Advanced Techniques and Tools for
Secure Collaborative Modeling

Csaba Debreceni
Budapest University of Technologies and Economics, Department of Measurement and Information Systems
MTA-BME Lendiilet Research Group on Cyber-Physical Systems
Email: {debreceni}@mit.bme.hu

Abstract—Model-based systems engineering of critical cyber-
physical systems necessitates effective collaboration between dif-
ferent collaborators, teams, stakeholders. Engineering artifacts
stored in model repositories are concurrently developed in either
offline (checkout-modify-commit) or online (GoogleDoc-style)
scenario where the confidentiality and integrity of design artifacts
need to be protected by access control policies. Unfortunately, tra-
ditional approaches for managing concurrent code development
do not naturally extend to collaborative modeling which implies
novel challenges.

My research focuses on developing (i) a general secure col-
laboration scheme that guarantees that high-level access control
policies are respected during collaboration and it can be inte-
grated into existing version control systems (e.g. SVN) to support
offline scenario; (ii) automated merging and fine-grained locking
to enhance the efficiency of conflict resolution and prevention
upon concurrent modification of the models; (iii) derivation and
incremental maintenance of view models to provide specific focus
of the designers by abstracting from unnecessary details of the
underlying system model.

I. PROBLEM AND MOTIVATION

The adoption of model driven engineering (MDE) by system
integrators (like airframers or car manufacturers) has been
steadily increasing in the recent years [1], since it enables to
detect design flaws early and generate various artifacts (source
code, documentation, configuration tables, etc.) automatically
from high-quality system models.

The use of models also strengthens collaboration between
distributed teams of different stakeholders (system integra-
tors, software engineers of component providers/suppliers,
hardware engineers, certification authorities, etc.) via model
repositories, which significantly enhances productivity and
reduces time to market. An emerging industrial practice of
system integrators is to outsource the development of various
design artifacts to subcontractors in an architecture-driven
supply chain.

Collaboration scenarios include traditional offfine collab-
orations with asynchronous long transactions (i.e. to check
out an artifact from a version control system and commit
local changes afterwards) as well as online collaborations
with short and synchronous transactions (e.g. when a group
of collaborators simultaneously edit a model). Even though,
various collaborative modeling frameworks (like [2], [3], etc.)

This paper is partially supported by the EU Commission with project
MONDO (FP7-ICT-2013-10), no. 611125. and the MTA-BME Lendiilet 2015
Research Group on Cyber-Physical Systems.

exist to support such scenarios, additional challenges arise
that cannot be naturally extended from traditional code-based
approaches due to the graph-like nature of the artifacts.

A. Secure Collaborative Modeling

An increased level of collaboration in a model-driven de-
velopment process introduces additional confidentiality chal-
lenges to sufficiently protect the intellectual property of the
collaborating parties, which are either overlooked or signif-
icantly underestimated by existing initiatives. Even within a
single company, there are teams with differentiated responsi-
bilities, areas of competence and clearances described by high-
level access control policies. Such processes likewise demand
confidentiality and integrity of certain modeling artifacts.

Existing practices for managing access control of models
rely primarily upon the access control features of the back-
end repository. Coarse-grained access control policies aim to
restrict access to the files that store models. For instance, EMF
models can be persisted as standard XMI documents, which
can be stored in repositories providing file-based access and
change management (as in SVN [4], CVS [5]]). Fine-grained
access control policies, on the other hand, may restrict access
to the model on the row level (as in relational databases) or
triple level (as in RDF repositories). Unfortunately, coarse-
grained security policies are captured directly on the storage
(file) level often result in inflexible fragmentation of models
in collaborative scenarios.

As a result, coarse-grained access control can lead to
significant model fragmentation, which greatly increases the
complexity of storage and access control management. In
industrial practice, automotive models may be split into more
than 1000 fragments, which poses a significant challenge for
tool developers. Some model persistence technologies (such as
EMFs default XMI serialization) do not allow model fragments
to cyclically refer to each other, putting a stricter limit to
fragmentation. Hence, MDE use cases often demand the ability
to define access for each object (or even each property of each
object) independently.

Furthermore, coarse-grained access control lacks flexibil-
ity, especially when accessing models from heterogeneous
information sources in different collaboration scenarios. For
instance, they disallow type-specific access control, i.e., to
grant or restrict access to model elements of a specific type

(e.g., to all classes in a UML model), which are stored in
multiple files.
My first research question is constructed as follows:

RQ-1 How to capture and enforce high-level access control
policies during collaborative modeling?

B. Conflict Prevention and Resolution

Enabling a high degree of concurrent edits for collabora-
tors is required to make the traditionally rigid development
processes more agile. The increasing number of collaborators
concurrently developing artifacts increases the probability of
introducing conflicts. Conflict avoidance techniques such as
locks try to prevent conflicts by letting the users request that
certain engineering artifacts should be made unmodified by
all other participants for a duration of time. But it usually
leads to unnecessary preventions (locks) which significantly
limits the degree of concurrent development and does not scale
with the increasing number of collaborating teams. Model
merging aims to resolve the conflicts, but, it can be complex
tasks as the interdependence within a model makes conflicts
easy to introduce and hard to resolve. Furthermore, domain-
specific conflict resolution strategies are rarely taken into
consideration in industrial frameworks (e.g. EMF Compare[6],
EMF Diff/Merge[7l]), hence the well-formedness of merge
results is questionable.

My second research question is the following.

RQ-2 How to provide fine-grained prevention and automa-
tized resolution strategies of conflicts?

C. Bidirectional Synchronization of View Models

Views are key concepts of domain-specific modeling in
order to provide task-specific focus (e.g., power or com-
munication architecture of a system) to engineers by creating
a model which highlights only some relevant aspects of the
system to help detect conceptual flaws. Typically multiple
view models are defined for a given an underlying source
model, which need to be refreshed automatically (or upon user
request) upon changes in the source model.

Usually, these views are represented as models themselves
(view models), computed from the source model. On one
hand, the efficient forward propagation of changes from the
source model to the views is challenging, as recalculating the
view from scratch has to be avoided to achieve scalability.
On the other hand, the efficient backward propagation of
complex changes from one or more abstract view models to
the underlying source model resulting in valid and well-formed
models is also a challenging task which requires to limit the
propagation to a well-defined part of the source model to
achieve scalability.

My third research question is as follows.

RQ-3 How to derive and incrementally maintain view

models and trace back complex changes to the underlying
source models?

II. PRELIMINARIES
A. Related Work

1) Secure Collaborative Modeling: Traditional version con-
trol systems (like [4]) adopt file-level access policies, which
are clearly insufficient for fine-grained access control speci-
fications. [2] allows for role-based access control with type-
specific (class, package and resource-level) permissions, but
disallows instance level access control policy specifications.
Access control is not considered in recent collaborative mod-
eling environments like [8]], [9], [10], [30], [LL], [12], or the
tools developed according to [13]]. [14] provides fine-grained
role-based access control for online collaboration but no offline
scenario is supported, though. Both online collaboration and
role-based access control with type-specific (class, package
and resource-level) permissions is provided in [2l], but no
facility for instance level access control policy specifications.
However, there is a pluggable access control mechanism that
can specify access on the object level.

2) Locking Support: The state-of-the-art locking techniques
are the fragment-based and object-based locks. Fragment-
based locking requires that models are partitioned into storage
fragments, e.g. files or projects and entire fragments can be
locked at once. Object-based locking locks individual model
objects (including their attributes and connections) which
requires to inspect the structure of the model.

Existing collaborative modeling tools either lack locking
support or implement rigid strategies such as fragment-based
locking, or locking subtrees or elements of a specific type,
which hinder effective collaboration. Most of offline collabo-
rative modeling tools 5], [15], [3], rely on traditional version
control systems using file-based (same as fragment-based)
locking with contributors committing large deltas of work.
Model repositories [2], [9], support both implicit and explicit
locking of subtrees and sets of elements. These locks can
prevent others from modifying elements to avoid conflicts. On-
line collaborative modelling frameworks |11, [8], [100, [14],
rely on a short transaction model: a single, shared instance of
the model is concurrently edited by multiple users, with all
changes propagated to all participants instantaneously. These
approaches use timestamped operations to resolve conflicts or
provide only lightweight lock mechanisms, e.g., explicit locks
to certain elements.

3) Conflict Resolution in Model Artifacts: Model compar-
ison refers to identifying the differences between models.
Based on its result, model merge synthesizes a combined
model which reconciles the identified differences. My research
focuses on three-way merge, which uses the common ancestor
O of local copy L and remote copy R to derive the merged
model M. To determine the changes executed on O, a compar-
ison is conducted between O <> L and O < R. The solution
of merge M is obtained by applying a combination of changes
performed either on L or R to the original model O.

Most approaches [6], [7, [16], [17], [18] are semi-
automated as they use a two-phase process: (i) first, they
apply the non-conflicting operations and then (ii) let the user

prioritize and select the operation to apply in case of two
conflicting changes. This always results in a single solution
due to the manual resolution by the user. In comparison, [19],
[20] resolve the conflicts automatically in different ways and
offer several solutions.

4) Incremental Maintenance of View Models.: View main-
tenance by incremental and live QVT transformations is used
in [21] to define views from runtime models. The proposed
algorithm operates in two phase, starting in check-only mode
before an enforcement run, but its scalability is demonstrated
only on models up to 1000 elements. [§]] allows the compo-
sition of multiple EMF models into a virtual model based
on a composition metamodel, and provides both a model
virtualization API and a linking API to manage these models.
The approach is also able to add virtual links based on
composition rules. In [22]], an ATL-based method is presented
for automatically synchronizing source and target models.
In [23], correspondences between models are handled by
matching rules defined in the Epsilon Comparison Language,
but incremental derivation is not discussed.

5) Backward Propagation: For the backward propagation
of changes, the use of traceability links is a well-accepted
approach to define which part of the source model has to
be updated upon a change on the target model. In [24],
these links are stored as a correspondence model where their
maintenance is derived from the TGG rules. [25] also specifies
trace classes to facilitate and maintain traceability links. [26]
stores traceability links in Alloy[27] as a bijective mapping.
[28] uses a weaving model that stores the traces of references
between different models in the view, however all objects in
the view model act as proxies to an object in the source model.

B. Foundational Techniques

1) Graph Patterns: A graph pattern represents structural
constraints prescribing the interconnection between nodes and
edges of given types extended with algebraic expressions to
define attribute constraints. Pattern parameters are a subset
of nodes and attributes representing the model elements in-
teresting from the perspective of the pattern user. A match of
a pattern is a tuple of pattern parameters that has the same
structure as the pattern and satisfies all structural and attribute
constraints.

2) Design Space Exploration: Design space exploration
(DSE) aims to find optimal design candidates of a domain
with respect to different objectives where design candidates are
constrained by complex structural and numerical restrictions
(e.g. described by graph pattern) and are reachable from an
initial model by applying a sequence of exploration rules.

III. OVERVIEW OF THE APPROACHES

A. General Secure Collaboration Scheme

Approach. In [29], we proposed a query-based approach for
modeling fine-grained access control policies, and we defined
bidirectional model transformations to (i) derive filtered views
(front models) for each collaborator from the original model

No Access

User B User A

version

—

-~ a
2>, version

—

Front repo of User B | |

Fig. 1. MONDO Offline Collaboration - Architecture

(gold model) containing all the information and to (ii) prop-
agate changes introduced into these views back to a server
in both online and offline scenarios. Access control policies
consist of rules that allow, obfuscate or deny read and/or
write permissions of model parts identified by graph patterns
detailed in [30].

In [31], a collaboration scheme between the clients of
multiple collaborators and exactly one server is described to
support fine-grained access control in offline scenario. The
server stores the gold models and the clients can download
their specific front models. Modifications, executed by a
clients, are submitted to the server and they are accepted if
write permissions are successfully checked. Right after the
submission, the changes are propagated to the other front
model while read permissions are enforced. Finally, clients
can downloaded their updated front models.

The scheme is realized by extending SVN[4] using its hooks.
The server and clients are realized as a gold repository and
multiple front repositories, respecively. The gold repository
contains gold models, but it is not accessible to collaborators.
Each collaborator is assigned to a specific front repository
containing a full version history of the front models. Change
propagations are maintained between the repositories. As a
result, each collaborator continues to work with a dedicated
VCS as before, thus they are unaware that this front repository
may contain filtered and obfuscated information.

My contributions related to the fulfillment of [RQ7]:

Contribution 1 I proposed a generic modeling language to
capture fine-grained access control policies integrated into a
provenly secure collaborative architecture.

C1.1 Access Control Language. 1 proposed a rule-based
access control language to describe high-level and fine-
grained policies in both online and offline scenarios. Rules
may allow, obfuscate or deny read and/or write permissions
of model parts identified by graph patterns[30], [31].

C1.2 Read and Write Dependencies. 1 analyzed read and
write dependencies implied by high-level access control
policies as read and write permissions of a model part

may depend on other model parts implied by internal
consistency rules [30].

C1.3 Formalization of Transformation Rules. 1 formalized
transformation rules to derive secure front models with
respect to the read and write permissions [31].

C1.4 Secure Collaboration Scheme. 1 formalized a collab-
oration scheme as communicating sequential processes
(CSP) to enforce high-level access control policies. I spec-
ified correctness criteria and proved the correctness of the
scheme [31]].

C1.5 Realization of Secure Collaboration. 1 realized the col-
laboration scheme in case of offline scenarios by extending
an existing version control system to enforce fine-grained
access control while collaborators can use off-the-shelf
tools [32], [31].

C1.6 Evaluation. 1 evaluated the scalability of the collabo-
ration architecture on a case study of offshore wind turbine

controllers [29]], [32]], [33]], [31].

The bidirectional transformation and the algorithm to derive
effective permission based on the proposed language is the
contribution of Gédbor Bergmann whereas the concept of
the common architecture to support both online and offline
scenarios is the contribution of Istvdn Rath.

Uniqueness. Our provenly correct collaboration scheme
is able to enforce fine-grained access control policies of
modeling artifacts over existing version control system in
case of offline scenarios. The scheme and its realization is
demonstrated in as an integration with SVN[4].

B. Conflict Reduction and Handling

Approach. In our preliminary work [34], we introduced the
concept of property-based locking where collaborators request
locks specified as a property of the model which need to
be maintained as long as the lock is active. Hence, other
collaborators are permitted to carry out any modifications that
do not violate the defined property of the lock. In [33]], the
realization of property-based locking strategy is proposed as a
common generalization of existing fragment-based and object-
based locking approaches. Complex properties are described as
graph patterns to express structural (and attribute) constraints
for a model where the result set, i.e. the matches of graph pat-
tern, can be calculated by pattern matchers or query engines.
Only those modifications are allowed that do not change the
result set of a list of queries as depicted in

In [36]], we proposed DSE-Merge that exploits guided rule-
based design space exploration (DSE) to automate the
three-way model merge with an architecture depicted in
Three-way model merge is applied to DSE problem where
the initial model consists of the original model O and two
difference models (AL and AR); the goal is that there are
no executable changes left in AL and AR; operations are
defined by change driven transformation rules to process
generic composite (domain-specific) operators; and constraints
may identify inconsistencies and conflicts to eliminate certain
trajectories. The output is a set of solutions consisting of

Lock Owners

a0 »
Query Results of Locks

Model0
X 52
-» 6%°/, »[::::::I::::[:::]Q‘
User Modell Query Results of Locks Model0
I N

LU L Jemam— 7,

User Model2 Query Results of Locks Model0
I N

on Jin »

= sl 2o

User Model3 Query Results of Locks Model3

Fig. 2. Behavior of Property-Based Locks

N

Original

emore

Solution

L5

]

Original’

i

DSE merge

-— model
u change set
- guidance
D solution

1

Fig. 3. Architecture of DSE Merge

(1) the well-formed merged model M; (ii) the set of non-
executed changes AL, AR’; and (iii) the collection of the
deleted objects stored in Cemetery.

My contributions related to the fulfillment of [RQO{2]:

Contribution 2 I proposed a fine-grained property-based
locking technique to avoid conflicts and an automated three-
way model merge technique to resolve conflicts.

C2.1 Fine-grained Property-based Locking. 1 proposed a
property-based locking technique as generalization of tradi-
tional fragment-based and object-based locking techniques
which captures fine-grained locks as graph patterns and
exploits incremental query engines to maintain and evaluate
locks [33].

C2.2 Automated Model Merge using DSE. 1 proposed an
automated three way model merge technique by adapting
rule-based design space exploration to derive consistent and
semantically correct merged models [36], [37].

C2.3 Realization of DSE-merge. 1 realized an infrastructure
of automated model merge over EMF integrated into the
Eclipse IDE [36], [32].

C2.4 Evaluation. 1 evaluated the scalability of the auto-
mated model merge and I compared the effectiveness of
fine-grained property-based locking and traditional locking
strategies for conflict prevention on a case study of offshore
wind turbine controllers [36], [33], [33].

- Traceability model +--, D View
! | model
v v Fl:h A
Target model 5
Render
View model | Target metamodel | Module
QBO: Query Based Object o
QBF: Query Based Feature TR Zast Face

Fig. 4. Overview of integration architecture

The novel concept of property-based locking has been
carried out in a collaborative work [34] where my contribution
is the first adaption in a practical setting.

Uniqueness. Our property-based approach is general and
can be used for both implicit locking of subtrees and set
of elements or explicit locking of a certain element and its
incoming and outgoing references. In addition it extends these
lock types with the definition of properties to provide less
restrictive locking for the collaborators.

The closest to our merge approach are [19] and [20]], but
we rely on state-based comparison, apply a guided local-
search strategy (vs. [20])), detect conflicts at runtime and allow
complex generic merge operations (vs. [19]). Internally, we
uniquely use incremental and change-driven transformations
to derive the merged models. Finally, we reported scalability
of merge process for models which are at least one order of
magnitude larger compared to [19] and [20].

C. Synchronization of View Models

Approach. In [38], we introduced an approach where view
models are conceptually equivalent to regular models and they
are defined using a fully declarative, rule based formalism.
Preconditions of rules are defined by graph patterns, which
identify parts of interest in the source model. Derivation rules
then use the match set of a graph pattern to define elements
of the view model. Informally, when a new match of a query
appears then the corresponding derivation rule is fired to create
elements of the view model. When an existing match of a
query disappears, the inverse of the derivation rule is fired to
delete the corresponding view model elements.

View models derived by a unidirectional transformation are
read-only representations, and they cannot be changed directly.
To tackle this problem, we proposed an approach in [39] to
automatically calculate possible source model candidates for a
set of changes in different view models as depicted on [Fig. 5]
First, the possibly impacted partition of the source model is
need to be identified by observing traceability links to restrict
the impact of a view modification. Then the modified view
models and the query-based view specification are transformed
into logic formulae. Finally, multiple valid resolutions of the
source model are generated using logic solvers corresponding
to the changes of view models and the constraints of the source
model from the users can manually select a proper solution.

My contributions related to the fulfillment of [ROJ3]:

Trace Source Model
T =Tr+To || Ms = ME + MK
My1 = My + My || T' = Tp + Ty |Ms = ME + ME| M§% M3
lookup /'\impact analysis A \«n:w» j

F Logi
T [To.| M~ 565)—

Fig. 5. Overview of backward change propagation

View Model
My, = My, + M,

Contribution 3 I proposed a novel technique of bidirec-
tional synchronization of view models where the forward
incremental synchronization is achieved by unidirectional
derivation rules while the backward propagation of changes
is generated using logic solvers.

C3.1 Incremental Forward Synchronization. 1 formalized a
fully forward incremental, unidirectional synchronization
technique of view models allowing chaining of views where
the object of view model depend on the match set of the
precondition of derivation rules [38], [40].

C3.2 Change Impact Analysis. 1 analyzed the impact of
changes in underlying source models in case of backward
propagation. The impacted part is added to the logic solver
as additional constraints to calculate minimally modified
source model candidates [39].

C3.3 Realization of Forward Synchronization. 1 realized the
incremental and forward view synchronization technique
where elementary derivation rules are captured by graph
patterns and the reactive synchronization process uses the
Viatra Event-driven Virtual Machine (EVM) [38]].

C3.4 Evaluation. 1 evaluated the scalability of the proposed
approaches on case studies from the avionics and the
health-care domain [38]], [39]], [40].

The transformation of the preconditions described by graph
patterns and the impacted parts to first order logic is the
contribution of Oszkdr Semerdth whereas my contributions
are the impact analysis and the concept of using logic solver
for backward propagation extended with impacted parts as
additional constraints.

Uniqueness. Definition of a view model is unidirectional,
while the forward propagation of the operation-based changes
are live, incremental and executed automatically that also
maintains explicit traces. At backward propagation, using
partitioning as an additional input of the logic solver improves
scalability issues and limits the impact of changes to a well-
defined part of the source model.

ACKNOWLEDGEMENT

I would like to thank my advisor, Daniel Varro for his
guidance during my research. I would also like to express
my gratitude to Istvan Rath, Gabor Bergmann, Oszkar Se-
merath and Akos Horvath as well as Marsha Chechik, Fabiano
Dalpiaz, Jennifer Horkoff and Rick Salay along with numerous
colleagues and co-authors for sharing their ideas.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

REFERENCES

J. Whittle et al., “The State of Practice in Model-Driven Engineering,”
IEEE Software, vol. 31, no. 3, pp. 79-85, 2014.

Eclipse Foundation, “CDO,” http://eclipse.org/cdo!

——, “EMFStore,” http://eclipse.org/emfstore.

Apache, “Subversion,” https://subversion.apache.org/.

G. Kramler et al., “Towards a Semantic Infrastructure Supporting Model-
based Tool Integration,” in GaMMa@ICSE’06. ACM, 2006, pp. 43-46.
Eclipse Foundation, “EMF Compare,” http://eclipse.org/emf/compare/.
——, “EMF Diff/Merge,” http://eclipse.org/diffmerge/.

C. Clasen, F. Jouault, and J. Cabot, “VirtualEMF: A Model Virtualization
Tool,” in Advances in Conceptual Modeling. Recent Developments and
New Directions, 2011, pp. 332-335.

J. Tolvanen, “MetaEdit+ for Collaborative Language Engineering and
Language Use (tool demo),” in Tool Demo@SLE’16, 2016, pp. 41-45.
M. Mardéti et al., “Next Generation (Meta)Modeling: Web- and Cloud-
based Collaborative Tool Infrastructure,” in MPM@MODELS’14, 2014,

pp. 41-60.
Axellience, “Genmymodel.”
Obeo, “Obeo Designer,” https://obeodesigner.com/en/

collaborative-features.

J. Gallardo et al., “A Model-driven Development Method for Collabo-
rative Modeling Tools,” J. Network and Computer Applications, vol. 35,
no. 3, pp. 1086-1105, 2012.

E. Syriani et al., “AToMPM: A Web-based Modeling Environment,” in
Invited Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition@MoDELS’13, 2013, pp. 21-25.

K. Altmanninger et al., “Amor—towards adaptable model versioning,” in
MCCM@MoDELS’08, vol. 8, 2008, pp. 4-50.

F. Schwigerl et al., “Model-based Tool Support for Consistent Three-
way Merging of EMF Models,” in ACME@ECOOP’13, 2013, pp. 2:1-
2:10.

J. Rubin and M. Chechik, “N-way Model Merging,” in ACM SIGSOFT
Symp@ESEC/FSE’13, 2013, pp. 301-311.

P. Brosch et al., “We can work it out: Collaborative Conflict Resolution
in Model Versioning,” in ECSCW’09, 2009, pp. 207-214.

H. K. Dam et al., “Inconsistency Resolution in Merging Versions of
Architectural Models,” in WICSA’14, 2014, pp. 153-162.

U. Mansoor et al., “MOMM: Multi-objective model merging,” Journal
of Systems and Software, vol. 103, pp. 423-439, 2015.

H. Song et al., “Instant and Incremental QVT Transformation for
Runtime Models,” in MoDELS’11, 2011, pp. 273-288.

“Towards Automatic Model Synchronization from Model Transforma-
tions, author=Xiong, Yingfei and others, booktitle=ASE’07, pages=164—
173, year=2007,.”

D. S. Kolovos, “Establishing Correspondences between Models with the
Epsilon Comparison Language,” in ECMDA-FA’09, 2009, pp. 146-157.
A. Schurr, “Specification of Graph Translators with Triple Graph Gram-
mars,” in Graph-Theoretic Concepts in Computer Science, WG’94, 1994,
pp. 151-163.

[25]
[26]

[27]

[28]

[29]

(30]

(31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

OMG, “MOF 2.0 QVT.”

H. Gholizadeh et al., “Analysis of Source-to-Target Model
Transformations in QueST,” in Proceedings of the 4th Workshop
on the Analysis of Model Transformations co-located with (MODELS
2015, Ottawa, Canada, 2015, pp. 46-55. [Online]. Available:
http://ceur-ws.org/Vol- 1500/paper6.pdf

D. Jackson, “Alloy Analyzer.”

H. Bruneliere et al., “EMF Views: A View Mechanism for Integrating
Heterogeneous Models,” in Conceptual Modeling - ER’15, 2015, pp.
317-325.

G. Bergmann, C. Debreceni, I. Rith, and D. Varrd, “Query-based
Access Control for Secure Collaborative Modeling using Bidirectional
Transformations,” in MoDELS’16, 2016, pp. 351-361.

C. Debreceni, G. Bergmann, I. Rath, and D. Varrd, “Deriving Effective
Permissions for Modeling Artifacts from Fine-grained Access Control
Rules,” in COMMitMDE@MoDELS’16, 2016, pp. 17-26.

——, “Enforcing Fine-grained Access Control for Secure Collaborative
Modeling using Bidirectional Transformations,” Software and System
Modeling, MODELS 2016 Special Section, 2017, submitted. [Online].
Available: https://goo.gl/ZAegbo

C. Debreceni, G. Bergmann, M. Bir, I. Rath, and D. Varr6, “The
MONDO Collaboration Framework: Secure Collaborative Modeling
over existing Version Control Systems,” Tool Demo@ESEC/FSE’17,
2017, in Press. [Online]. Available: https://goo.gl/uTsQeg

A. Gomez, X. Mendialdua, G. Bergmann, J. Cabot, C. Debreceni,
A. Garmendia, D. S. Kolovos, J. de Lara, and S. Trujillo, “On
the Opportunities of Scalable Modeling Technologies: An Experience
Report on Wind Turbines Control Applications Development,”
ECMFA’17, 2017, in Press. [Online]. Available: https://goo.gl/surozr
M. Chechik, F. Dalpiaz, C. Debreceni, J. Horkoff, I. Rath, R. Salay, and
D. Varrd, “Property-Based Methods for Collaborative Model Develop-
ment,” in GEMOC+MPM@MoDELS’15, 2015, pp. 1-7.

C. Debreceni, G. Bergmann, I. Rath, and D. Varrd, “Property-based
Locking in Collaborative Modeling,” in MoDELS’17, 2017, in Press.
C. Debreceni, I. Rath, D. Varrd, X. D. Carlos, X. Mendialdua, and
S. Trujillo, “Automated Model Merge by Design Space Exploration,”
in FASE’16, 2016, pp. 104-121.

H. Abdeen, D. Varré, H. A. Sahraoui, A. S. Nagy, C. Debreceni,
A. Hegediis, and A. Horvath, “Multi-objective Optimization in Rule-
based Design Space Exploration,” in ASE ’14, 2014, pp. 289-300.

C. Debreceni, A. Horvath, A. Hegediis, Z. Ujhelyi, I. Rath, and
D. Varrd, “Query-driven Incremental Synchronization of View Models,”
in VAO@STAF’14, 2014, pp. 31-38.

O. Semerith, C. Debreceni, A. Horvith, and D. Varré, “Change Prop-
agation of View Models by Logic Synthesis using SAT solvers,” in
BX@ETAPS’16, 2016, pp. 40-44.

——, “Incremental Backward Change Propagation of View Models by
Logic Solvers,” in MoDELS’16, 2016, pp. 306-316.

http://eclipse.org/cdo
http://eclipse.org/emfstore
https://subversion.apache.org/
http://eclipse.org/emf/compare/
http://eclipse.org/diffmerge/
https://obeodesigner.com/en/collaborative-features
https://obeodesigner.com/en/collaborative-features
http://ceur-ws.org/Vol-1500/paper6.pdf
https://goo.gl/ZAegbo
https://goo.gl/uTsQeg
https://goo.gl/surozr

	Problem and Motivation
	Secure Collaborative Modeling
	Conflict Prevention and Resolution
	Bidirectional Synchronization of View Models

	Preliminaries
	Related Work
	Secure Collaborative Modeling
	Locking Support
	Conflict Resolution in Model Artifacts
	Incremental Maintenance of View Models.
	Backward Propagation

	Foundational Techniques
	Graph Patterns
	Design Space Exploration

	Overview of the Approaches
	General Secure Collaboration Scheme
	Conflict Reduction and Handling
	Synchronization of View Models

	References

