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Abstract. The paper considers development of domain-specific web services for processing of large
volumes of data on high-performance computing resources. The development of these services is associated
with a number of challenges, such as integration with external data repositories, implementation of efficient
data  transfer,  management  of  user  data  stored  on  the  resource,  execution  of  data  processing  jobs  and
provision of remote access to the data. An approach for building big data processing services on the base of
Everest platform is presented. The proposed approach takes into account the characteristic features and
supports rapid deployment of these services on the base of existing computing infrastructure. An example
of  service  for  short-read  sequence  alignment  that  processes  the  next-generation  sequencing  data  on  a
Hadoop cluster is described.
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1 Introduction

The explosive growth of data, observed in a variety of
areas  from research to commerce,  requires  the use of
high-performance  resources  and  efficient  means  for
storing and processing large amounts of  data.  During
the  last  decade,  the  distributed  data  processing
technologies  like  Hadoop  and  Spark  are  emerged.
However, the complexity of the hardware and software
infrastructure prevents its direct use by non-specialists,
and requires the creation of user-friendly tools to solve
particular classes of problems.

One way of implementing such tools is the creation
of domain-specific services based on the Software as a
Service model. This model allows users of such services
to  quickly,  without  installing  software,  reuse  ready-
made implementations of data processing methods in a
particular domain. At the same time, the user does not
need  to  delve  into  the  peculiarities  of  storing  and
processing data on high-performance resources behind
these services.

Data-intensive  services  (DIS),  in  comparison  to
conventional  computational  services  with  a  small
amount  of  data,  started  to  develop  recently,  so  the
principles  and  variants  of  implementation  of  these
services  are  poorly  understood.  There  are  several
academic projects aimed at supporting specific areas of
research, for example, the Globus Genomics [1] service
for analyzing the next-generation sequencing data and
the PDACS portal [2] for storing and analyzing data in
the cosmology domain. The first system uses Amazon
cloud resources as a computing infrastructure, while the
second uses the resources of the NERSC and Magellan
science  cloud.  Commercial  cloud  solutions,  such  as

Amazon ML, Microsoft Azure ML, Databricks Cloud,
are  general-purpose  platforms,  including  a  set  of
universal services, as well as its own infrastructure for
storing and processing data.

There is a lack of best practices for implementation
of DIS on the basis of the existing infrastructure for big
data  processing  such as  a  cluster  running  Hadoop or
Spark  platforms  which  are  increasingly  used  for  the
analysis of scientific data [3-5]. Also, little attention is
paid to the integration of DIS with existing repositories
and data warehouses, including the cloud-based ones, as
well  as  other  services.  A  lot  of  experience  in  the
integration  of  distributed  resources  for  storing  and
processing data has been accumulated within the grid
infrastructures  [6],  however  these  environments  are
complex for use by researchers and do not support the
use of  new models of  computations and technologies
such as Hadoop. Finally, there is a lack of platforms for
implementation  and  deployment  of  DIS  that  would
provide  ready-made  solutions  of  typical  problems
encountered when creating this kind of services.

This work is designed to fill these gaps. Chapter 2
describes the characteristics and requirements for DIS.
Chapter 3 discusses the principles of implementation of
the DIS based on the Everest platform, initially focused
on creating services  working with a  small  amount  of
data. A distinctive feature of the proposed approach is
support for the rapid implementation of DIS based on
available  computing  resources  and  data  warehouses.
Chapter 4 describes an example of a service based on
the presented approach for mapping short reads on the
Hadoop cluster.

2 Characteristics and Requirements for DIS

Consider  typical  requirements  for  DIS  that  represent
remotely available services for solving a certain class of
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problems  with  a  large  amount  of  input  data.  Such
services should provide remote interfaces, usually in the
form  of  a  web  user  interface  and  application
programming interface (API). The interface must allow
the user to specify the input datasets and parameters of
the problem being solved in terms of subject area.

DIS  must  use  high-performance  and  scalable
(normally distributed) implementations of data analysis
algorithms,  requiring  appropriate  computing
infrastructure  for  data  processing and  storage.  Such
infrastructure is generally represented by one or more
computing  clusters  running  Hadoop  platform  or  a
similar technology. DIS must translate the user request
into one or more computing jobs that are submitted on a
cluster and use scalable implementations (e.g., based on
MapReduce) of perspective algorithms.

The user must be able to pass arbitrary input data to
DIS.  If  the  data  is  initially  located  on  the  user's
computer  or  external  storage  resource  (e.g.,  a  data
repository)  DIS  must  implement  the  transfer  of  data
over a network to the used cluster. When transferring
large  amounts  of  data  it  is  important  to  ensure  the
maximum transfer rate and automatic failover. Since the
process of working with big data is often exploratory,
requiring  multiple  invocations  of  DIS,  the  service
should support  reuse of data loaded to the cluster.  In
order  to  optimize  the  use  of  network  DIS  must  also
cache  frequently  used  datasets  on  the  cluster.  Data
transfer functions can also be implemented as separate
auxiliary services.

Importantly,  DIS  may  operate  separately  from
computing resources used for real data processing. DIS
can  use  multiple  resources,  that  can  be  situated  at
different  locations.  It  is  also possible that  the service
uses the resources provided by the user. In such cases it
is important for reasons of efficiency to avoid passing
the input data from the user to the resource through the
service and to transmit the data directly.

In practice,  the data analysis  is  often a multi-step
process  that  requires  performing  different  tasks  at
different stages of the analysis. In such cases, the results
produced  by  one  DIS  can  be  passed  as  the  input  to
another service. If these services use different resources,
there also arises a problem of data transmission between
resources.  In  general  DIS  should  allow  the  user  to
download  the  output  to  his  computer  or  an  external
resource,  as  well  as  to  transfer  the  data  directly  to
another service. In addition, DIS may provide additional
functionality for remote data preview and visualization.
These functions may also be implemented as separate
auxiliary services.

DIS must support the simultaneous use by multiple
users. This requires the protection of user data, resource
distribution  between  users  and  isolation  of
computational  processes.  In  the  case  of  cloud
infrastructure,  DIS  must  also  manage  dynamic
allocation and deallocation of  resources  in  the  cloud,
according to the current load. 

3 Implementation of DIS with Everest

Everest  [7-8]  is  a  web-based  distributed  computing
platform. It provides users with tools to quickly publish
and  share  computing  applications  as  services.  The
platform  also  manages  execution  of  applications  on
external  computing  resources  attached  by  users.  In
contrast to traditional distributed computing platforms,
Everest  implements  the  Platform as  a  Service  (PaaS)
model by providing its functionality via remote web and
programming  interfaces.  A  single  instance  of  the
platform can  be  accessed  by  many  users  in  order  to
create, run and share applications with each other. The
platform  implements  integration  with  servers  and
computing  clusters  using  an  agent  that  runs  on  the
resource side and plays the role of mediator between the
platform  and  resources.  The  platform  is  publicly
available online to interested users [8].

The advantage of using Everest  platform to create
DIS  is  the  availability  of  ready-made  tools  for  rapid
deployment  of  computational  services  and  integration
with computing resources that do not require a separate
installation of the platform. At the same time, since the
platform was originally created to support services with
a small amount of data, the effective implementation of
DIS  on  the  base  of  Everest  requires  a  number  of
improvements.  In  particular,  it  is  necessary  to
implement support of direct data transfers from external
storage to  the resource  and vice  versa,  bypassing the
platform.  In addition,  it  is  required  to  implement  the
integration of the agent with the components of Hadoop
platform platform or similar technology used for data
storage and processing on the cluster. 

Figure  1  presents  the  proposed  scheme  of
implementation of DIS on the base of Everest platform
and existing Hadoop cluster.  Consider the scenario of
using the  service,  which  includes  the  following steps
marked in the figure.

In  step  1,  the  user  uploads  the  data of  interest  to
some available on the network or selects data already
present in the storage. This storage can be represented
by  cloud  services  (Dropbox,  Google  Drive,  etc.),
scientific  data  repositories  (Dataverse,  FigShare,
Zenodo, etc.), specialized databases (for example, 1000
Genomes Project), grid services or file servers (HTTP,
FTP,  GridFTP,  rsync  protocols).  A  wide  range  of
existing storage facilities makes the task of integrating
DIS with them more important, in comparison with the
duplication  of  their  functionality  in  the  service  itself.
Note  that  the  user's  computer  can  also  act  as  a  data
store. In this case, the user needs to deploy a software
that  provides  network  access  to  the  user's  files.  The
experience of implementing such software to ensure the
reliable transfer of scientific data across the network is
already available [9].

In step 2, the user prepares and sends a request to
the DIS, including a link to the input data and the values
of other input parameters required by the service. The
passed link should allow downloading the data from the
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external  storage  without  the  user's  participation.  In
some cases, this requires that the user first supply the
service with access credentials to the storage, such as an
OAuth token or a proxy certificate.

In  step  3,  based  on  the  user  request,  the  service
generates a computational task and sends it to the agent
located on the resource used by the service. Together
with the task description, the service sends to an agent a
link to  the  input  data.  As shown in the figure,  when
sending a task from the service to the agent, the code of
the software  implementation used  for  data  processing
can also be transferred.

The Hadoop and Spark platforms, most commonly
used for distributed data processing, use the Java, Scala,
and  Python  languages  for  implementation  of  data
processing algorithms. Unlike C and Fortran, often used
in  scientific  parallel  applications,  programs  in  these
languages can be relatively easily transferred from one
cluster to another, including their dependencies, without
the need for compilation. This opens the possibility for
implementation  of  services  on  the  basis  of  already
created programs and libraries for Hadoop and Spark,
which  can  be  used  in  conjunction  with  an  arbitrary
cluster specified by the user.  This model significantly
simplifies the publication and reuse of developments in
this field, without requiring the owner of the service to
provide  their  own  resources.  This  also  avoids  the
multiple implementations of services that use a single
program with different resources.

In step 4, the agent downloads input data from the
external storage to the local cluster. To implement this
step, it is planned to add support for loading data from
major types of repositories and storage. Currently the
basic support for downloading files via HTTP and FTP
protocols,  as well as an experimental  integration with
Dropbox  and  Dataverse  repository  are  implemented.
The  downloaded  data  is  placed  in  the  Hadoop
Distributed File System (HDFS) on the cluster, where it
can be accessed by the program launched in the next
step.

In step 5, the agent runs the program specified in the

task description on the given input data. The launch is
performed through the cluster resource manager such as
Yet  Another  Resource  Negotiator  (YARN),  a
component  of  the  Hadoop  platform that  supports  the
launch of MapReduce and Spark programs. A special
adapter was implemented in order to support interaction
of Everest agent with YARN, similar in function to the
previously  created  adapters  for  integration  with  HPC
batch schedulers.. After the launch, the agent monitors
the status of the corresponding job (the application in
terms  of  YARN)  and  broadcasts  the  progress
information  to  the  service  (step  6),  which  in  turn
displays this information to the user through the web
interface.  Upon completion of  the program, the agent
transmits to the service the output files (of small size)
and the final status of the job.

If a large amount of data is produced as a result of
the  program execution,  the  agent  must  support  direct
network  transfer  of  this  data  to  the  user  specified
external storage (step 7). The information required for
this  must  be  transmitted  by  the  user  when sending a
request  to the service in step 2.   At the moment,  the
upload  of  output  data  to  the  specified  FTP server  or
Dropbox folder is implemented.

In step 8, when the request is processed, the service
sends  the  results  to  the  user  as  a  set  of  output
parameters and links to the output files. Some of these
files can be stored by the service itself (for example, the
program execution log), and some of them can be stored
on a cluster or located in an external storage.

Note  that  the  steps  1,  4  and  7,  marked  with  an
asterisk  and  associated  with  the  transmission  of  data
over the network,  are not always required or  may be
omitted. For example, step 1 is not required if the data
is already in an external storage or on a cluster, which is
true for frequently used data sets. Step 4 can be skipped
if the data has already been downloaded to the cluster
by the agent or manually by the administrator.  To do
this,  the  agent  must  store  information  about  the
downloaded data and cache it  for reuse. Step 7 is not
required if the received data is an intermediate result 

Figure 1 Implementation of DIS on the base of Everest platform and Hadoop cluster
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and  will  be  submitted  as  an  input  to  another  service
using the same cluster. Taking into account these cases
can significantly reduce the amount of data transferred
across the network and, thus, speedup the processing of
requests.

Let  us  briefly  consider  security  issues.  Since  the
service users can not modify the code of the program
launched  by  the  service  on  the  cluster,  the  risk  of
unauthorized access to data of other users is minimized.
When implementing data caching on a cluster, the agent
must also limit the re-use of confidential data only by
the user who originally provided this data. As for the
distribution of cluster resources between users and the
isolation  of  computing  processes,  these  functions  are
already implemented in the YARN manager.

Although  the  approach  described  in  this  section
implies the use of the Hadoop platform, it can be easily
adapted to  any other  big data  storage and processing
platform.

4 Example DIS Implementation

To  demonstrate  the  described  approach,  a  prototype
service  was  implemented  on  Everest  platform  for
mapping short readings, one of the basic problems of
analyzing the results of the next generation sequencing
(NGS) in the bioinformatics domain. This task usually
represents  the  initial  and  the  most  computationally
intensive  stage  of  the  NGS  data  analysis  pipeline,
characterized by large volumes of input and output data.
The  basic  scheme  of  the  service  implementation  in
presented in Figure 2.

The service requires one or two (paired) files with
reads in the FASTQ format to be provided by a user.
The size of these files in compressed form is usually
several  gigabytes.  The  public  repository  of  the  1000
Genomes  Project  was  chosen  as  the  main  input  data
storage.  This  repository  provides  the  ability  to
download  data  from the  dedicated  FTP  server  where

both short  reads and reference genomes necessary for
solving the mapping problem are available.  Therefore
the files are provided to the service as links to this or
any other FTP server.

To solve the mapping problem, the BigBWA tool
[10] was used, which implements the parallel execution
of  the  well-known  BWA  package  (Burrows-Wheeler
aligner)  in  the  MapReduce  paradigm on  the  Hadoop
cluster. When accessing the service, the user can select
one  of  the  mapping  algorithms  implemented  in  the
BWA package. Additional fine-tuning of the algorithm
parameters  is  currently  not  implemented.  Also,  all
launches use a fixed reference human genome of about
5 GB in size preloaded on the cluster. The total amount
of input data of the problem on test runs was about 10-
15 GB.

Upon the request submission, in accordance with the
scheme described in Chapter 3, the direct downloading
of  the read  files  from the FTP server  to  the  Hadoop
cluster  takes  place.  After  downloading,  the  files  are
uncompresses  and  converted  to  the  format  used  by
BigBWA. The downloaded files are cached and, if the
file link in the request matches the already downloaded
one, the data loading step is skipped. After the data is
loaded,  the  MapReduce  job  is  launched  with  the
BigBWA tool.

At the end of the job execution, the service returns
to the user the path to the file with the mapping results
on the cluster.  This approach was chosen because,  as
noted earlier, reads mapping is only the initial step in
the analysis of NGS data. Therefore, in practice, these
results will usually be immediately passed as an input to
another service in the data processing pipeline. At the
user's request, the mapping results can also be uploaded
to an external FTP server. The output data on the test
runs  was  about  5-10  GB in  the  SAM format.  In  the
future, it is planned to convert the results into a more
compact BAM format.

The solution of the reads mapping problem on the

Figure 2 Implementation of DIS for mapping short readings
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Hadoop  cluster  via  the  created  service  allowed  to
significantly  reduce  the  data  processing  time.  For
example, the launch of the BWA package for mapping
on two reads on a single server in 4 threads took more
than an hour, while the similar launch through a service
(28 map-tasks) took about 10 minutes.

5 Conclusion

In this paper, we considered the characteristic features
and  requirements  for  the  implementation  of  data-
intensive services for working with large data sets. An
approach to the implementation of these services based
on the Everest platform, initially focused on the creation
of computing services with a small amount of data, is
proposed.  A  distinctive  feature  of  this  approach,  in
comparison with commercial cloud solutions, is support
for  the  rapid  implementation  of  services  based  on
existing computing resources and data repositories. An
example  of  a  created  service  that  implements  the
analysis  of  next-generation  sequencing  data  on  the
Hadoop cluster is described. 

Besides  further  development  of  the  individual
elements  of  the  described  approach,  future  work  will
focus  on  remaining  challenges.  For  instance,  many
existing  data  repositories  are  not  well  prepared  for
immediate  use  and  require  considerable  information
integration efforts. There is also an increasing demand
for processing of data streams. We plan to investigate
the  use  of  data  integration  and  stream  processing
frameworks  within  the  proposed  approach  to  address
these  issues.  We  also  plan  to  evaluate  the  proposed
approach on case study applications using larger  data
sets or combining data from multiple repositories.
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