear combination between two methods
that tries to divide the importance given to the scores of two systems. An
optimal tradeoff is calculated which normally generates better rankings
than either system independently. For more details see [21].

λ · sys1 + (1− λ) · sys2 (1)



Filtering. The scores for one system are used to select the top N
sentences from the reference document. These N sentences are then re-
ranked according to another system. For N = 3 there will be no difference
from the system that filters since we always return the top 3. However,
as N increases, the rankings start to diverge.

Learning-to-Rank. We used a library of learning-to-rank algorithms,
RankLib5, to combine the scores generated by the other methods. We
construct a modified dataset for use with RankLib. For each citance, we
construct three different queries by subsampling the irrelevant sentences
in the reference document. Therefore, each query consists of all relevant
sentences (chosen by the annotator) and 10 irrelevant sentences chosen
at random. This helps emphasize learning the ranking of the relevant
sentences.
The scores of the following systems were used in conjunction: tfidf-
1:1, tfidf-1:2, tfidf-1:3, tfidf-2:3, word2vec (ACL), word2vec (pretrained
GoogleNews), SCL. These systems were chosen in an ad-hoc manner to
provide a diverse set of competing rankings. Even though some of these
systems underperform in general, they can occasionally provide better
rankings for specific citances. No attempt was made to tune the hyper-
parameters for the algorithms.
Since learning-to-rank methods had a considerable jump in performance
(as can be seen in Table 4), we had to test whether overfitting was occur-
ing. We chose LambdaMART since it is similar to MART and obtained
the second highest score when fed the whole training set. We sorted
the training set documents by the number of annotated citances; every
third document became part of a validation set. The performance gains
measured were much more modest in this scenario.

6.1 Evaluation

The results obtained by combining individual systems are found in Ta-
ble 4. Runs with an asterisk (∗) were submitted. LambdaMART was cho-
sen as the representative for the learning-to-rank algorithms and, thus,
is the only algorithm with test set results.

5 https://sourceforge.net/p/lemur/wiki/RankLib/



Train Test
Method P@3 R@3 F1 F1

Linear Comb.∗ 11.79% 22.65% 15.51% 7.13%

Filtering∗6 11.85% 22.76% 15.58% 7.41%

LambdaMART 21.71% 41.65% 28.55% 6.84%
Val. LambdaMART 13.08% 25.13% 17.21% 6.27%
MART 23.27% 44.66% 30.59% –
Random Forest 16.01% 30.74% 21.05% –
RankBoost 11.74% 22.54% 15.44% –
ListNet 11.69% 22.43% 15.37% –
Coord. Ascent 11.35% 21.79% 14.92% –
RankNet 11.18% 21.46% 14.70% –
Linear Regres. 11.07% 21.25% 14.56% –
LambdaRank 0.00% 0.00% 0.00% –

Table 4. Scores for combinations on the 2017 dataset.

7 Discussion

The results on the training set indicate semantic methods by themselves
do not perform well, yet the test set’s results directly contradict that
claim: although TFIDF is the clear winner in the training set, the best
method on the test set made use solely of word embeddings.
Task 1b also raises questions since the skewed facet distribution of the
test set exacerbates the effectiveness of a simple baseline such as always
choosing “Method”. Regardless, we can choose better features for the
classifiers that would permit us to reach a comparable level of perfor-
mance.
In regard to the combination methods, there were less surprising results
but still many unanswered questions. Our experiments with learning-to-
rank methods hint at overfitting but the test set provided no evidence it
was occurring. The linear combination between two systems, explored in
[21], had similar performance to filtering. The filtering method between
two systems was slightly more robust.

8 Future Work

We would like to investigate why there was such a drastic difference be-
tween the performance measured in the training and test sets. A compre-
hensive study can be done to contrast the characteristics of the training
and test sets from a linguistic and statistical point-of-view. The differ-
ences between training and test set may reveal what type of citances
benefit most from semantic information. In a similar vein, we would like
to find out why there is a considerable difference between the perfor-
mance of TFIDF and Okapi although they have similar formulations.
Finally, we have not exhausted our exploration of textual entailmente
and would like to investigate newer methods that have been developed.

6 Submitted run was generated erroneously, which led to an F1 score of 1.4%.
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