
Transformations Debugging Transformations
Māris Jukšs

School of Computer Science
McGill University

Montréal, Québec, Canada
Email: mjukss@cs.mcgill.ca

Clark Verbrugge
School of Computer Science

McGill University
Montréal, Québec, Canada
Email: clump@cs.mcgill.ca

Hans Vangheluwe
University of Antwerp
Flanders Make vzw
McGill University

Email: hans.vangheluwe@uantwerp.be

Abstract—Practical model transformation (MT) frameworks
are usually composed of multiple execution contexts, building an
overall workflow by abstracting different aspects of execution.
This heterogeneity brings additional challenges to debugging,
which must address a combination of quite different graphical
and textual formalisms. In this work we describe a layered
approach to debugging, mapping familiar debugging operations
to different formalisms, as well as the transitions between them.
Our design allows for seamless debugging through different
abstractions, and supports both traditional imperative debugging
as well as declarative, query-based approaches. We demonstrate
our approach by prototyping a MT debugger in the AToMPM
research tool. Our approach shows that it can be applied to other
MT tools as well.

I. INTRODUCTION

Debugging Model Transformations (MT) brings additional
complexity due to the presence of a hierarchical execution
stack. Multiple execution layers are used, consisting of dif-
ferent languages/formalisms at different levels of abstraction.
A schedule language, for example, contains the rules, which
themselves hold patterns based on action code. Further down
the stack, we find the pattern matching and application rou-
tines. As problems can manifest at each layer, or between layer
interactions, thorough debugging requires a tool permitting
inspection and modification throughout the execution stack.

In this work we describe the design of a MT debugger that
addresses debugging of the whole MT stack, from the schedule
level down to the pattern matching and application routines
details. Our design avoids resorting to code-level debugging,
aiming instead to remain at the level of abstraction similar
to the Domain-Specific Language (DSL) of the models being
transformed.

The declarative nature of models and MTs has a further
benefit in that it is a natural setting for many debugging tasks,
particularly event or watch-based goals, such as pausing exe-
cution when a pattern matcher accumulates a certain portion of
the match, or when an undesirable pattern appears in the output
model. In this context, query-based debugging techniques [1]
yield further inspiration for our debugger design, allowing us
to inspect all the relevant MT stack levels with declarative
queries during the debugging session.

Our goal is to provide a practical and flexible solution for
MT debugging for modern tools. We here show an initial
validation of our design by describing our experience with

realizing such a debugger in AToMPM, a research-based MT
tool. Specific contributions of our work include the following.
• We describe a structured view of a debugging process

that lends a unified way of navigating the debug target.
• We describe a simple language for automated debugging

of MTs using declarative queries and breakpoints span-
ning the levels of the MT stack.

• Our declarative approach subsumes a separate control
scheme for direct user interaction. In this way our design
provides a unified debugging model, suitable for automa-
tion.

II. STRUCTURED VIEW OF DEBUGGING

In this section we present a general view of debugging in
a structured way. We will use this approach in order to have
a uniform operational semantics for debugging in situations
where a general programming language paradigm may be
less applicable, such as in debugging DSLs and in particular
MTs. In particular, this lets us clarify the notion of basic
debugger operations, such as step, which may be ambiguous
in declarative debugging contexts.

Navigating the Debugging Target. To take a generic view
of debugging control flow (process) we can imagine it to
be somewhat similar to navigating the multi-story building
representing the debugging target. On the vertical dimension
(here we use the term without adhering to its strict definition)
we have a multitude of floors representing the many levels of
nested structures. These hierarchical levels can be found in
nested function calls, hierarchical models, etc. We call these
nested levels vertical levels (VL) and the movement between
them as vertical movement.

Each vertical level also has a horizontal dimension, this
can be imagined as the apartments on a floor. If we use the
programming language analogy, these levels represent a single
kind of scope. We call this horizontal dimension a horizontal
level (HL) and the movement within that level as horizontal
movement. Each horizontal level contains items of interest for
the debugging. These can be statements, expressions, nodes
and edges in the model. The unifying characteristic of these
items is the fact that when the debugging target has processed,
visited or executed one item, it will move to the next item—
items on a horizontal level are dynamically enumerated as
a result of executing general step-over operations on the
debug target. In Figure 1, we show the horizontal and vertical



Fig. 1. Horizontal and vertical dimensions or levels. Arrows between items on
a horizontal level represent horizontal movement operation. Vertical operations
are dashed arrows and labeled.

dimensions1 of a debugging control flow. Some of the items
on the horizontal level can contain other items (nested) and
therefore lead to lower vertical levels. For example, these can
be hierarchical model elements or function calls to descend
into. Therefore, the vertical dimension in a debug process is
explored in moving up and down between the hierarchical
items (as illustrated by the dashed arrows in Figure 1).

Figure 1 gives us a conceptual graph structure reminis-
cent of the general forms of stack-based program execution.
Each vertical level embodies a particular behavior, execution
scope, or level of abstraction. The horizontal elements then
correspond to the smallest units of processing, computation,
execution, or specification within that level of abstraction.
Program execution, whether procedural or MT-based, can then
be understood in terms of navigating this 2D hierarchy.

Navigation Pointers. For our purposes we need to be aware
of the control flow position during debugging with respect to
the horizontal and vertical dimensions. Horizontally we are
concerned with the item pointer (IP) and vertically with the
level pointer (LP). We can then use the navigation pointer tuple
(IP,LP) to describe the control flow position in the debugging
target, similar to the position of a point on a plane, described
by its two coordinates. We also define certain constant values
for the navigation pointers. These allow us to refer to the
typical positions and the debugging situations within the target.

The following are the constant values the IP can take.
• NULL - this value indicates that the pointer is not

initialized and is not pointing to any item on the HL.
This value is useful in describing the situation when the
IP moves past the last item on the HL.

• FIRST - the first item of interest on the HL.
The following is the constant value the LP can take.
• TOP - the very top VL in a debugging target.
Taking the above values into account, the end of the

debugging (termination) for example, can be specified with
a tuple (NULL,TOP).

Operations. We now propose the operations that allow us to
navigate the vertical and horizontal dimensions in a debugging
target. Operational semantics essentially follows a controlled
stack-based traversal, giving us operations to move between

1In this paper we use the terms level and dimension interchangeably.

Fig. 2. Navigation pointer evolution. Red arrows represent a step-over
debugging scenario.

(ordered) siblings, into child nodes, or back to parent nodes.
The effect of these operations includes the modification of LP
and IP pointers, and presumes an execution stack of horizontal
item pointers, σ. We begin execution at (FIRST,TOP), with σ
empty.
• Next. This operation processes the current item on

a HL and move on to the next item at the same
level. Given non-NULL values for (IP,LP) and stack σ,

Next((IP,LP), σ) =
{

((IP + 1,LP), σ) if ∃ IP + 1
((NULL,LP), σ) if @ IP + 1

Given (NULL,LP),σ, a Next operation delegates to an Up.
• Down. This operation moves one vertical level down if

possible, pushing the current state and setting the IP to
the first item on the next level. If no deeper level exists
from this item, this delegates to a Next operation.

Down((IP,LP), σ) =
{

((FIRST,LP + 1), IP :σ) if ∃ LP + 1
Next((IP,LP), σ) if @ LP + 1

• Up. This operation completes processing of all
remaining items on the current horizontal level and move
one level up vertically. This is idempotent, and implies
terminating the program if it attempts to ascend past TOP.

Up((IP,LP), σ) =
{

((IP’,LP− 1), σ′) if LP 6= TOP ∧ σ = IP’ :σ′

((NULL,TOP), ∅) if LP = TOP

We can now describe the program execution in terms of the
navigation pointer evolution. Using a simple textual example,
Figure 2 demonstrates a graph of possible pointer values in
the nodes and the operations that result in the changes as
edges. In this example the items were the statements of the
program and were identified by the line number. At each point
a debugger may move to the next statement at a given level,
either as a typical step-into (black Next arrow) or step-over
(red arrow) any lower levels (the latter being Down operations
that delegate to Next). An actual Down operation can be
performed on the method call to enter the method body, at
which point an Up operation can be requested to complete
execution, skip debugging the method body and return to the
caller, or Next can be used to flow through the execution
of the increment statement, and Up executed when no more
horizontal execution is possible.

Debugger behavior is of course not entirely addressed
by this control flow model. We also need to consider how
and when a debugger accesses data. Global, static data is
universally available, but access to other, local data can depend
on the language semantics given by the position in the control
flow (such as with local, stack variables in a procedural



language). As this depends on the language being debugged,
we will require the target-language context provide a means to
expose (and represent) data, given a (current) navigation state,
allowing the debugger read and write access in accordance
with the expected semantics.

III. STRUCTURED VIEW OF MT STACK

In this section we apply our structured view of debugging
to a MT stack typically found in rule-based MT systems.

Usually, in MT debugging we are mainly concerned with
the MT specification, its use of the source model and the final
effect on the target model. Inside the transformation specifica-
tion we can discover the hierarchical structure of the schedule
encompassing MT rules. Further down, we find individual
patterns contained within the pre/post-condition parts of the
rule. These individual patterns are used for matching in the
source model and modifying the target model.

In Figure 3 we outline a conceptual, level-based view of
the MT stack. Rectangles represent the components such
as static models and dynamic routines. Nesting relationship
represents hierarchy or containment. There is a clear separation
of data where the model artifacts are concerned. The data
found inside the operational semantics of related components,
however, such as the matcher used for patterns, is not clearly
distinguishable on the diagram. We will clarify this concern
below. In the following paragraphs we investigate how the MT
stack fits within our debugger.

Fig. 3. A MT stack view. Nesting of boxes represents hierarchy.

Input/Output Model Level. Shown on the right of Figure
3, this is the main data part of a model transformation. In
our prototype example we perform in-place transformations,
and therefore we expose that single model as the global data
accessible to the debugger. Of course the model may contain
sensitive data, to which the debugging target may want to limit
access, depending on requirements.

Schedule/Rule Model Level. The MT specification de-
scribes the control flow of the MT execution. This level
is the heart of the debugging target. The nested structure
of MT specification is giving us hints to the vertical and
horizontal dimensions for the debugging. Note that schedule
also represents data for our debugger to query. The MT rule
contained in the schedule typically consists of LHS and RHS

parts (with an optional NAC), each in turn containing patterns.
We need to decide on the VL and HL items. We do this by
analyzing the possible movement in horizontal and vertical
dimensions. In this case, in terms of debugging we would
navigate horizontally from a rule to a following rule in the
schedule, as the rules are processed at the same level of
abstraction. The actual rule transformation is at a different
level of abstraction from rule scheduling, and represents a
descent into a deeper, vertical level, wherein there is horizontal
movement between the process of applying first the LHS, and
then the RHS parts of the rule.

The execution of the LHS and RHS parts contains further,
nested execution complexity. That is the presence of some
action code (AC) used to specify imperative constructs other-
wise too complex to express declaratively. The model element
attribute evaluation is one example of AC use. Treatment of
AC requires a context switch in interpreting the MT specifi-
cation. Execution semantics depend on the action language,
and so requires a formal view of the language in terms of the
debugger navigation pointer values, or would need to relay to
the underlying general purpose language debugging facilities.
We utilize those facilities in our prototype evaluation to deal
with AC.

In summary, for this part of MT stack, the VL can be
obtained by exploring the containment relationship in the MT
schedule presented. If the schedule is presented in textual
format the hierarchical relationship could also be explored
by descending into the function/procedure calls. In turn, a
horizontal dimension of each VL is exposed by enumerating
the items without exploring the hierarchy, as in the case of the
LHS and the RHS parts of one rule.

Pattern Matching Level. Going a level down into the
pattern matching process we necessarily encounter a tool
specific implementation. We unify pattern matching through a
generic, algorithm-agnostic view of the major steps involved.
Generally, a pattern matcher must first find a set of candidates
for constructing bindings for the pattern elements. Candidates
that are successfully bound form a set of bindings. A complete
set of bindings that matches the input pattern is called a match,
and a set of valid matches constitutes a matchset. Movement
in the horizontal dimension within these stages happens by
iterating over the corresponding set items. Finally, the sets
can also be considered as data that we can query during
debugging. Note that non-determinism may be present in terms
of which match is actually selected for pattern application from
the matchset. This can be approached simply as exposing the
selected match.

Pattern Application Level. For the pattern application
process in the RHS part of the MT rule we also need
unified execution concepts, as again this design can be quite
implementation specific. As a general solution we rely on basic
Create, Read, Update, Delete (CRUD) operations affecting the
input model, and define queryable sets related to each one
(except for the Read, in this context, as it belongs to the
matching domain). Our interpretation of the CRUD operations
is based on the unique labels on pattern elements used to assist



in identifying elements meant to be created or deleted. The
navigation in the horizontal dimension here is approached just
as in the case of pattern matching.

IV. DEBUGGING LANGUAGE

Our debugger design builds on a custom debugging lan-
guage expressed through debugging rules, which follow the
familiar MT rule structure, including LHS and RHS parts. This
approach allows us to incorporate domain-specific syntax for
different layers. Debugging rules can also be chained to form
debugging scenarios, which can be executed separately from
a target MT, facilitating automated debugging.

Querying. We embed debugging operations into MT rules
based on the fact that the LHS of a MT rule is a pre-condition
for the application of the RHS. The LHS patterns are matched
in the input model, essentially acting as queries over the
debugging target state. These queries can include inspecting
the input/output model, as well as the MT specification.
The MT problem domain formalisms are then reused in the
debugging rule without the need for any extra effort on the
part of an engineer.

The data involved in the pattern matching and application
process can also be the target of queries. For example, a match
containing the bindings between the pattern and the input
model or any other such data can be exposed to the debugger.
In this context we also reserve certain keywords for the match
sets described in Section III for more precise querying.

In order to reason about the location within the debugging
target we may need to form a query based on the navigation
pointer pair, or some part of it. This is useful in order to
perform an action when the MT control flow enters a desired
location in the MT specification, such as an execution of a
particular rule. Due to variability in specification of navigation
pointers and pattern matching/application related data we may
need to resort to the use of AC instead of declarative queries.

Action. After successful query discovery (or simply a pre-
condition satisfaction), we want to perform an action. For this,
we use the RHS of the rule, specifying traditional debugger
actions, as well as modification of the various parts of the
query domains. We focus mainly on the former in this work,
but many other effects of the RHS action are possible, includ-
ing modifications to the input/output and the MT specification
models. The latter, for example, allows us to perform the
adaptation of MT specification for the exploration of new
execution scenarios. We may also want to influence the pattern
matching and application process. More detailed investigation
of execution adaptation and pattern matching/application in-
fluence represents an advanced debugging session, which we
leave for future work.

Navigation Commands. One of the goals of our debug-
ger is to control the execution of the program by means
of issuing navigation commands. To issue basic debugging
target navigation commands we embed them within the RHS.
Application of the rule, and successful matching of the LHS
pattern then results in the command being performed. Such
debugger commands can be simply issued through the use

Fig. 4. A debugging scenario that steps through the MT execution until the
circle pattern in found resulting in a trace message.

of AC. A visual representation, however, better fits the MT
paradigm and we show a possible iconic representation of a
Next command in Figure 4. In terms of common debugging
parlance, the Next operation represents step over, while step
into maps to Down, and the Up operation maps to the step out
operation.

An example of usage is shown in Figure 4. In this automated
debugging scenario, we want to step through execution until a
given query (detecting a circle node) is satisfied. The scenario
works through two rules, stepping through the execution by
issuing Next commands (with an unconditional query) until
the creation of a circle in the input model can be detected by
a second rule. Rule scheduling applies the first rule (which
always succeeds), then the second, returning to the first rule
when the second fails to apply. Upon success of the second rule
a debugging action is performed, in this case a trace is done
using action code. The pace of debugging is here given by
the use of a Next operation, which depends on the navigation
pointer position at the time the command is issued; it may
also be desirable to step execution at finer granularity, such as
by using a Down operation in the first rule to model a fine-
grain (step-into) execution. Note, that given the many sources
of data described in this paper, the second rule in Figure 4 is
ambiguous in terms of which input model is applicable to the
query, this discussion we omit for brevity.

The second rule in Figure 4 represents a slight semantic
departure from typical MT rule design. In traditional MT rule
design, the absence of the LHS pattern in the RHS of Figure 4
indicates that the occurrence of the LHS pattern should be
deleted (as well as the trace action performed). As this is
not typically the combined intent of a debugger action, we
assume that when a navigation command is present in the RHS
the rule becomes read-only, and the occurrence of the query
present in the LHS will not be modified. When modifications
to the occurrence of a query in combination with navigation
is desired, the user will need to perform this action with two
rules in sequence, one to perform the modification, and another
to issue the navigation command.

Other debugging actions are of course possible. A pause
action, for example, could be performed (when the debugging



target is running continuously) instead to realize a break-
pointing functionality. In this case, the debugger still needs
to ensure that the target state does not change during query
evaluation. Depending on a query, we may need to implicitly
pause the target’s execution on every, fine-grained naviga-
tion pointer change before each query evaluation. Additional,
higher level syntactic constructs can be used to encapsulate
verbose debugging scenarios, such as one in Figure 4, for
convenience.

V. EVALUATION IN ATOMPM

Evidence of the utility and practicality of our design is given
by a sample implementation in AToMPM [2], a browser-based
Tool for Multi-Paradigm Modeling.

The heart of our debugger is implemented using the well-
known Statecharts formalism [3]. Statecharts were chosen
because of their convenience in describing autonomous, con-
current, and reactive systems. The inspiration for our solution
comes from work by others on reimplementing existing model
execution engines in Statecharts with the addition of a debug-
ger related functionality [4]. We chose a different path and im-
plement the main logic in a central Statecharts model (Python-
based). This model deals with the navigation commands,
receives navigation pointer values from the debugging target,
and permits the target to advance the execution. In Figure 5
we demonstrate the modified version of the actual Statecharts
generated from importing the SCXML file 2 into QTCreator’s
3 Statecharts editing facility. The navigation pointer events

Fig. 5. A Statecharts model of the debugger. Orthogonal components are
responsible for processing navigation commands, navigation pointers, and
implementation specific items corresponding to navigation pointers.

from the debugging target are processed in the ProcessingItems
state. The debugging target is then allowed to proceed with
the execution in the transition from the NavigationPointerNew
state according to the guard condition in the particular runtime
context. This context is maintained in the DebuggerControl
state, where we process the navigation commands. Finally,
the navigation pointer changes can also carry information

2https://www.w3.org/TR/scxml/
3https://www.qt.io/ide/

such as rule names, action code line numbers, etc. These are
processed in the separate parallel state called DomainSpecifi-
cActions. Here we can perform such actions as visualization,
highlighting or ensure that the data is shared properly between
components. This state is intended to be more implementation
specific as opposed to other states aiming to be as generic
as possible. In fact, this Statecharts model was reused almost
without modification in another MT tool, AToM3 [5] to specify
the debugger. AToMPM and AToM3 implementations share the
Statecharts model’s compilation target language Python.

We now discuss the tool specific changes necessary to
communicate with the Statecharts model described above. We
identify all locations in the Python back-end code that are
relevant to the changes in navigation pointers. These places
are mainly processing the schedule, individual rules, the LHS
followed by the RHS, down to relevant action code evaluation
and pattern matching/application routines. From each new
navigation pointer location we send events to the Statecharts
model and the MT tool immediately waits on a response
from the Statecharts to proceed. This trivially enables pausing
functionality. If the DebuggerControl is in the running state
the execution may or may not be interrupted, according to the
navigation commands.

The action code treatment is approached utilizing the AC’s
language facilities. In this case the AC is Python, which
provides an interface to develop custom Python debuggers
called BdB. By extending the class we can process Python
code specific events and initiate communication with the
Statecharts model to announce the navigation pointers change.
The navigation pointers change on events when the control
flow descends into the function or the next line/statement is
processed. The navigation pointers can carry line numbers
that we can highlight in the action code as demonstrated in
Figure 6. In addition, we can inspect variables. In the similar

Fig. 6. A screenshot of our tool and processing of action code

fashion of dealing with AC, we envision dealing with the MTs
specified entirely in AC (a loop calling a function representing
the MT rule for example).

Finally, our design supports automated debugging, but also



manual, user-triggered debugging actions. We can have a
debugging rule for each navigation/debugging operation, and
we simply model the button press as the execution of a
debugging rule (and essentially a MT) with a required action.

Efficiency Considerations. It is evident that the context
switching from the MT to the debugger MT will impact
performance. Generally, query evaluation in debugger rules
is based on the same computationally expensive pattern-
matching problem as in general MTs. A comprehensive perfor-
mance evaluation is well beyond the scope of the basic design
we introduce here (or our initial prototype).

VI. RELATED WORK

A variety of approaches exists for framing debugging de-
signs. A prominent approach is to follow an event-based
view of a debugging process. One example is found in the
moldable debugger (MD) [6]. This flexible approach is based
on several primitive debugging events resulting from a debug-
ging target operations combined to produce domain specific
events/operations. This approach can be used to implement
the event-based part of our debugger. We, however, take a
more structure-focused perspective, considering debugging as
a process of navigating execution within and across hierarchi-
cal levels.

Query-based debugging from the general purpose language
domain was used as an inspiration in this paper [1], [7], [8].
Whyline debugger [9] generates useful queries that can be ap-
plied to the recorded program execution traces. Generic query
designs can of course bring performance concerns. EMF-
IncQuery tool [10] performs efficient, incremental declarative
query evaluations for MT verification. We can potentially
utilize similar incremental pattern matchings to improve the
performance of our query evaluation.

The GDL debugging language [11] defines debugging op-
erations that are embedded into a general programming lan-
guage, and complex debugging scenarios can then be specified
programmatically. Similarly, we embed the MT debugging
language elements into the MT language. This allows us
to use branch and loop constructs and create user specified
transformations for the purpose of debugging.

MT and model debugging have of course been explored
in the past. AToMPM, for instance, already supports MT
debugging at the level of the MT schedule and down to
individual rules, as previously described [12]. Other MT
debugging solutions have also been described [13]–[16].

VII. CONCLUSIONS AND FUTURE WORK

In this chapter we explored the design of a MT transfor-
mation debugger based on model transformations themselves.
The debugger allows for specification of debugging scenarios
aiming at discovering complex MT execution artifacts, using
the syntax and semantics of MTs. This reduces the learning
curve as the user is operating within the familiar domain of
MTs and reuses existing DSLs. The advantage of a debugging
scenario, just like the MT itself, is that it can be left to run
unattended and perform the desired tasks. A modeled solution

to debugging has other benefits as well. Debugging scenarios
can be exchanged between engineers, reused and analyzed.

Our approach was further based on a structured view over
the general debugging process. This allows us to bring clarity
into the notion of a step in the declarative context of model
transformations. Our non-trivial prototype implementation,
based on this view, allows us to evaluate the feasibility of
our debugger and demonstrate the treatment of AC as well.

For future work we look to address the performance evalu-
ation of debugging scenarios and their in-depth usage. We ex-
pect however, that the ability to debug model transformations
in a way presented in this paper may outweigh the runtime
effects on the whole system.

The authors would like to thank Simon Van Mierlo for his
insight into Statecharts-based implementation of debuggers.

REFERENCES

[1] R. Lencevicius, U. Hölzle, and A. K. Singh, “Query-based debugging
of object-oriented programs,” in Proceedings of the SIGPLAN OOPSLA
1997. ACM, pp. 304–317.

[2] R. Mannadiar, “A multi-paradigm modelling approach to the foundations
of domain-specific modelling,” Ph.D. dissertation, McGill University,
2012.

[3] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231–274, June 1987.

[4] S. Van Mierlo, “Explicitly modelling model debugging environments,”
in Proceedings of the ACM Student Research Competition at MODELS
2015 co-located with the ACM/IEEE 18th International Conference
MODELS 2015, 2015, pp. 24–29.

[5] J. de Lara and H. L. Vangheluwe, “Using AToM3 as a meta-CASE en-
vironment,” in 4th International Conference On Enterprise Information
Systems, 2002, pp. 642–649.

[6] A. Chiş, T. Gı̂rba, and O. Nierstrasz, “The moldable debugger: A
framework for developing domain-specific debuggers,” in SLE 2014,
Västerås, Sweden, Proceedings. Springer International Publishing, pp.
102–121.

[7] A. Potanin, J. Noble, and R. Biddle, “Snapshot query-based debugging,”
in 2004 Australian Software Engineering Conference. Proceedings.,
2004, pp. 251–259.

[8] R. Lencevicius, “On-the-fly query-based debugging with examples,” in
Proceedings Fourth International Workshop on Automated Debugging,
2000.

[9] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior,” in Proceedings
of the ICSE 2008 Leipzig, Germany. ACM, pp. 301–310.

[10] M. Búr, Z. Ujhelyi, Á. Horváth, and D. Varró, “Local search-based
pattern matching features in EMF-IncQuery,” in ICGT 2015, L’Aquila
Italy, Proceedings, pp. 275–282.

[11] R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E. Wee, “Semantic
issues in the design of languages for debugging,” Comput. Lang., pp.
17–37.

[12] R. Mannadiar and H. Vangheluwe, “Debugging in domain-specific
modelling,” in Proceedings, SLE 2010 Eindhoven, The Netherlands.
Springer-Verlag, pp. 276–285.

[13] R. T. Lindeman, L. C. Kats, and E. Visser, “Declaratively defining
domain-specific language debuggers,” in Proceedings GPCE 2011 Port-
land, Oregon USA. ACM, pp. 127–136.

[14] L. Geiger, “Model level debugging with Fujaba,” in Proceedings of 6th
International Fujaba Days 2008.

[15] T. Mészáros and T. Levendovszky, “Visual specification of a DSL
processor debugger,” in Proceedings OOPSLA Workshop on Domain-
Specific Modeling 2008, Nashville, USA, pp. 67–72.

[16] M. Lawley and J. Steel, “Practical declarative model transformation with
tefkat,” in Satellite Events at the MoDELS 2005 Conference: MoDELS
2005 International Workshops Doctoral Symposium, Educators Sympo-
sium Montego Bay, Jamaica, October 2-7, 2005 Revised Selected Papers,
J.-M. Bruel, Ed. Springer Berlin Heidelberg, pp. 139–150.


