
Modeling as a Service:
A Survey of Existing Tools

Saheed Popoola Jeffrey Carver Jeff Gray
Department of Computer Science

University of Alabama
sopopoola@crimson.ua.edu, {carver,gray}@cs.ua.edu

Abstract—Modeling tools are needed to deliver the promises
of Model-Driven Engineering, which include reduced devel-
opment time and enhanced software quality. However, users
must typically install these tools locally. The tools often have
complex configurations and inter-dependency requirements that
discourage non-technical users or novices from adopting such
tools. The local installation also hampers collaborative modeling
and reuse of modeling artifacts. A solution to these challenges
is to deliver modeling functionality as a service. In this paper,
we present a survey of current tools that deliver modeling
functionality as service. We analyzed various approaches used to
develop existing tools and the functionalities exhibited by them.
The results of our review show that support for collaboration and
domain-specific modeling are the dominant features exhibited
by the tools, but collaboration is the major feature that drives
tool adoption. The paper concludes by proposing future research
directions that can facilitate the wider adoption of modeling as
a service.

I. INTRODUCTION

Model-Driven Engineering (MDE) is an approach to soft-
ware engineering whereby models are used as first-class
artifacts throughout the stages of software development. This
elevation of models to first-class entities makes it easy to focus
on the problem space rather than the underlying computing
environment, thereby reducing development time. MDE also
enhances code reusability by providing support for capabilities
such as automated code generation and model transformations.

In order to achieve the benefits of MDE, tools are needed
for manipulating models. Many frameworks and tools such as
ATL [33], Epsilon [35] and GEMOC [3], have been developed
to support a wide range of model management activities.
However, MDE is yet to be widely adopted due to two major
reasons: First, most modeling tools are usually deployed as
software packages that need to be installed locally. These
tools often have complex configurations and inter-dependency
requirements that may discourage a novice from adopting such
tools [44], [54]. Second, the support for reuse of existing
modeling artifacts and interoperability among existing tools is
limited; hence, developers usually build similar modeling tools
from scratch [39]. A potential solution toward tackling these
challenges is to develop modeling tools and frameworks to
follow the software-as-a-service paradigm. A service-oriented
modeling platform can offer a more transparent solution to the
reusablity and interoperability challenges by defining bridges
across multiple platforms as services that can be executed on
demand [10].

Fig. 1. A Typical MaaS Platform

The goal of this paper is to present an analysis of current
tools from the literature that offer modeling (within MDE) as
a service (MaaS). Figure 1 shows a typical modeling platform
that offers its functionalities as a service. In this study, the aim
is to answer the following research questions with respect to
modeling tools that offer their functionalities as a service:

RQ1: What are the common features and functionalities
exhibited by the tools?

RQ2: How important are these features towards the
adoption of the tools?

RQ3: What future research is needed to facilitate the
adoption of the tools?

II. BACKGROUND

This section presents a brief introduction to related terms
that are used throughout this paper.

A. Cloud computing

The National Institute of Standards and Technology (NIST)
defines cloud computing as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned
and released with minimal management effort or service
provider interaction” [43]. Cloud computing is projected to
be a disruptive technology to the IT industry, and numerous
surveys show an increasing adoption of the cloud, including
the migration of numerous software to the cloud [9], [12].



A lot of studies have been conducted as exemplified by the
multiple literature reviews in the field [4], [8], [24], [46].

Currently, there are many cloud platforms such as Amazon
Web Services, Google Cloud Platform, and Microsoft Azure,
that offer many services ranging from online storage to oper-
ational software applications. These services can be grouped
into three main categories [4]:

• Infrastructure as a Service (IaaS): This involves offering
hardware-related components as services, e.g., virtual
storage services. A good example is Amazon S31.

• Platform as a Service (PaaS): This involves offering
development platforms, where cloud applications can run
as a service. An example is Microsoft Azure2.

• Software as a Service (SaaS): This offers a complete,
ready-to-use software application as a service. This is the
most common category of cloud services and examples
of SaaS applications include Gmail, Google docs, and
Eclipse Che [1].

Further explanations on the SaaS category is provided in the
next section because it is the most relevant to this work.

B. Software as a Service

“Software as a Service (SaaS)” is an approach whereby soft-
ware is stored remotely (e.g., on the cloud) and its capabilities
are accessed via a set of APIs (i.e., as services). The underlying
infrastructure, platform and software requirements/details are
hidden from the users. Recently, there has been a gradual
migration of software platforms and tools to the cloud. Several
cloud-based alternatives for traditional desktop-based software
tools are now available (for example, [1], [2]). The benefits of
the software-as-a-service paradigm include efficient cost poli-
cies, minimal setup configurations, and reduced maintenance
efforts. SaaS also enhances reuse of software artifacts because
they are now stored on the cloud and may be accessed publicly
via the internet.

III. RELATED WORK

A number of surveys and literature reviews have been
conducted in the area of cloud computing, software as a service
and software modeling. Ramollari et al. conducted a survey
on methodologies that are used in service-oriented computing
[47]. They compared some existing methodologies against
prominent features service-oriented software are expected to
have. Patidar et al. and Ahmed et al. classified current tech-
nologies and tools based on how they are used [4], [46]. Zhou
et al. focused on the different services that are available on the
cloud [55], while Gray et al. gave a brief overview of current
MaaS tools [27]. The study most similar to the one conducted
in this paper was the survey on MaaS architectures by Cayirci
et al. [13]; however, they focus more on the possible risks
and challenges associated with the deployment of modeling
operations as a service. None of these works have conducted
an extensive review of the existing tools and technologies that
deliver software modeling functionalities as a service.

1https://aws.amazon.com/s3/
2https://azure.microsoft.com

IV. RESEARCH METHODOLOGY

For this study, we used four research databases — Google
Scholar, Scopus, SpringerLink, and IEEE Explore – to extract
relevant papers and tools on modeling as a service. We used
the key words — (“software modeling” OR “modeling”) AND
(“services” OR “cloud”) — for the search. By manually
reading through the paper (or abstract in some cases), we were
able to identify relevant papers for this study. We selected
papers that deal with how modeling tools or activities can be
delivered as a service and we eliminated others (e.g., those
dealing with how to model services on the cloud). We then
searched through the references of the identified papers to
extract additional papers that we might have missed. Due to the
number of papers available, we decided to focus on tools that
support at least one of the core MDE functionalities, such as
code generation from models and/or automated transformation
of models from one form to another.

To answer the first research question on the features ex-
hibited by selected tools, we examined the relevant features
mentioned by the paper that describes a tool, and other
features affirmed by other papers that referenced the tool.
For the second and third research questions on the features
contribution to a tools adoption and future research areas, we
answered these questions based on the information we were
able to extract from the papers cited in Sections VIII and IX.

V. APPROACHES TO DEPLOYING
MODELING AS A SERVICE

Two main approaches were observed in deploying modeling
as a service. They are client-server and cloud approaches [5].

• Client-Server: In this approach, the modeling platform is
installed on a local server and its capabilities are accessed
by the clients connected to the server. The number of
users is limited to the clients connected to the server and
this approach still requires a form of installation on the
local server. However, it allows for flexibility and easy
customization [29]. This approach was implemented in
AToMPM [15], ModelBus [29], and DSLforge [40].

• Cloud: This approach fully explores the benefits of mod-
eling as a service. It is accessed on the web via the
internet and does not require any form of installation.
Its functionalities can be programmatically accessed as
a service via a set of APIs or through a web browser
[5]. This is the most common approach and it was used
in GenMyModel [23], WebGME [42], CLOOCA [31],
MORSE [32] and MDEForge [5].

VI. MODELING AS A SERVICE (MAAS) TOOLS

This section gives a brief overview of selected software
modeling frameworks that deliver modeling functionalities
(within MDE) as a service.

• GenMyModel is an online modeling platform that cur-
rently supports 7 modeling formats including UML,
Flowcharts, and Ecore. It also offers capabilities for cus-
tomized formats. The main focus is on collaboration and
the ability to work simultaneously with many developers.



Hence, it provides mechanisms for conflict management
and change awareness. It also provides a public repository
of models to facilitate searching and reuse of public
projects. A flexible pricing model is adopted where users
can access the service for free if the project is public, but
monthly subscriptions are required for private projects.
However, GenMyModel limits the user to their own UML
tools and a limited set of modeling languages [16], [23].

• WebGME is a scalable web and cloud based tool for
collaborative design and synthesis of domain-specific
modeling tools and associated models. The main target of
the tool is large-scale complex information systems. Its
capabilities can be accessed via a web-based client or a
set of APIs. It supports model version control and object-
oriented concepts such as composition and inheritance.
The tool supports model versioning, inheritance and
composition by creating a copy of the model (as a child)
and establishing dependency links between the parent and
child copy so that changes are easily propagated. This
duplication of models makes the framework cumbersome,
but it also helps the modeller to handle the inherent
complexities of large models [34], [42].

• CLOOCA is a platform for developing domain-specific
modeling languages and the necessary code generators.
The tool adopts a client-server architecture whereby the
models are stored on the server and clients can access
the models via a JavaScript-enabled web browser. The
client side consists of two main parts — an editor and
a workbench. The workbench allows for diagrammatical
creation of modeling languages and their code generators,
while the editors make it easy to modify an existing
language [31].

• AToMPM is a collaborative platform that provides a
multi-view mechanism for multiple users that are work-
ing simultaneously on the same models. It supports
the design of modeling language environments, model
transformations and general model management. The
tool’s architecture consists of a front-end server, back-
end server and the clients. The front-end server receives
the clients’ requests, and then forwards the request to
the appropriate destination in the back-end server. The
front-end server is used as a scalable routing system for
managing incoming messages so that the back-end server
only sees a single client irrespective of the number of
users. This 2-server architecture ensures consistency and
efficient change propagation [15].

• Morse framework provides a central model repository
environment for managing and storing modeling artifacts.
Each model and model element in the repository is
assigned a unique identifier. The capabilities of these
models can be accessed via a set of services that contain
references to the model that created them, which makes
the services aware of the models. The framework links
each service with its related models via the models’
identifiers. The repository supports versioning, merging,
branching, tagging and sharing of modeling artifacts

TABLE I
OVERVIEW OF CURRENT MAAS TOOLS

Tool Approach Persistence Extensible I/A 1 G/T 2

GenMyModel Cloud XML No I G
WebGME Cloud COM Yes Both Both
CLOOCA Cloud XML ? A T
AToMPM Client-

Server
XML Yes A Both

MORSE Cloud XML Yes I Both
MDEForge Cloud REST Yes A Both
ModelBus Client-

Server
Adapter
Based

Yes I Both

DSLforge Client-
Server

XML Yes A T

across multiple projects. The framework also supports
heterogeneous platforms by abstracting the underlying
technologies, thereby making it easy to focus on the
projects at runtime [32].

• MDEForge is a modular and extensible model repository
that can be used to store diverse modeling artifacts. Four
main services are provided by the tool; namely, model,
metamodel, transformation and editor services. These
services are also easy to extend or customize [5].

• Modelbus is a framework that extends web-service in-
terfaces to provide modeling services. Its main goal is
to add model awareness to service-oriented systems. It
contains a model repository, which is the central point of
the framework. A user can reference or manipulate the
models that are stored in the repository via each model’s
unique URL. The framework uses a notification system
to propagate changes across the models. The framework
also supports model versioning, model merging, and
distributed model management operations, in a scalable
and consistent manner [29].

• DSLforge is a framework that can be used to generate
online textual models (for example, language grammars)
and domain-specific languages. It is useful for producing
extensible online editors that can be used to create
transformations for diverse models [40].

Table I gives a summary of these tools, the format in which
the models are stored (persistence) and whether they can be
easily extended. It is important that models should be stored
(persisted) in a way that makes it easy to execute modeling
operations on the models and also makes the tool compatible
to a wide range of modeling formats [38]. A good modeling
framework should also be extensible. The framework should
contain a set of reusable services that are abstract enough, so
that it becomes easy to extend the framework’s capabilities
and adapt the framework to a wide range of functionalities
[45].

1Industrial (I) or Academic (A)
2Graphical (G) or Textual (T)



TABLE II
FEATURES IN EXISTING MAAS TOOLS

Tools\Functionalities Multi-View Collaboration Code Generation Versioning DSML Merging Transformation
GenMyModel Yes Yes Yes Yes No No No
WebGME Yes Yes No Yes Yes No Yes
CLOOCA No No Yes No Yes No No
AToMPM Yes Yes Yes No Yes No Yes
Morse No Yes No Yes Yes Yes No
MDEForge No Yes Yes No Yes No Yes
ModelBus No Yes No Yes Yes Yes No
DSLforge No Yes Yes No Yes No Yes

TABLE III
FEATURES PRESENT IN MODELING PLATFORMS

Features Number of Tools
Collaboration 6
DSML 6
Code Generation 4
Versioning 4
Transformation 3
Multi-View 3
Merging 2

VII. FEATURES IN EXISTING MAAS TOOLS

This section answers the first research question: “Which
Features are present in existing tools”? Section VI showed that
current tools offer diverse functionalities. We have synthesized
these functionalities to extract the most common features that
are related to modeling or service-oriented computing. Eight
main features were exhibited by many of the tools and they
are listed throughout this section.

Multi-View Based modeling: Since modeling is usually
done at different levels of abstractions depending on its
intended purpose, it is essential that a modeling platform
should be able to support multiple views of the same system at
different levels of abstraction [15], [20]. This feature is present
in AToMPM, GenMyModel, and WebGME while other tools
do not support this feature.

Collaboration: This allows teams of technical and non-
technical stakeholders to work together and brainstorm on
possible solutions to the problem space [17], [20], [52].
Traditional modeling tools inhibit this functionality because
they are typically desktop based; hence, this feature is a good
validation of delivering modeling capabilities as a service. All
the tools under study except CLOOCA provide support for
collaboration. Furthermore, many of the tools also support
real-time collaboration in varying degrees of granularity. Tools
like GenMyModel and AToMPM have a very high level of
granularity and ensure that only the model element that is
being edited is locked, while other parts of the same model
can be edited concurrently [15].

Code Generation: This is the ability to automatically
generate code from models. This helps to bridge the gap
between modeling and programming, and makes it easy to
programmatically manipulate models and other modeling arte-
facts [30]. GenMyModel, AToMPM, and MDEForge, offer
built-in code generators and they also support customized

generators, while CLOOCA and Morse only support built-in
code generators. Other tools do not support this feature.

Model Versioning and Model Merging: Model versioning
makes it easy to store and relate different versions of the same
model, while model merging is the combination of two or
more models with similar or different structures [32]. The
implementation of these features is inherently complex due
to the high level of inter-connection among elements in a
model [34]. Therefore, only four tools support either model
versioning or model merging.

Domain-Specific modeling Language: This is the ability
to support the development of new modeling languages [42].
This feature will make it easy to adapt the framework for
different purposes [18]. This is one of the most common
feature exhibited by the tools and it is supported by all of
the tools except GenMyModel.

Model-to-Model Transformation: This is the ability to
transform a model from one form to another and it is one
of the most common activity in MDE [49]. A viable tool for
MDE should support this functionality. However, more than
half of the tools under study do not support model-to-model
transformation.

Heterogeneity and Tools Interoperability: For a wider
adoption, it is necessary that a tool should be able to support
a wide range of modeling artifacts that are stored in diverse
formats [45]. Support for heterogeneity may be achieved by
storing modeling artifacts in a central repository and allowing
access to them using standardized APIs [29]. It is also impor-
tant that the tools should be easy to integrate with other tools
[11] (for example, backup data to Google drive).

Scalability: This is the ability to support large models
(for example, models with millions of elements) without a
significant impact on the tool’s performance. This feature is
important in determining whether a tool will be useful in an
industrial context and it has been one of the major challenges
associated with modeling in general [37], [38]. The computing
power available in the cloud is expected to mitigate the
challenges of scalability in modeling [10]. Although minimal
research has been done to assess the performance of current
tools in handling large models, scalability was mentioned as
an important feature in GenMyModel [23], Modelbus [29],
DSLforge [40], and WebGME [42].

Table II gives a summary of the the functionalities offered
by each tool, while Table III shows the number of tools that
support each feature. It can be observed that collaboration and



domain-specific modeling languages have the most support
across the frameworks.

VIII. FEATURES THAT CONTRIBUTE SIGNIFICANTLY TO
THE ADOPTION OF MAAS TOOLS

This section answers the second research question: “How
relevant are these features towards the adoption of current
tools”? Section VII gave a concise list of features that are
present in existing tools. However, we do not know the
contribution of these features to the adoption of the tools or if
they are even necessary. A lot of features might make a tool
cumbersome while lack of essential features is likely to affect
its usability [25].

Limited statistical data is available on the number of users
adopting the tools. Hence, there is little evidence to measure
the impact of each feature on the adoption of the tools.
However, three features that seem to have a significant effect
on the adoption of these tools are highlighted below.

Collaboration: This is likely to be the most important
feature driving the adoption of service-oriented modeling
tools. Software development has become a collaborative activ-
ity due to the increasing complexity of software and software
modeling is no exception [52]. Dirix et al. reported that
it was the most demanded feature during the development
stage of GenMyModel [23]. We also noticed that most of
the commercial modeling tools, including those that are not
included in this paper such as LucidChart3, and creately4,
support collaboration [21], [52].

Tool Integration: Developers and users of the tools store
models in different formats, and often deal with diverse
frameworks and technologies. Therefore, the users often need
to reuse data from an external tool [45]; hence, one of
the main factors for adoption is a tool’s ability to integrate
seamlessly with other tools, for example, support for data
stored in Microsoft Excel or Google sheets, and integration
with versioning systems such as GitHub [11].

Scalability: A common theme among the commercial
tools is the ability to support large models with thousands
of model element [23]. The prevailing support for scalability
across commercial tools is a strong sign that the feature is
important for the adoption of these tools. The importance
of this feature is corroborated by the fact that the need for
scalability is well-established even in traditional desktop-based
modeling tools [10], [37].

In summary, even though there is limited statistical data to
measure the contribution of each feature to a tool’s adoption
rate; support for collaboration, scalability, and seamless inte-
gration with other tools, are essential to the success of a tool.

IX. ADDITIONAL FEATURES THAT CAN ENHANCE THE
ADOPTION OF MAAS TOOLS

In order to answer the third research question that deals with
future research directions, we compared the functionalities

3https://www.lucidchart.com/
4https://www.creately.com/

exhibited by current tools with essential features expected from
a modeling or cloud-based tool [45], [55].

Support for Sketches: Most tools support modeling using
a standard modeling language such as UML. However, a
number of works have highlighted the importance of sketches
during a brainstorming section, and during the design and
analysis phase of software development [14], [28], [41]. Since
modeling also takes place during the design and analysis
phase, tool support for sketching or handwriting models is
likely to increase the adoption of a tool. Automated model
management operations such as code generation may also be
realized from these sketches.

Security and privacy: A major concern for any cloud-
based platform is security and privacy [56]. It is necessary to
design appropriate means of preventing unauthorized access.
The privacy of the users’ data and proper attribution of a
modeling artifact to its owner, is vital to boosting user’s
confidence in adopting a tool [55].

Model persistence: Most modeling frameworks store
models in XMI. While XMI is a good standard for model
persistence because it is able to support a wide range of
formats, it is not implemented consistently across different
platforms; thereby, making it hard to share models across
different vendors [53]. Furthermore, XMI is also verbose and
may impact performance negatively [7].

Opportunities for Reverse Engineering: The advent of
large open-source projects and public repositories have in-
creased the importance of reverse engineering [48]. A lot of
MDE-based frameworks have been used to extract structural
and behavioural information from source code. These frame-
works usually produce visual models to aid code comprehen-
sion and gain useful insights to decisions made during the
design of the software [10]. A potential usefulness of MaaS
is to develop capabilities to scan through online repositories
and generate appropriate models without having to download
the source code locally on a machine.

Incentives to share models: A major advantage of deliv-
ering modeling capabilities as a service is the opportunity to
share and reuse modeling artifacts. However, it is necessary
to encourage developers to publicly share their models online.
A common paradigm is to offer free modeling services for
developers with publicly available models [23]. However, more
work is needed in terms of copyright and proper attribution of
modeling artifacts to the original developer(s) [19].

Collaboration as a social activity: Collaborative software
development is a social activity where developers need to
communicate, send emails, and share ideas [6]. Hence, the
addition of social features such as group messaging, will likely
enhance the adoption of these tools [6], [50].

Pricing model: Much has not been done on viable pricing
models for MaaS. Yet, a viable source of revenue is important
to ensure sustainability of the platforms due to recurrent costs
such as hosting and platform maintenance fees. These costs are
usually not incurred in traditional desktop-based tools, because
the user directly bears the cost for the underlying computing
infrastructure and maintenance. However, care should be taken



to ensure that the pricing model is not a barrier to users’
adoption of the tool [55].

X. FURTHER OBSERVATIONS ON
EXISTING TOOL FEATURES

A. Diverse functionalities

Our review of the MaaS tools shows that most of the tools
offer varied functionalities in different ways. However, the
features and functionalities discussed in Section VII tends to
be more common among the tools, even though they exhibit
the features in different ways. For example, GenMyModel
offers a more granular form of collaboration with support for
conflict management than most other tools [19]. It may also
be preferable to develop frameworks that other developers or
users can extend easily to suit a user’s preference [45].

B. Collaboration is necessary for adoption

Section VIII shows that all the commercial platforms sup-
port collaborative modeling and it was the most requested
feature by users during the development of GenMyModel
[22]. This widespread support for collaboration highlights the
need for collaborative features in motivating users towards
adopting a tool. Many modeling technologies usually lock
a model when another member of the team is editing the
model, thereby making it impossible for other users to edit
the same model at the same time, though they can view the
changes in real-time [15], [23]. This locking mechanism is
necessary for consistency management and efficient change
propagation among the users [42]. However, techniques to
improve granularity, which allows two people to edit different
parts of the same model at the same time, is needed to enhance
the collaboration experience.

C. Scalability remains a holy grail

The commercial success of a modeling tool tends to depend
on its performance when handling large models (for example,
models with hundreds of thousands of elements) [19]. Efficient
search and query mechanisms are needed to search for large
modeling artifacts and execute model management programs,
such as code generation, in a scalable manner [36]. It is
necessary that developers of modeling platforms should take
advantage of the computing power that is available in the cloud
(e.g., via distributed query techniques) to deliver a scalable
framework that can handle large models without a significant
impact on performance [51].

D. Centralized repository is mostly used for collaboration and
tool heterogeneity

All the selected frameworks for this study that support
collaboration and/or heterogeneity, store models in a central
repository for consistency and easy management [23], [29],
[32], [42]. However, the use of a central repository may expose
the tool to a single point of failure or inefficient performance
due to lack of distributed capabilities.

E. Empirical studies on tool features

Statistical data to measure the rate of a tool’s adoption,
or determine the contribution of each feature to the tool’s
success, is not available. Hence, the most significant feature
that is driving the adoption a tool could not be determined.
Empirical studies on tool usability is needed to determine the
main features that drive a tool’s adoption.

F. More features and functionalities are needed to enhance
adoption

Although current tools exhibit a lot of features, Section VII
shows that more features are needed to facilitate the adoption
of MaaS tools. However, it should be noted that a tool should
not contain too many features, since this may affect the tool’s
usability [26]. A good approach is to build tools that other
developers can extend easily to suit user demand [45].

XI. RESEARCH LIMITATIONS

A major limitation of this work is the exclusion of modeling
tools that do not offer MDE capabilities, such as code gener-
ation and model transformation. Furthermore, there may be a
significant level of bias in the gathering, sorting and analysis
of the tools and techniques listed in this paper. This is because
these activities involved much manual input and speculations.

A second limitation is that the paper focuses on the presence
(or absence) of some features in the tools, and a detailed
exploration of the level of support provided for the features
is not considered. Therefore, it may be possible that while a
tool may support collaboration, such support may be limited or
cumbersome. However, we do believe that this study is a good
initial step towards a comprehensive survey of MaaS tools.

XII. CONCLUSION

This paper has highlighted some of the important features
necessary for the adoption of a modeling tool that deliver its
functionalities delivered as a service. This knowledge is useful
for developers and researchers, in order to know the essential
features to focus on. The first part of this paper reviewed
different techniques for delivering modeling as a service and
the state-of-the-art tools that offer modeling services. The
findings show many differences in the functionalities offered
by these tools. The study also discovered that collaboration
is necessary for facilitating the adoption of these tools. Fur-
thermore, the study revealed that important features such as
pricing and security of these platforms were rarely discussed
in the literature.

We have also identified some future research directions that
can lead to the full realization of tools that deliver modeling
functionalities as a service and facilitate the adoption of such
tools. We consider work on efficient model persistence format
and support for sketching as viable research directions.

In the future, we plan to carry out a comprehensive sys-
tematic review of the tools and to validate (or invalidate) the
conclusions in this study, especially with regards to the second
and third research questions.



REFERENCES

[1] Eclipse Che, a developer workspace server and cloud IDE.
http://www.eclipse.org/che/.

[2] Eclipse Orion, a modern open source software development environment
that runs in the cloud. https://orionhub.org/.

[3] GEMOC studio. www.gemoc.org/studio, 2017.
[4] M. Ahmed, A. Chowdhury, M. Ahmed, and M. M. H. Rafee. An

advanced survey on cloud computing and state-of-the-art research issues.
IJCSI International Journal of Computer Science Issues, 9(1):1694–
0814, 2012.

[5] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and
A. Pierantonio. MDEForge: an extensible web-based modeling platform.
In CloudMDE@ MoDELS, pages 66–75, 2014.

[6] A. Begel, R. DeLine, and T. Zimmermann. Social media for software
engineering. In Proceedings of the FSE/SDP workshop on Future of
Software Engineering Research, pages 33–38. ACM, 2010.

[7] A. Benelallam, A. Gómez, M. Tisi, and J. Cabot. Distributed model-to-
model transformation with ATL on MapReduce. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language
Engineering, pages 37–48, 2015.

[8] Y. Benslimane, M. Plaisent, P. Bernard, and B. Bahli. Key challenges
and opportunities in cloud computing and implications on service
requirements: Evidence from a systematic literature review. In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th In-
ternational Conference on Cloud Computing Technology and Science,
pages 114–121, 2014.

[9] N. Bridge and G. OM. 2013 future of cloud computing 3rd annual sur-
vey results. http://www.northbridge.com/2013-cloud-computing-survey,
2013.

[10] H. Bruneliere, J. Cabot, and F. Jouault. Combining model-driven
engineering and cloud computing. In Modeling, Design, and Analysis for
the Service Cloud-MDA4ServiceCloud’10: Workshop’s 4th edition (co-
located with the 6th European Conference on Modelling Foundations
and Applications-ECMFA), 2010.

[11] B. Bryant, J.-M. Jézéquel, R. Lämmel, M. Mernik, M. Schindler,
F. Steinmann, J.-P. Tolvanen, A. Vallecillo, and M. Völter. Globalized
domain specific language engineering. In Globalizing Domain-Specific
Languages, pages 43–69. Springer International Publishing, 2015.

[12] Capgemini. Business cloud: The state of play shifts rapidly. technical
report,. Technical report, Capgemini, 2012.

[13] E. Cayirci. Modeling and simulation as a cloud service: a survey. In
Winter Simulation Conference (WSC), pages 389–400, 2013.

[14] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s go to
the whiteboard: how and why software developers use drawings. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 557–566, 2007.

[15] J. Corley and E. Syriani. A cloud architecture for an extensible multi-
paradigm modeling environment. In PSRC@ MoDELs, pages 6–10,
2014.

[16] R. Crocombe and D. Kolovos. Code generation as a service. In Proceed-
ings of the 3rd International Workshop on Model-Driven Engineering
on and for the Cloud, 18th International Conference on Model Driven
Engineering Languages and Systems, pages 25–30, 2015.

[17] A. R. da Silva. Model-driven engineering: A survey supported by the
unified conceptual model. Computer Languages, Systems & Structures,
43:139 – 155, 2015.

[18] J. Davis. GME: the generic modeling environment. In Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 82–83, 2003.

[19] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Collaborative
repositories in model-driven engineering [software technology]. IEEE
Software, 32(3):28–34, 2015.

[20] D. Di Ruscio, M. Franzago, H. Muccini, and I. Malavolta. Envisioning
the future of collaborative model-driven software engineering. In Pro-
ceedings of the 39th International Conference on Software Engineering
Companion, pages 219–221. IEEE Press, 2017.

[21] M. Dirix. Awareness in computer-supported collaborative modelling.
application to genmymodel. In ECOOP Doctoral Symposium, 2013.

[22] M. Dirix, X. Le Pallec, and A. Muller. Software support requirements
for awareness in collaborative modeling. In OTM Confederated Inter-
national Conferences” On the Move to Meaningful Internet Systems”,
pages 382–399, 2014.

[23] M. Dirix, A. Muller, and V. Aranega. Genmymodel: an online uml case
tool. In ECOOP, 2013.

[24] P. T. Endo, G. E. Gonçalves, J. Kelner, and D. Sadok. A survey on open-
source cloud computing solutions. In Brazilian Symposium on Computer
Networks and Distributed Systems, volume 71, 2010.

[25] A. Forward and T. C. Lethbridge. The relevance of software documenta-
tion, tools and technologies: a survey. In Proceedings of the 2002 ACM
Symposium on Document Engineering, pages 26–33, 2002.

[26] N. C. Goodwin. Functionality and usability. Communications of the
ACM, 30(3):229–233, 1987.

[27] J. Gray and B. Rumpe. The evolution of model editors: browser-
and cloud-based solutions. Software and Systems Modeling (SoSyM),
15(2):303–305, 2016.

[28] J. Grundy and J. Hosking. Supporting generic sketching-based input of
diagrams in a domain-specific visual language meta-tool. In Proceedings
of the 29th international conference on Software Engineering, pages
282–291. IEEE Computer Society, 2007.

[29] C. Hein, T. Ritter, and M. Wagner. Model-driven tool integration with
modelbus. In Workshop Future Trends of Model-Driven Development,
pages 50–52, 2009.

[30] Z. Hemel, L. C. Kats, and E. Visser. Code generation by model
transformation. In International Conference on Theory and Practice
of Model Transformations, pages 183–198, 2008.

[31] S. Hiya, K. Hisazumi, A. Fukuda, and T. Nakanishi. clooca: Web based
tool for domain specific modeling. In Demos/Posters/StudentResearch@
MoDELS, pages 31–35, 2013.

[32] T. Holmes, U. Zdun, and S. Dustdar. Morse: A model-aware service
environment. In Services Computing Conference, 2009. APSCC 2009.
IEEE Asia-Pacific, pages 470–477, 2009.

[33] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model
transformation tool. Science of Computer Programming, 72(1):31–39,
2008.

[34] G. Karsai, M. Maroti, Á. Lédeczi, J. Gray, and J. Sztipanovits. Compo-
sition and cloning in modeling and meta-modeling. IEEE Transactions
on Control Systems Technology, 12(2):263–278, 2004.

[35] D. Kolovos, L. Rose, A. Garca-Domnguez, and R. Paige. The Epsilon
Book. http://www.eclipse.org/epsilon/doc/book/, 2017.

[36] D. Kolovos, L. Rose, R. Paige, E. Guerra, J. Cuadrado, J. De Lara,
I. Ráth, D. Varró, G. Sunyé, and M. Tisi. MONDO: scalable modelling
and model management on the cloud. In STAF2015 Project Showcase,
2015.

[37] D. S. Kolovos, R. F. Paige, and F. A. Polack. Scalability: The
holy grail of model driven engineering. In ChaMDE 2008 Workshop
Proceedings: International Workshop on Challenges in Model-Driven
Software Engineering, pages 10–14, 2008.

[38] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, et al. A research
roadmap towards achieving scalability in model driven engineering. In
Proceedings of the Workshop on Scalability in Model Driven Engineer-
ing, pages 2–5, 2013.

[39] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based dsl
frameworks. In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications,
pages 602–616. ACM, 2006.

[40] A. Lajmi, J. Martinez, and T. Ziadi. Dslforge: Textual modeling
on the web. In DEMONSTRATIONS track of the ACM/IEEE 17th
International Conference on Model Driven Engineering Languages and
Systems (Models), 2014.

[41] N. Mangano, T. D. LaToza, M. Petre, and A. Van der Hoek. How
software designers interact with sketches at the whiteboard. IEEE
Transactions on Software Engineering, 41(2):135–156, 2015.

[42] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendovszky, and Á. Lédeczi. Next generation (meta) modeling:
Web-and cloud-based collaborative tool infrastructure. In International
Workshop on Multi-Paradigm Modeling@ MoDELS, pages 41–60, 2014.

[43] P. M. Mell and T. Grance. Sp 800-145. the nist definition of cloud com-
puting. Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, United States, 2011.

[44] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez. An em-
pirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases. Empirical Software Engineering,
18(1):89–116, 2013.

[45] R. F. Paige and D. Varró. Lessons learned from building model-driven
development tools. Software & Systems Modeling, 11(4):527–539, 2012.



[46] S. Patidar, D. Rane, and P. Jain. A survey paper on cloud computing.
In Advanced Computing & Communication Technologies (ACCT), 2012
Second International Conference on, pages 394–398. IEEE, 2012.

[47] E. Ramollari, D. Dranidis, and A. J. Simons. A survey of service oriented
development methodologies. In The 2nd European Young Researchers
Workshop on Service Oriented Computing, volume 75, 2007.

[48] S. Rugaber and K. Stirewalt. Model-driven reverse engineering. IEEE
software, 21(4):45–53, 2004.

[49] S. Sendall and W. Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE software, 20(5):42–
45, 2003.

[50] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact
of social media on software engineering practices and tools. In Pro-
ceedings of the FSE/SDP workshop on Future of Software Engineering
Research, pages 359–364. ACM, 2010.

[51] G. Szárnyas, B. Izsó, I. Ráth, D. Harmath, G. Bergmann, and D. Varró.
Incquery-d: A distributed incremental model query framework in the
cloud. In International Conference on Model Driven Engineering
Languages and Systems, pages 653–669, 2014.

[52] J.-P. Tolvanen. Metaedit+ for collaborative language engineering and
language use (tool demo). In Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, pages 41–
45, 2016.

[53] Z. Una, Ieva, N. Oksana, and G. Konstantins. Several issues on the
model interchange between model-driven software development tools.
In 10th International Conference on Software Engineering Advances
(ICSEA), 2015.

[54] R. Van Der Straeten, T. Mens, and S. Van Baelen. Challenges in Model-
Driven Software Engineering, pages 35–47. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[55] M. Zhou, R. Zhang, D. Zeng, and W. Qian. Services in the cloud
computing era: A survey. In Universal Communication Symposium
(IUCS), 2010 4th International, pages 40–46. IEEE, 2010.

[56] K. Zunnurhain and S. V. Vrbsky. Security in cloud computing.
In Proceedings of the 2011 International Conference on Security &
Management, 2011.


