
A Classification of Ontology Change
Giorgos Flouris1,2, Dimitris Plexousakis2, and Grigoris Antoniou2

1Istituto della Scienza e delle Tecnologie della Informazione, C.N.R., Via G. Moruzzi, 1, 56124, Pisa, Italy
Email: georgios.flouris@isti.cnr.it

2Institute of Computer Science, FO.R.T.H., P.O. Box 1385, GR 71110, Heraklion, Greece
Email: {dp, antoniou}@ics.forth.gr

Abstract— The problem of modifying an ontology in response
to a certain need for change is a complex and multifaceted one,
being addressed by several different, but closely related and often
overlapping research disciplines. Unfortunately, the boundaries of
each such discipline are not clear, as certain terms are often used
with different meanings in the relevant literature. The purpose
of this paper is to identify the exact relationships, connections
and overlaps between these research areas and determine the
boundaries of each field, by performing a broad review of the
relevant literature.

I. I NTRODUCTION

Originally introduced by Aristotle,ontologies are often
viewed as the key means through which the Semantic Web
vision [3] can be realized. Ontologies provide a means to
formally define the basic terms and relations that comprise
the vocabulary of a certain domain of interest [34], enabling
machines to process information provided by human agents.
As a result, they can help in the representation of the content
of a web page in a formal manner so as to be suitable for use
by an automated computer agent, search engine or other web
service. The importance of ontologies in current AI research
is also emphasized by the interest shown by both the research
and the enterprise community to various problems related to
ontologies and ontology manipulation [39].

Ontologies are often large structures, whose development
and maintenance give rise to interesting research problems.
One of the most important such problems is the problem of
modifying an ontology in response to a certain need. In this
paper, the termontology changewill be used to describe this
problem; the term will be used in a broad sense, covering any
type of change, including changes to the ontology in response
to external events, changes dictated by the ontology engineer,
changes forced by heterogeneity considerations and so on.

In order to cope with the complex problem of ontology
change, several related research disciplines have emerged
(such as ontology evolution, alignment, merging, mapping
etc), each dealing with a different facet of the problem. These
areas are greatly interlinked; as a result, several works and
systems deal with more than one of these topics causing a
certain confusion to a newcomer. This confusion is further
increased by the fact that certain terms are often used with
different meanings in the relevant literature, denoting similar,
but not identical, research directions or concepts. For examples
of such confusing and overused terms refer to [13], [51].

We believe that this lack of a standard terminology consti-
tutes a major bottleneck for the ontology change community,

causing unnecessary confusion as well as misunderstandings.
The purpose of this paper is the introduction of a terminology
which follows the most common uses of the various terms
in the literature. Fixing this terminology will allow us to
determine the boundaries of each field as well as to get a grip
on their differences, overlaps, interactions and connections.

To do that, we perform a shallow, but broad, literature
review on the field of ontology change, and introduce a broadly
accepted terminology that will, hopefully, serve as a point of
reference for the ontology change community. Our purpose is
to give a clear overall picture of each relevant subfield and
determine the boundaries, interactions and overlaps between
the various areas; the interested reader is referred to the
numerous bibliographic references that will appear throughout
this paper for more details on each area or deeper results. A
comprehensive summary of the results of our survey can be
found in table I at the end of this paper.

II. ONTOLOGIES AND ONTOLOGY CHANGE

A. What is an Ontology?

The term ontology has come to refer to a wide range of
formal representations, including taxonomies, hierarchical ter-
minology vocabularies or detailed logical theories describing
a domain [44]. For this reason, a precise definition of the term
is rather difficult. A commonly used definition can be found
in [21] where an ontology was defined to be aspecification of
a shared conceptualization of a domain.

A more formal, algebraic, approach, identifies an ontology
as a pair< S, A >, where S is thesignatureof the ontology
(being modeled by some mathematical structure, such as a
lattice, a poset or an unstructured set) and A is theset of
ontological axioms, which specify the intended interpretation
of the signature in a given domain of discourse [27].

B. Ontology Change

Several reasons for changing an ontology have been iden-
tified in the literature. An ontology, just like any structure
storing information, may need to change simply because the
modeled domain has changed [55]; but even if we assume a
static domain, which is a rather unrealistic assumption for most
applications, we may need to change the perspective under
which the domain is viewed [44], or we may discover a design
flaw in our original conceptualization [52]; we may also wish
to adapt to a change in users’ needs or perspective and/or
incorporate additional functionality [22]; new information,



previously unknown, classified or otherwise unavailable may
become available or different features of the domain may
become important [25].

In addition, ontology development is becoming more and
more a collaborative and parallelized process, whose subprod-
ucts need to be combined to produce the final ontology [32];
this process would require changes in each subontology to
reach a consistent final state. But even then, the so-called
“final” state is rarely final, as ontology development is usually
an ongoing process [25].

The complex web of dependencies that is usually formed
around an ontology is another common reason for change.
The distributed nature of the Semantic Web implies that the
knowledge engineer has no control over dependent and/or
depending ontologies; if any of these ontologies change, the
local ontology might also need to be modified [25]. In other
cases, a certain agent, service or application may need to use
an ontology whose terminology or representation is different
from the one it can understand [9], so he needs to perform
some kind of translation (change) in the imported ontology.
Finally, we may need to merge or integrate information from
two or more ontologies in order to produce a more appropriate
one for some application [51].

Several philosophical problems related to knowledge update
in general have been identified in the research area ofbelief
revision [19], [20], [28]; many of them are also applicable to
knowledge represented in ontologies [12], [13]. However, the
problem is further complicated by the large size of modern
day ontologies [39] and by the aforementioned ontology
interdependencies; even subtle changes in an ontology may
have unforeseeable effects in dependent and/or depending
applications, services, data and other ontologies [54].

These facts raise the need to maintain different interoperable
versions of the same ontology [25], [26], [31], a problem
greatly interwoven with ontology change [30]. Moreover,
heterogeneity leads to problems when an agent, service or
application uses information from two different ontologies [9].
As ontologies often cover overlapping domains using different
viewpoints and terminology, some kind of translation may be
necessary in many practical applications.

All these arguments indicate the importance of the problem
of ontology change and motivate us to use the term in order
to cover all aspects of ontology modification, as well as the
problems that are indirectly related to the change operation
such as the maintenance of different versions of an ontology
or the translation of ontological information in a common
terminology. More specifically, we will use the termontology
change to refer to the problem of deciding the modifications
to perform upon an ontology in response to a certain need
for change as well as the implementation of these modifica-
tions and the management of their effects in depending data,
ontologies, services, applications, agents or other elements.

In this definition, the need to change the ontology may
take several different forms, including, but not limited to, the
discovery of new information (some new instance data, another
ontology, a new observation etc), a change in the focus or the

viewpoint of the conceptualization, information received by
some external source, a change in the domain, communica-
tion needs between heterogeneous sources of information or
ontologies, the fusion of information from different ontologies
and so on.

This definition covers several related research areas which
are studied separately in the literature. In this paper, we
identify nine such areas, namelyontology mapping, morphism,
alignment, articulation, translation, evolution, versioning, in-
tegrationandmerging. Each of these areas deals with a certain
facet of the problem from a different view or perspective,
covering different application needs, change scenarios or needs
for change (see table I for a comprehensive summary).

These fields are greatly interlinked, so several papers deal
with more than one of these problems. In other cases, the same
term is used in different papers to describe different research
areas. This situation can easily lead to misunderstandings,
confusion and unnecessary waste of effort, especially for
a newcomer. In the following sections, we will attempt to
precisely define the boundaries of each area and uncover their
relations, overlaps and differences. This attempt will hopefully
draw a fine line between the various research areas, allowing
the clarification of the meaning of each term and making
the differences and similarities between them explicit. The
definitions provided here will not be arbitrary, but will be
based on the most common uses of each term in the literature.

III. O NTOLOGY EVOLUTION AND VERSIONING

A. Disambiguating the Terms

Ontology versioning is often considered a stronger variant
of ontology evolution [23]. Under that viewpoint, ontology
evolution is the process of changing an ontology without losing
data or negating its validity, whereas ontology versioning
should additionally guarantee the validity, interoperability and
management of all previous versions, including the current
one, as well as transparent access to these versions.

This viewpoint is influenced by related research on re-
lational and object-oriented database schema evolution and
versioning [18], [29], [50]. A survey on the differences and
similarities of ontologies and databases, as well as their impact
with respect to evolution and versioning, can be found in
[44]. In this paper it is argued that ontology evolution and
versioning become indistinguishable under this understanding,
because, due to the distributed nature of the Semantic Web,
multiple versions of ontologies are bound to exist and must
be supported. Furthermore, ontologies and dependent elements
are likely to be owned by different parties; as a result, some
parties may be unprepared to change and others may even
be opposed to it [25]. All these facts force us to maintain
and support different versions of ontologies, making ontology
evolution (under this understanding) useless in practice.

We believe that the problem of modifying the ontology (on-
tology evolution) should be clearly separated from the problem
of maintaining the interoperability of different versions of the
ontology (ontology versioning). This distinction is not always
clear in the literature, because the ontology dependencies and



interrelationships force us to consider the issue of propagating
the changes to dependent elements [37]. This tight coupling
has caused ontology evolution algorithms to deal with these
problems as well. For example, in [54], ontology evolution is
defined as the timely adaptation of an ontology to changed
business requirements, to trends in ontology instances and
patterns of usage of the ontology-based application, as well as
the consistent management and propagation of these changes
to dependent elements.

On the contrary, here we defineontology evolution to refer
to the process of modifying an ontology in response to a
certain change in the domain or its conceptualization[13];
on the other hand,ontology versioning refers to the ability
to handle an evolving ontology by creating and managing
different versions of it[30]. Thus, ontology evolution is
restricted to the process of modifying an ontology while
maintaining its validity, whereas ontology versioning deals
with the problem of managing different versions of an evolving
ontology, maintaining interoperability between versions and
providing transparent access to each version as required by
the accessing element.

B. Ontology Evolution: General Discussion

Since an ontology is a specification of a shared conceptual-
ization of a domain [21], a change may be caused by either a
change in the domain, a change in the conceptualization or a
change in the specification [30]. Changes in the specification
refer to changes in the way the conceptualization is formally
recorded, i.e., changes in the representation language. This
type of change is dealt with in the field of ontology translation
(see the next section and table I at the end of this paper). Thus,
our definition of ontology evolution covers the first two types
of change only (domain and conceptualization changes).

Both types of changes are not rare. The conceptualization
of the domain may change because of a new observation
or measurement, a change in the viewpoint or usage of
the ontology, newly-gained access to information that was
previously unknown, classified or otherwise unavailable and so
on. The domain itself may also change, as the real world itself
is generally not static but evolves over time. More examples
of reasons initiating changes can be found in [30], [44].

C. Ontology Evolution Phases

In order to tame the complexity of the problem, six phases
of ontology evolution have been identified, occurring in a
cyclic loop [54]. Initially, we have thechange capturingphase,
where the changes to be performed are identified. Three types
of change capturing have been distinguished: structure-driven,
usage-driven and data-driven [23].

Once the changes have been determined, they have to
be properly (and formally) represented during thechange
representation phase. There are two major types of changes,
namely atomic and complex [56] (also called elementary and
composite in [54]). Atomic changes represent simple, fine-
grained changes such as the deletion of a concept. Complex
changes represent more coarse-grained changes and can be

replaced by a series of atomic changes. Even though possible,
it is not generally appropriate to use a series of atomic changes
to replace a complex change, as this might cause undesirable
side-effects [54]; the proper level of granularity should be
identified at each case. Unfortunately, there is no general
consensus in the literature on the type and number of complex
changes that are necessary. In [54], 12 different complex
changes are identified; in [44], 22 such operations are listed; in
[56] however, the authors mention that they have identified 120
different interesting complex operations and that the list is still
growing! In fact, the number of definable complex operations
can only be limited by setting a granularity threshold on the
operations considered; if we allow unlimited granularity, we
will be able to define more and more operations of coarser
and coarser granularity, limited only by our imagination [32].
Thus, creating a complete list of complex operations is not
possible, but, fortunately, it is not necessary either, since a
complex operation can always be defined as a series of atomic
operations [32].

The third phase is thesemantics of changephase, in which
we identify and address any problems that will be caused when
the required changes are actually implemented, thus guarantee-
ing the validity of the ontology at the end of the process. For
example, if a concept is deleted, we need (among other things)
to determine what to do with its instances (e.g., delete them or
re-classify them). In [54], it is suggested that the final decision
should be made indirectly by the ontology engineer, through
the selection of certain pre-determined evolution strategies,
indicating the appropriate action in each case. Other (manual
or semi-automatic) approaches are also possible (see [23]).
This phase is probably the most crucial of ontology evolution,
because during that phase the direct and indirect effects of a
given change request are determined.

The change implementationphase follows, where the
changes are physically applied to the ontology, using an
appropriate tool, like, for example, the KAON API [54]. Such
a tool should have transactional properties, based on the ACID
model, i.e., guaranteeing Atomicity, Consistency, Isolation and
Durability of changes [23]. It should also present the changes
to the ontology engineer for final verification and keep a log
of the implemented changes [23].

The implemented changes need to be propagated to all
interested parties; this is the role of thechange propagation
phase. In [37], two different methods to address the problem
are compared, namely push-based and pull-based approaches.
Under a push-based approach, the changes are propagated
to the dependent ontologies as they happen; in a pull-based
approach, the propagation is initiated only after the explicit
request of each of the dependent elements. In both [37]
and [54] the push-based approach is favored. Alternatively,
one could avoid this step altogether, by using an ontology
versioning algorithm [31], allowing the interested parties to
work with the original version of the ontology and update to
the newer version at their own pace, if at all. This alternative
is considered more realistic for practical purposes [25].

Finally, the change validationphase allows the ontology



engineer to review the changes and possibly undo them. This
phase may uncover further problems with the ontology, thus
initiating new changes that need to be performed to improve
the conceptualization; in this case, we need to start over
by applying the change capturing phase of a new evolution
process, closing the cyclic loop.

Notice that heterogeneity issues are not handled by the
above ontology evolution model. Obviously, any approach
to ontology evolution would collapse in the presence of
heterogeneity, unless coupled with some algorithm that deals
with heterogeneity (like the ones discussed in the next section).
However, under the proposed model, this is not a problem, as
the ontology engineer identifies the changes to be performed
during the change representation phase, so it can be reasonably
assumed that these changes will be represented in a suitable
terminology. An alternative model of ontology evolution, in-
volving five phases, has been proposed in [52].

D. The Current State of the Art in Ontology Evolution

The current state of the art in ontology evolution, as well
as a list of relevant tools can be found in [23]. Some of
these tools are simple ontology editors, whereas others provide
more specialized features to the user. In some cases, the user
can define some kind of pre-defined evolution strategies [54]
that control how changes will be made, thus allowing the
tool to perform some of the required changes automatically.
Other tools allow collaborative edits, i.e., several users can
work simultaneously on the same ontology [7], whereas others
support transactional changes [23]. In other works, features
related to ontology versioning, undo/redo operations and other
helpful utilities are supported [7]. Some tools provide intuitive
graphical interfaces that help the visualization of the process
[33]. For more details on such systems refer to [7], [23].

A declarative language for changing the data portion of an
RDF ontology appears in [38]. An alternative approach that
uses belief revision techniques to handle ontology evolution
has recently appeared [11], [14]–[16]; similar approaches, at a
preliminary stage, appear in [35], [40]. An interesting variation
of the problem appears in [17], [58], [59], where the evolving
objects (and therefore the main objects of study) are the
concepts; this viewpoint is quite different from the standard
one, in which the evolving object is an ontology as a whole.

E. Ontology Versioning

Once the actual changes have been performed, ontology
versioning comes into play. Ontology versioning typically
involves the storage of both the old and the new version of
the ontology and takes into account identification issues (i.e.,
how to identify the different versions of the ontology), the
relation between different versions (i.e., a tree of versions
resulting from the various ontology modifications) as well
as compatibility information (i.e., information regarding the
compatibility of any pair of ontology versions).

Several non-trivial problems are associated with this task.
For example, any ontology versioning algorithm should be

based on some type of identification mechanism to differen-
tiate between various versions of an ontology, but it is not
always clear when two ontologies constitute different versions.
Should any change in the file that stores the ontology constitute
the creation of a new version? When a concept specification
changes, but the new specification is semantically equivalent
to the original one, does this constitute a new version? More
generally, when the ontology changes syntactically, but not
semantically, does this constitute a new version? These and
similar problems are dealt with in [25], [31].

Another desirable property of an ontology versioning sys-
tem is the ability to allow transparent access to different
versions of the ontology, by automatically relating versions
with dependent elements [30]. Other issues involved is the so-
called “packaging of changes” [31] as well as the different
types of compatibility and how these are identified [30].

Another related problem is the introduction of a certain
version relation between ontological elements (such as classes)
that appear in different versions of the ontology and the
properties that such a relation should have. This relation is
called a change specification in [30] and its role is to make the
relationship between different versions of ontological elements
explicit. Using this relation, one can identify the changes that
any given element went through between different versions; in
addition, a version relation should include certain meta-data
regarding these changes [31]. In [52] this relation is stored
using a version log which is actually a specially designed
ontology containing the different versions of each element,
as well as the relation between them and some related meta-
data. Similar considerations led to the definition of migration
specifications [60], which associate concepts between different
versions of an ontology after a change has been performed.

F. The Current State of the Art in Ontology Versioning

As an aid to the task of ontology versioning, certain
tools have been developed which automatically identify the
differences between ontology versions; unfortunately, most
such tools provide information at the level of atomic changes
[32]. PROMPTDIFF [45] uses certain heuristics to compare
different versions of ontologies and outline their differences,
by producing a structural diff between them. OntoView [31]
contains a tool similar to PROMPTDIFF, whose output is a
certain ontology of changes.

A survey on the different ways that can be used to rep-
resent a set of changes, as well as the relation and possible
interactions between such representations can be found in [32];
in the same paper, another ontology of changes is proposed,
containing both atomic and complex operations. A similar
ontology of changes is proposed in [52], where the changes
are identified through a version log stored in this ontology of
changes.

A method to identify compatibility between versions is
presented in [24], [25] where the SHOE language [36] is used
to make backward compatibility between versions explicit and
determinable by a computer agent. This is an indirect approach
to the problem of ontology versioning, because it allows the



computer agent to determine autonomously which version
to use, as opposed to [30], [31], where a more direct and
centralized path is taken. In [26], a temporal logic approach
is used to allow access in different versions of an ontology.

IV. ONTOLOGY MAPPING, MORPHISM, ALIGNMENT,
ARTICULATION AND TRANSLATION

A. General Discussion

Work related to these areas tries to mitigate the problems
caused by the heterogeneity of the Semantic Web. The general
motivation for these research fields is that different ontologies
(and sources of information based upon different ontologies)
generally use different terminology, different representation
languages and different syntax to refer to the same or similar
concepts. A nice list of use cases where this heterogeneity
may cause problems can be found in [9].

The obvious solution to this problem is the provision of
a set of translation rules of some kind that will allow us
to nullify these terminological differences. To put it simply,
the goal of the whole process is to make two ontologies
refer to same entities using the same name and to differ-
ent entities using different names. For example, we should
be able to identify that the concepts RESEARCHER and
RESEARCHSTAFF MEMBER that appear in two different
ontologies refer to the same real-world concept, i.e., the class
of researchers. We should also be able to differentiate between
two different uses of the entity CHAIR, as it could refer to
the class of chairs (as a furniture) in one ontology and to the
people forming a Workshop’s Chair in another.

Even though these research fields basically deal with the
same problem (i.e., heterogeneity resolution), they can be
identified based on the type of translation rules that is produced
at the output. Due to the close relationship between these
areas, sometimes the term ontology alignment (e.g., in [9]) or
ontology mapping (e.g., in [27]) is used to refer collectively
to all of them. In this section, we will try to disambiguate the
situation; most of the material for this section is taken from
[9] and [27].

B. Definitions

The termontology mapping refers to the task of relating
the signatures of two ontologies that share the same domain
of discourse in such a way that the mathematical structure
of ontological signatures and their intended interpretations,
as specified by the ontological axioms, are respected. The
result of an ontology mapping algorithm is a collection of
functions on ontological signatures. A similar (and equivalent)
definition appears in [4], where ontology mapping is defined as
a (declarative) specification of the semantic overlap between
two ontologies, which can be either one-way (injective) or
two-way (bijective).

This definition restricts the mappings to ontological signa-
tures. A more ambitious and interesting approach would be to
create mappings that deal with both the signatures and the ax-
ioms of the ontologies. The termontology morphismrefers to
that approach, i.e.,the development of a collection of functions

that relate both ontological signatures and axioms. Notice that
ontology morphism, unlike the other fields discussed in this
section, is not restricted to the ontology signature only, but
covers the ontological axioms as well.

In ontology mapping and morphism the ontologies are
related via functions; an interesting, and more general, alterna-
tive is by means of a relation.The task of finding relationships
between signature entities belonging to two different ontolo-
gies is called ontology alignment. So the output of ontology
alignment is a binary relationship between the ontological
signatures. This approach is more liberal, allowing greater
flexibility, so it is more commonly used in practice.

A binary relationship could be decomposed into a pair of
total functions from a common intermediate source; therefore,
the alignment of two ontologies could be described by means
of a pair of ontology mappings from a common intermediate
ontology. We use the termontology articulationto refer tothe
process of determining the intermediate ontology and the two
mappings to the initial ontologies.

Finally, the termontology translationis used in the literature
with two different meanings. Under one understanding, ontol-
ogy translation refers tothe process of changing the formal
representation of the ontology from one language to another.
This changes the syntactic (only) form of the axioms, but not
the signature of the ontology. Under the second understanding,
ontology translation refers to atranslation of the signature, in
a manner similar to that of ontology mapping. The difference
between ontology mapping and ontology translation is that the
former specifies the functions that relate the two ontologies’
signatures, whereas the latter applies these functions to actu-
ally implement the mapping.

C. Methodology and the Current State of the Art

The methods commonly used to address the problem of
heterogeneity include studying the taxonomic or mereological
structure of the entities, evaluating name similarities (where
the names are compared as strings) and so on. Other methods
use a thesaurus to study the linguistic similarities of names,
use semantic approaches, or determine the similarity based
on the instances of each entity. The final similarity evaluation
may also be affected by the evaluation of the similarity of the
entities’ neighborhood. In real systems, a combination of some
of these approaches with some kind of human intervention
usually works best. A detailed classification and description
of these methods can be found in [9].

Two popular systems that deal with heterogeneity are
PROMPT [46], [47] (originally called SMART [48]) and
Chimaera [39]. In [10], the term ontology matching is used to
refer to an ontology mapping algorithm based on the linguistic
properties of terms, using a thesaurus based on WordNet [41].
In [53], a certain string metric is proposed to evaluate name
similarities of elements in different ontologies, upon which an
ontology alignment algorithm could be based. Some thoughts
on the issue of heterogeneity in the context of the SHOE
language can be found in [24], [25]. An interesting method of
improving the results of an alignment process, which exploits



user validation combined with machine learning techniques,
can be found in [8].

In [42], a probabilistic technique is used towards this
aim; the final similarity evaluation of this ontology mapping
algorithm is affected by the similarity probabilities of each
entity’s neighborhood, improving the initial mapping result.
Another method based on probabilistic analysis, which takes
into account uncertainty issues in the mapped ontologies can
be found in [49]. A general-purpose approach to the problem
of translation is described in [6]. A much more extensive list
of systems and works related to these research areas can be
found in [4], [9], [27]; a relevant evaluation appears in [1].

Unfortunately, heterogeneity resolution in ontologies still
relies on human intervention; however, the process has to
be automatic in order to be practical [27]. In this direction,
advances in the field of natural language processing will
probably help researchers gain a better understanding on the
processes behind automatic heterogeneity resolution [27].

D. Heterogeneity Resolution and Ontology Change

Notice that most of the fields studied in this section do
not directly modify any ontology, but provide translation
rules that relate ontologies. As a result, many would argue
that these research areas should not be considered subfields
of ontology change. We believe otherwise, for two reasons.
First, heterogeneity resolution constitutes a prerequisite for
successful ontology change, as it makes no sense to try to
change an ontology in response to new information unless both
the ontology and the new information are formulated using the
same terminology, language and syntax. So, it makes practical
sense to study these fields along with the problem of ontology
change.

Second, heterogeneity resolution implicitly requires the
modification of an ontology, so it is really a subfield of
ontology change in the wide sense of the term used in
this paper. Indeed, consider two agents with heterogeneous
ontologies that need to communicate and some translation
rules allowing this communication. In this particular example,
the “need for change” is the need for communication. The
rules produced do not directly modify any ontology; however,
they allow each agent to change the other agent’s ontology
locally to fit his own terminology, language and syntax. So
the change in this case is made on-the-fly by each agent. In
this sense, we could consider ontology mapping and the other
fields studied in this section to be subfields of ontology change
that simply provide us with a method to change an ontology
(even though no change is performed explicitly).

V. ONTOLOGY INTEGRATION AND MERGING

A. Discussion and Definitions

Both ontology integration and merging refer to the construc-
tion of a new ontology based on the information found in two
or more source ontologies; yet, the two terms refer to slightly
different research areas. Unfortunately, the exact meaning of
each term is not clear in the literature, as they are often used
interchangeably [51], causing a certain amount of confusion.

In [46], [47] ontology merging is defined as the process
of creating a new, coherent ontology that includes information
from two or more source ontologies; this is implicitly assumed
to include the process of resolving any possible heterogeneities
between the merged ontologies. In these papers, ontology
merging and alignment are understood as variations of the
same problem, the only difference being that ontology merging
results in the creation of a new ontology, whereas in ontology
alignment the merged ontologies persist, with links established
between them.

A similar use of the term can be found in [39], whereas,
in [25], the same research area is described using the term
ontology integration. According to [35], ontology merging
amounts to making sure that different agents use the same
terms in identical ways (in a manner similar to ontology
alignment). In [27] ontology integration is defined as the
process of combining ontologies to build new ones, but whose
respective signatures are usually not interpreted in the same
domain of discourse. In [5] the same term is used to refer
to the process of combining a number of local ontologies in
order to build a global one, with the purpose of being able to
answer queries over the local ontologies using the global one
and the mappings between these ontologies.

Here, we will define these terms along the lines of [51],
which was an attempt to disambiguate between different uses
of the term ontology integration. Three different uses of
the term were identified in that paper. The first refers to
the composition of ontologies covering loosely related (i.e.,
similar) domains; this is mainly used when building a new
ontology that covers all these domains. The termontology
integrationhas been reserved for this process.

The second use of the word refers to thecombination of
ontologies covering highly overlapping or identical domains;
this process is used to fuse ontologies that contain information
about the same subject into one large (and hopefully more
accurate) ontology. The termontology mergingwas attached
to this interpretation.

Finally, the third use of the term integration refers to the
development of an application that uses one or more ontolo-
gies; the more appropriate termontology usewas reserved for
this process. In this paper, we focus on the first two research
areas, namely ontology integration and merging.

B. Differences Between Integration and Merging

There are certain subtle differences between the processes
of integration and merging. Ontology integration is mainly
applied when the main concern is the reuse of other ontologies.
The domain of discourse of the new ontology is usually more
general than the domain of any of the source ontologies and
integration often places the different (source) ontologies in
different modules that comprise the resulting ontology.

On the other hand, in ontology merging, the focus is on
creating an ontology that combines information on a given
topic from different sources. In this case, the information from
the source ontologies is greatly intermingled, so it is difficult
to identify the part(s) of the final ontology that resulted from



each source ontology. A more detailed discussion can be found
in [51].

C. Integration, Merging and Heterogeneity Resolution

It is a common practice in the literature (e.g., [4], [25], [46],
[51]), to consider heterogeneity resolution to be an internal
part of ontology merging or integration. This is a reasonable
choice, because in most cases the fused ontologies come
from different sources, so they are generally heterogeneous
in terms of vocabulary, syntax, representation etc. Therefore,
the task of resolving any heterogeneities between the source
ontologies constitutes a major part of the task of ontology
merging (or integration). This is mostly true in merging, where
the domain of discourse is (almost) identical. This has led to
even more confusion on the exact meaning of the terms, as
several researchers consider ontology merging (or integration)
and alignment to be variations of the same problem (e.g., [35],
[46]).

However, it should be clear that simply resolving the
heterogeneity issues between two ontologies is not sufficient
for successful integration (or merging); recall that different
ontologies may encode different viewpoints regarding the real
world, thus several conceptual differences are bound to exist,
even if the same terminology is used. This is reminiscent of
how beliefs held by different people are often different (and
in some cases contradictory), even if a common terminology
is agreed upon.

Similarly, modeling conventions and choices may be dif-
ferent; one example of modeling choice that often depends
on personal taste or convention is whether to model a certain
distinction between similar elements by introducing separate
classes or by introducing a qualifying attribute relation in
one class [6]. Such modeling differences need to be taken
into account when selecting what to keep from each ontology
during the integration or merging process. Reckless inclusion
of ontology elements and axioms from the source ontologies
(even when homogeneous) is likely to lead to a problematic,
invalid or inconsistent ontology.

D. State of the Art in Ontology Integration and Merging

According to [6], the process of merging can be broken
down in five steps. During the first step, we identify the
semantic overlap between the source ontologies; during the
second, we devise ways (transformations) to bring the sources
into mutual agreement in terms of terminology, representation
etc. In the third step, we apply these transformations, so we can
now take the union of the sources (fourth step). The final step
consists of evaluating the resulting ontology for consistency,
uniformity, redundancy, quality of conceptualization etc; this
evaluation might force us to repeat some or all of the above
steps. The tool described in [6] facilitates the design and
implementation of the transformations used in the merging
process (second and third step).

The main tools used for ontology merging are PROMPT
[46] and Chimaera [39]. These tools use a semi-automatic
approach focused on suggesting how elements from the source

ontologies should be merged in the resulting ontology. The
final choice relies on the ontology engineer. Some ideas on
ontology merging (called integration there) in the context of
the SHOE language can be found in [25]; however, [25] is
focused on the part of merging that deals with heterogeneity
resolution. In [5], an interesting theoretical framework for
ontology integration is defined, focusing on the creation of
mappings between the source and the resulting ontologies and
how these mappings can be exploited for query answering.
An interesting theoretical approach to ontology merging can
be found in [2], whereas in [47] some interesting connections
of object-oriented programming with the problem of ontology
merging are uncovered. The FCA-MERGE algorithm [57]
performs ontology integration in a very efficient way, but is
based on certain strong assumptions. A more detailed list of
tools and systems related to the problem can be found in [4],
[51].

Even though the problem of evaluating ontology merging
techniques is still open in AI [57], certain comparison attempts
have been made. In [34], the authors perform a comparison
between PROMPT and Chimaera in the context of bioinfor-
matics. In [46], the same two tools are compared with the
generic Prot́eǵe-2000 [43]. Furthermore, [39] compares the
efficiency of ontology merging with a simple plain-text editor,
merging with the Ontolingua editor and merging with the
specialized tool Chimaera, which is described in the same
paper. These comparisons are made from a certain standpoint;
a general, objective comparison is difficult, as it is not clear
how the utility of such tools could be measured [39].

VI. CONCLUSION

In this paper, we performed a shallow, but broad literature
review covering all the diverse types of ontology change. This
allowed us to fix a terminology in an area that is plagued
by underspecified and confusing terms which are used with
different meanings by different researchers. This terminology
was not introduced in an arbitrary manner, but was based on
similar previous attempts (like [27], [51]) and on the most
common uses of the terms in the literature. We hope that
our work will prove helpful towards the clarification of the
boundaries and relations between the various fields and will
serve as a starting point for researchers interested in any of
the many facets of ontology change. A summary of the results
of our study can be found in table I at the end of this paper.

ACKNOWLEDGMENT

The authors are grateful to Panos Constantopoulos, Vassilis
Christophides and Nicolas Spyratos for helpful comments in
an earlier draft of this work. This work was carried out during
the first author’s tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

REFERENCES

[1] P. Avesani, F. Giunchiglia, M. Yatskevich. A Large Scale Taxonomy
Mapping Evaluation. In Proceedings of the 4th International Semantic
Web Conference (ISWC-05), pp. 67-81, 2005.



[2] T. Bench-Capon, G. Malcolm. Formalizing Ontologies and Their Rela-
tions. In Proceedings of the 16th International Conference on Database
and Expert Systems Applications (DEXA-99), pp. 250-259, 1999.

[3] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific
American, 284(5):34-43, 2001.

[4] J. de Bruijn, F. Martin-Recuerda, D. Manov, M. Ehrig. D4.2.1: State of
the Art Survey on Ontology Merging and Aligning. SEKT Deliverable,
2004.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini. A Framework for Ontology
Integration. In I. Cruz, S. Decker, J. Euzenat, D. McGuinness (eds). The
Emerging Semantic Web. Selected Papers from the First Semantic Web
Working Symposium, pp. 201-214. IOS Press, 2002.

[6] H. Chalupsky. OntoMorph: A Translation System for Symbolic Knowl-
edge. In Proceedings of the 7th International Conference on Knowledge
Representation and Reasoning (KR-00), 2000.

[7] A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, V.R. Benjamins.
WonderTools? A Comparative Study of Ontological Engineering Tools.
International Journal of Human-Computer Studies, 52(6):1111-1133,
2000.

[8] M. Ehrig, S. Staab, Y. Sure. Bootstrapping Ontology Alignment Methods
with APFEL. In Proceedings of the 4th International Semantic Web
Conference, 2005.

[9] J. Euzenat, T. Le Bach, J. Barrasa, P. Bouquet, J. de Bo, R. Dieng,
M. Ehrig, M. Hauswirth, M. Jarrar, R. Lara, D. Maynard, A. Napoli,
G. Stamou, H. Stuckeschmidt, P. Shvaiko, S. Tessaris, S. van Acker,
I. Zaihrayeu. D2.2.3: State of the Art on Ontology Alignment. SEKT
Deliverable, 2004.

[10] A. Ferrara. Methods and Techniques for Ontology Matching and Evo-
lution in Open Distributed Systems. In Proceedings of the 16th Interna-
tional Conference on Advanced Information Systems Engineering, 2004.

[11] G. Flouris. On Belief Change and Ontology Evolution. Doctoral Disser-
tation, Department of Computer Science, Univ. of Crete, 2006.

[12] G. Flouris, D. Plexousakis. Bridging Ontology Evolution and Belief
Change. In Proceedings of the 4th Hellenic Conference on Artificial
Intelligence, 2006.

[13] G. Flouris, D. Plexousakis. Handling Ontology Change: Survey and
Proposal for a Future Research Direction. Technical Report FORTH-
ICS/TR-362, September 2005.

[14] G. Flouris, D. Plexousakis, G. Antoniou. Evolving Ontology Evolution.
In Proceedings of the 32nd International Conference on Current Trends
in Theory and Practice of Computer Science, Invited Talk, 2006.

[15] G. Flouris, D. Plexousakis, G. Antoniou. Generalizing the AGM Postu-
lates: Preliminary Results and Applications. In Proceedings of the 10th
International Workshop on Non-Monotonic Reasoning, 2004.

[16] G. Flouris, D. Plexousakis, G. Antoniou. On Applying the AGM Theory
to DLs and OWL. In Proceedings of the 4th International Semantic Web
Conference (ISWC-05), pp. 216-231, 2005.

[17] N. Foo. Ontology Revision. In G. Ellis, R. Levinson, W. Rich, J. Sowa
(eds). Proceedings of the 3rd International Conference on Conceptual
Structures (ICCS-95), Lecture Notes in Artificial Intelligence (LNAI),
Volume 954, Springer-Verlag, pp. 16-31, 1995.

[18] E. Franconi, F. Grandi, F. Mandreoli. A Semantic Approach for Schema
Evolution and Versioning in Object-Oriented Databases. In Proceedings
of the 6th International Conference on Rules and Objects in Databases,
2000.

[19] P. G̈ardenfors. Belief Revision: An Introduction. In P. Gärdenfors (ed).
Belief Revision, pp. 1-20, Cambridge University Press, 1992.

[20] P. G̈ardenfors. The Dynamics of Belief Systems: Foundations Versus
Coherence Theories. Revue Internationale de Philosophie 44, 1992.

[21] T.R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2):199-220, 1993.

[22] P. Haase, L. Stojanovic. Consistent Evolution of OWL Ontologies. In
Proceedings of the 2nd European Semantic Web Conference (ESWC-
05), 2005.

[23] P. Haase, Y. Sure. D3.1.1.b State of the Art on Ontology Evolution.
SEKT Deliverable, 2004.

[24] J. Heflin, J. Hendler. Dynamic Ontologies on the Web. In Proceedings
of the 17th National Conference on Artificial Intelligence, 2000.

[25] J. Heflin, J. Hendler, S. Luke. Coping with Changing Ontologies in a
Distributed Environment. In Proceedings of the Workshop on Ontology
Management of the 16th National Conference on Artificial Intelligence
(AAAI-99), WS-99-13, AAAI Press, pp. 74-79, 1999.

[26] Z. Huang, H. Stuckenschmidt. Reasoning with Multi-version Ontologies:
A Temporal Logic Approach. In Proceedings of the 4th International
Semantic Web Conference (ISWC-05), pp. 398-412, 2005.

[27] Y. Kalfoglou, M. Schorlemmer. Ontology Mapping: the State of the Art.
Knowledge Engineering Review, 18(1), pp. 1-31, 2003.

[28] H. Katsuno, A.O. Mendelzon. On the Difference Between Updating
a Knowledge Base and Revising It. Technical Report on Knowledge
Representation and Reasoning, Univ. of Toronto, KRR-TR-90-6, 1990.

[29] W. Kim, H.T. Chou. Versions of Schema for Object-Oriented Databases.
In Proceedings of the 14th International Conference on Very Large Data
Bases (VLDB-88), pp. 148-159, 1988.

[30] M. Klein, D. Fensel. Ontology Versioning on the Semantic Web. In
Proceedings of the International Semantic Web Working Symposium,
2001.

[31] M. Klein, D. Fensel, A. Kiryakov, D. Ognyanov. Ontology Version-
ing and Change Detection on the Web. In Proceedings of the 13th
International Conference on Knowledge Engineering and Knowledge
Management, 2002.

[32] M. Klein, N.F. Noy. A Component-Based Framework for Ontology
Evolution. In Proceedings of the IJCAI-03 Workshop on Ontologies and
Distributed Systems, CEUR-WS, vol. 71, 2003.

[33] S.C. Lam, D.H. Sleeman, W. Vasconselos. ReTAX++: A Tool for
Browsing and Revising Ontologies. In Poster Proceedings of the 4th
International Semantic Web Conference (ISWC-05), PID-33, 2005.

[34] P. Lambrix, A. Edberg. Evaluation of Ontology Merging Tools in
Bioinformatics. In Proceedings of the 8th Pacific Symposium on Bio-
computing, pp. 589-600, 2003.

[35] K. Lee, T. Meyer. A Classification of Ontology Modification. In Proceed-
ings of the 17th Australian Joint Conference on Artificial Intelligence,
2004.

[36] S. Luke, L. Spector, D. Rager, J. Hendler. Ontology-based Web Agents.
In Proceedings of the 1st International Conference on Autonomous
Agents, 1997.

[37] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz. An Infras-
tructure for Searching, Reusing and Evolving Distributed Ontologies.
In Proceedings of the 12th International World Wide Web Conference,
2003.

[38] M. Magiridou, S. Sahtouris, V. Christophides, M. Koubarakis. RUL:
A Declarative Update Language for RDF. In Proceedings of the 4th
International Semantic Web Conference (ISWC-05), pp. 506-521, 2005.

[39] D. McGuiness, R. Fikes, J. Rice, S. Wilder. An Environment for Merging
and Testing Large Ontologies. In Proceedings of the 7th International
Conference on Principles of Knowledge Representation and Reasoning
(KR-00), 2000.

[40] T. Meyer, K. Lee, R. Booth. Knowledge Integration for Description
Logics. In Proceedings of the 7th International Symposium on Logical
Formalizations of Commonsense Reasoning, 2005.

[41] G.A. Miller. WordNet: A Lexical Database for English. Communications
of the ACM (CACM), 38(11):39-41, 1995.

[42] P. Mitra, N.F. Noy, A.R. Jaiswal. OMEN: A Probabilistic Ontology
Mapping Tool. In Proceedings of the 4th International Semantic Web
Conference (ISWC-05), pp. 537-547, 2005.

[43] N.F. Noy, R. Fergerson, M. Musen. The Knowledge Model of Protéǵe-
2000: Combining Interoperability and Flexibility. In Proceedings of the
12th International Conference on Knowledge Engineering and Knowl-
edge Management: Methods, Models, and Tools (EKAW-00), pp. 1732,
2000.

[44] N.F. Noy, M. Klein. Ontology Evolution: Not the Same as Schema
Evolution. Knowledge and Information Systems, 6(4):428-440, 2004.

[45] N.F. Noy, S. Kunnatur, M. Klein, M.A. Musen. Tracking Changes
During Ontology Evolution. In Proceedings of the 3rd International
Semantic Web Conference (ISWC-04), 2004.

[46] N.F. Noy, M.A. Musen. Algorithm and Tool for Automated Ontology
Merging and Alignment. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI-00), 2000.

[47] N.F. Noy, M.A. Musen. An Algorithm for Merging and Aligning On-
tologies: Automation and Tool Support. In Proceedings of the Workshop
on Ontology Management at 16th National Conference on Artificial
Intelligence (AAAI-99), 1999.

[48] N.F. Noy, M.A. Musen. SMART: Automated Support for Ontology
Merging and Alignment. In Proceedings of the 12th Workshop on
Knowledge Acquisition, Modeling and Management, 1999.



[49] R. Pan, Z. Ding, Y. Yu, Y. Peng. A Bayesian Network Approach to
Ontology Mapping. In Proceedings of the 4th International Semantic
Web Conference (ISWC-05), pp. 563-577, 2005.

[50] R.J. Peters, T. Ozsu. An Axiomatic Model of Dynamic Schema Evolu-
tion in Objectbase Systems. ACM Transactions on Database Systems,
22(1):75-114, 1997.

[51] H.S. Pinto, A. Gomez-Perez, J.P. Martins. Some Issues on Ontology
Integration. In Proceedings of the Workshop on Ontologies and Problem-
Solving Methods (KRR5), 1999.

[52] P. Plessers, O. De Troyer. Ontology Change Detection Using a Version
Log. In Proceedings of the 4th International Semantic Web Conference,
2005.

[53] G. Stoilos, G. Stamou, S. Kollias. A String Metric for Ontology Align-
ment. In Proceedings of the 4th International Semantic Web Conference
(ISWC-05), pp. 624-637, 2005.

[54] L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic. User-driven On-
tology Evolution Management. In Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management,
2002.

[55] L. Stojanovic, A. Maedche, N. Stojanovic, R. Studer. Ontology Evolu-
tion as Reconfiguration-Design Problem Solving. In Proceedings of the
2nd International Conference on Knowledge Capture, 2003.

[56] H. Stuckenschmidt, M. Klein. Integrity and Change in Modular On-
tologies. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-03), 2003.

[57] G. Stumme, A. Maedche. Ontology Merging for Federated Ontologies
on the Semantic Web. In Proceedings of the International Workshop on
Foundations of Models for Information Integration (FMII-01), 2002.

[58] R. Wassermann. Revising Concepts. In Proceedings of the 5th Workshop
on Logic, Language, Information and Communication (WoLLIC-98),
1998.

[59] R. Wassermann, E. Fermé. A Note on Prototype Revision. In Spinning
Ideas, 1999.

[60] Z. Zhang, L. Zhang, C.X. Lin, Y. Zhao, Y. Yu. Data Migration for
Ontology Evolution. In Poster Proceedings of the 2nd International
Semantic Web Conference (ISWC-03), 2003.

TABLE I

SUMMARY OF THE VARIOUS SUBFIELDS OF ONTOLOGY CHANGE

Ontology
Mapping

Purpose:
Input:
Output:
Properties:

Heterogeneity resolution, interoperability
Two (heterogeneous) ontologies
A mapping between signatures
Output identifies related signature entities

Ontology
Morphism

Purpose:
Input:
Output:
Properties:

Heterogeneity resolution, interoperability
Two (heterogeneous) ontologies
Mappings between signatures and axioms
Output identifies related signature entities
and axioms

Ontology
Alignment

Purpose:
Input:
Output:
Properties:

Heterogeneity resolution, interoperability
Two (heterogeneous) ontologies
A relation between signatures
Output identifies related signature entities

Ontology
Articulation

Purpose:
Input:
Output:

Properties:

Heterogeneity resolution, interoperability
Two (heterogeneous) ontologies
An intermediate ontology and mappings be-
tween the signatures of the intermediate on-
tology and each source
Output is equivalent to a relation identifying
related signature entities

Ontology
Translation
(first
reading)

Purpose:
Input:
Output:
Properties:

Use a different representation language
Ontology and target representation language
Ontology expressed in the target language
Produces an equivalent ontology, if possible

Ontology
Translation
(second
reading)

Purpose:
Input:
Output:
Properties:

Implementation of a signature mapping
An ontology and a mapping
An ontology
Implements the mapping

Ontology
Evolution

Purpose:
Input:
Output:
Properties:

Apply changes (domain/conceptualization)
Ontology and change operation(s)
An ontology
Implements change(s) to the source ontology

Ontology
Versioning

Purpose:
Input:
Output:
Properties:

Transparent access to different versions
Different versions of an ontology
A versioning system
Version ids identify versions; transparent ac-
cess to versions; compatibility determination

Ontology
Integration

Purpose:
Input:
Output:
Properties:

Fuse ontologies; similar domains
Two ontologies (covering similar domains)
An ontology
Fuses knowledge to cover a broader domain

Ontology
Merging

Purpose:
Input:
Output:
Properties:

Fuse ontologies; identical domains
Two ontologies (covering identical domains)
An ontology
Fuses knowledge to describe the domain
more accurately


