
Development of Data-Intensive Services with Everest

© Oleg Sukhoroslov © Alexander Afanasiev
Institute for Information Transmission Problems of the Russian Academy of Sciences,

Moscow
sukhoroslov@iitp.ru afanasiev@iitp.ru

Abstract. The paper considers development of domain-specific web services for processing of large
volumes of data on high-performance computing resources. The development of these services is associated
with a number of challenges, such as integration with external data repositories, implementation of efficient
data transfer, management of user data stored on the resource, execution of data processing jobs and
provision of remote access to the data. An approach for building big data processing services on the base of
Everest platform is presented. The proposed approach takes into account the characteristic features and
supports rapid deployment of these services on the base of existing computing infrastructure. An example
of service for short-read sequence alignment that processes the next-generation sequencing data on a
Hadoop cluster is described.

Keywords: big data, web services, data transfer, data management, distributed data processing

1 Introduction

The explosive growth of data, observed in a variety of
areas from research to commerce, requires the use of
high-performance resources and efficient means for
storing and processing large amounts of data. During
the last decade, the distributed data processing
technologies like Hadoop and Spark are emerged.
However, the complexity of the hardware and software
infrastructure prevents its direct use by non-specialists,
and requires the creation of user-friendly tools to solve
particular classes of problems.

One way of implementing such tools is the creation
of domain-specific services based on the Software as a
Service model. This model allows users of such services
to quickly, without installing software, reuse ready-
made implementations of data processing methods in a
particular domain. At the same time, the user does not
need to delve into the peculiarities of storing and
processing data on high-performance resources behind
these services.

Data-intensive services (DIS), in comparison to
conventional computational services with a small
amount of data, started to develop recently, so the
principles and variants of implementation of these
services are poorly understood. There are several
academic projects aimed at supporting specific areas of
research, for example, the Globus Genomics [1] service
for analyzing the next-generation sequencing data and
the PDACS portal [2] for storing and analyzing data in
the cosmology domain. The first system uses Amazon
cloud resources as a computing infrastructure, while the
second uses the resources of the NERSC and Magellan
science cloud. Commercial cloud solutions, such as

Amazon ML, Microsoft Azure ML, Databricks Cloud,
are general-purpose platforms, including a set of
universal services, as well as its own infrastructure for
storing and processing data.

There is a lack of best practices for implementation
of DIS on the basis of the existing infrastructure for big
data processing such as a cluster running Hadoop or
Spark platforms which are increasingly used for the
analysis of scientific data [3-5]. Also, little attention is
paid to the integration of DIS with existing repositories
and data warehouses, including the cloud-based ones, as
well as other services. A lot of experience in the
integration of distributed resources for storing and
processing data has been accumulated within the grid
infrastructures [6], however these environments are
complex for use by researchers and do not support the
use of new models of computations and technologies
such as Hadoop. Finally, there is a lack of platforms for
implementation and deployment of DIS that would
provide ready-made solutions of typical problems
encountered when creating this kind of services.

This work is designed to fill these gaps. Chapter 2
describes the characteristics and requirements for DIS.
Chapter 3 discusses the principles of implementation of
the DIS based on the Everest platform, initially focused
on creating services working with a small amount of
data. A distinctive feature of the proposed approach is
support for the rapid implementation of DIS based on
available computing resources and data warehouses.
Chapter 4 describes an example of a service based on
the presented approach for mapping short reads on the
Hadoop cluster.

2 Characteristics and Requirements for DIS

Consider typical requirements for DIS that represent
remotely available services for solving a certain class of

Proceedings of the XIX International Conference
“Data Analytics and Management in Data Intensive
Domains” (DAMDID/RCDL’2017), Moscow, Russia,
October 10-13, 2017

109

mailto:second@author.email
mailto:first@author.email

problems with a large amount of input data. Such
services should provide remote interfaces, usually in the
form of a web user interface and application
programming interface (API). The interface must allow
the user to specify the input datasets and parameters of
the problem being solved in terms of subject area.

DIS must use high-performance and scalable
(normally distributed) implementations of data analysis
algorithms, requiring appropriate computing
infrastructure for data processing and storage. Such
infrastructure is generally represented by one or more
computing clusters running Hadoop platform or a
similar technology. DIS must translate the user request
into one or more computing jobs that are submitted on a
cluster and use scalable implementations (e.g., based on
MapReduce) of perspective algorithms.

The user must be able to pass arbitrary input data to
DIS. If the data is initially located on the user's
computer or external storage resource (e.g., a data
repository) DIS must implement the transfer of data
over a network to the used cluster. When transferring
large amounts of data it is important to ensure the
maximum transfer rate and automatic failover. Since the
process of working with big data is often exploratory,
requiring multiple invocations of DIS, the service
should support reuse of data loaded to the cluster. In
order to optimize the use of network DIS must also
cache frequently used datasets on the cluster. Data
transfer functions can also be implemented as separate
auxiliary services.

Importantly, DIS may operate separately from
computing resources used for real data processing. DIS
can use multiple resources, that can be situated at
different locations. It is also possible that the service
uses the resources provided by the user. In such cases it
is important for reasons of efficiency to avoid passing
the input data from the user to the resource through the
service and to transmit the data directly.

In practice, the data analysis is often a multi-step
process that requires performing different tasks at
different stages of the analysis. In such cases, the results
produced by one DIS can be passed as the input to
another service. If these services use different resources,
there also arises a problem of data transmission between
resources. In general DIS should allow the user to
download the output to his computer or an external
resource, as well as to transfer the data directly to
another service. In addition, DIS may provide additional
functionality for remote data preview and visualization.
These functions may also be implemented as separate
auxiliary services.

DIS must support the simultaneous use by multiple
users. This requires the protection of user data, resource
distribution between users and isolation of
computational processes. In the case of cloud
infrastructure, DIS must also manage dynamic
allocation and deallocation of resources in the cloud,
according to the current load.

3 Implementation of DIS with Everest

Everest [7-8] is a web-based distributed computing
platform. It provides users with tools to quickly publish
and share computing applications as services. The
platform also manages execution of applications on
external computing resources attached by users. In
contrast to traditional distributed computing platforms,
Everest implements the Platform as a Service (PaaS)
model by providing its functionality via remote web and
programming interfaces. A single instance of the
platform can be accessed by many users in order to
create, run and share applications with each other. The
platform implements integration with servers and
computing clusters using an agent that runs on the
resource side and plays the role of mediator between the
platform and resources. The platform is publicly
available online to interested users [8].

The advantage of using Everest platform to create
DIS is the availability of ready-made tools for rapid
deployment of computational services and integration
with computing resources that do not require a separate
installation of the platform. At the same time, since the
platform was originally created to support services with
a small amount of data, the effective implementation of
DIS on the base of Everest requires a number of
improvements. In particular, it is necessary to
implement support of direct data transfers from external
storage to the resource and vice versa, bypassing the
platform. In addition, it is required to implement the
integration of the agent with the components of Hadoop
platform platform or similar technology used for data
storage and processing on the cluster.

Figure 1 presents the proposed scheme of
implementation of DIS on the base of Everest platform
and existing Hadoop cluster. Consider the scenario of
using the service, which includes the following steps
marked in the figure.

In step 1, the user uploads the data of interest to
some available on the network or selects data already
present in the storage. This storage can be represented
by cloud services (Dropbox, Google Drive, etc.),
scientific data repositories (Dataverse, FigShare,
Zenodo, etc.), specialized databases (for example, 1000
Genomes Project), grid services or file servers (HTTP,
FTP, GridFTP, rsync protocols). A wide range of
existing storage facilities makes the task of integrating
DIS with them more important, in comparison with the
duplication of their functionality in the service itself.
Note that the user's computer can also act as a data
store. In this case, the user needs to deploy a software
that provides network access to the user's files. The
experience of implementing such software to ensure the
reliable transfer of scientific data across the network is
already available [9].

In step 2, the user prepares and sends a request to
the DIS, including a link to the input data and the values
of other input parameters required by the service. The
passed link should allow downloading the data from the

110

external storage without the user's participation. In
some cases, this requires that the user first supply the
service with access credentials to the storage, such as an
OAuth token or a proxy certificate.

In step 3, based on the user request, the service
generates a computational task and sends it to the agent
located on the resource used by the service. Together
with the task description, the service sends to an agent a
link to the input data. As shown in the figure, when
sending a task from the service to the agent, the code of
the software implementation used for data processing
can also be transferred.

The Hadoop and Spark platforms, most commonly
used for distributed data processing, use the Java, Scala,
and Python languages for implementation of data
processing algorithms. Unlike C and Fortran, often used
in scientific parallel applications, programs in these
languages can be relatively easily transferred from one
cluster to another, including their dependencies, without
the need for compilation. This opens the possibility for
implementation of services on the basis of already
created programs and libraries for Hadoop and Spark,
which can be used in conjunction with an arbitrary
cluster specified by the user. This model significantly
simplifies the publication and reuse of developments in
this field, without requiring the owner of the service to
provide their own resources. This also avoids the
multiple implementations of services that use a single
program with different resources.

In step 4, the agent downloads input data from the
external storage to the local cluster. To implement this
step, it is planned to add support for loading data from
major types of repositories and storage. Currently the
basic support for downloading files via HTTP and FTP
protocols, as well as an experimental integration with
Dropbox and Dataverse repository are implemented.
The downloaded data is placed in the Hadoop
Distributed File System (HDFS) on the cluster, where it
can be accessed by the program launched in the next
step.

In step 5, the agent runs the program specified in the

task description on the given input data. The launch is
performed through the cluster resource manager such as
Yet Another Resource Negotiator (YARN), a
component of the Hadoop platform that supports the
launch of MapReduce and Spark programs. A special
adapter was implemented in order to support interaction
of Everest agent with YARN, similar in function to the
previously created adapters for integration with HPC
batch schedulers.. After the launch, the agent monitors
the status of the corresponding job (the application in
terms of YARN) and broadcasts the progress
information to the service (step 6), which in turn
displays this information to the user through the web
interface. Upon completion of the program, the agent
transmits to the service the output files (of small size)
and the final status of the job.

If a large amount of data is produced as a result of
the program execution, the agent must support direct
network transfer of this data to the user specified
external storage (step 7). The information required for
this must be transmitted by the user when sending a
request to the service in step 2. At the moment, the
upload of output data to the specified FTP server or
Dropbox folder is implemented.

In step 8, when the request is processed, the service
sends the results to the user as a set of output
parameters and links to the output files. Some of these
files can be stored by the service itself (for example, the
program execution log), and some of them can be stored
on a cluster or located in an external storage.

Note that the steps 1, 4 and 7, marked with an
asterisk and associated with the transmission of data
over the network, are not always required or may be
omitted. For example, step 1 is not required if the data
is already in an external storage or on a cluster, which is
true for frequently used data sets. Step 4 can be skipped
if the data has already been downloaded to the cluster
by the agent or manually by the administrator. To do
this, the agent must store information about the
downloaded data and cache it for reuse. Step 7 is not
required if the received data is an intermediate result

Figure 1 Implementation of DIS on the base of Everest platform and Hadoop cluster

111

and will be submitted as an input to another service
using the same cluster. Taking into account these cases
can significantly reduce the amount of data transferred
across the network and, thus, speedup the processing of
requests.

Let us briefly consider security issues. Since the
service users can not modify the code of the program
launched by the service on the cluster, the risk of
unauthorized access to data of other users is minimized.
When implementing data caching on a cluster, the agent
must also limit the re-use of confidential data only by
the user who originally provided this data. As for the
distribution of cluster resources between users and the
isolation of computing processes, these functions are
already implemented in the YARN manager.

Although the approach described in this section
implies the use of the Hadoop platform, it can be easily
adapted to any other big data storage and processing
platform.

4 Example DIS Implementation

To demonstrate the described approach, a prototype
service was implemented on Everest platform for
mapping short readings, one of the basic problems of
analyzing the results of the next generation sequencing
(NGS) in the bioinformatics domain. This task usually
represents the initial and the most computationally
intensive stage of the NGS data analysis pipeline,
characterized by large volumes of input and output data.
The basic scheme of the service implementation in
presented in Figure 2.

The service requires one or two (paired) files with
reads in the FASTQ format to be provided by a user.
The size of these files in compressed form is usually
several gigabytes. The public repository of the 1000
Genomes Project was chosen as the main input data
storage. This repository provides the ability to
download data from the dedicated FTP server where

both short reads and reference genomes necessary for
solving the mapping problem are available. Therefore
the files are provided to the service as links to this or
any other FTP server.

To solve the mapping problem, the BigBWA tool
[10] was used, which implements the parallel execution
of the well-known BWA package (Burrows-Wheeler
aligner) in the MapReduce paradigm on the Hadoop
cluster. When accessing the service, the user can select
one of the mapping algorithms implemented in the
BWA package. Additional fine-tuning of the algorithm
parameters is currently not implemented. Also, all
launches use a fixed reference human genome of about
5 GB in size preloaded on the cluster. The total amount
of input data of the problem on test runs was about 10-
15 GB.

Upon the request submission, in accordance with the
scheme described in Chapter 3, the direct downloading
of the read files from the FTP server to the Hadoop
cluster takes place. After downloading, the files are
uncompresses and converted to the format used by
BigBWA. The downloaded files are cached and, if the
file link in the request matches the already downloaded
one, the data loading step is skipped. After the data is
loaded, the MapReduce job is launched with the
BigBWA tool.

At the end of the job execution, the service returns
to the user the path to the file with the mapping results
on the cluster. This approach was chosen because, as
noted earlier, reads mapping is only the initial step in
the analysis of NGS data. Therefore, in practice, these
results will usually be immediately passed as an input to
another service in the data processing pipeline. At the
user's request, the mapping results can also be uploaded
to an external FTP server. The output data on the test
runs was about 5-10 GB in the SAM format. In the
future, it is planned to convert the results into a more
compact BAM format.

The solution of the reads mapping problem on the

Figure 2 Implementation of DIS for mapping short readings

112

Hadoop cluster via the created service allowed to
significantly reduce the data processing time. For
example, the launch of the BWA package for mapping
on two reads on a single server in 4 threads took more
than an hour, while the similar launch through a service
(28 map-tasks) took about 10 minutes.

5 Conclusion

In this paper, we considered the characteristic features
and requirements for the implementation of data-
intensive services for working with large data sets. An
approach to the implementation of these services based
on the Everest platform, initially focused on the creation
of computing services with a small amount of data, is
proposed. A distinctive feature of this approach, in
comparison with commercial cloud solutions, is support
for the rapid implementation of services based on
existing computing resources and data repositories. An
example of a created service that implements the
analysis of next-generation sequencing data on the
Hadoop cluster is described.

Besides further development of the individual
elements of the described approach, future work will
focus on remaining challenges. For instance, many
existing data repositories are not well prepared for
immediate use and require considerable information
integration efforts. There is also an increasing demand
for processing of data streams. We plan to investigate
the use of data integration and stream processing
frameworks within the proposed approach to address
these issues. We also plan to evaluate the proposed
approach on case study applications using larger data
sets or combining data from multiple repositories.

Acknowledgements

This work is supported by the Russian Science
Foundation (project No. 16-11-10352).

References

[1] Madduri R. et al. Experiences Building Globus
Genomics: A Next-generation Sequencing
Analysis Service Using Galaxy, Globus, and
Amazon Web Services // Concurrency and
Computation: Practice and Experience. 2014.
Vol. 26, No. 13. P. 2266–2279.

[2] Madduri R. et al. PDACS: A Portal for Data
Analysis Services for Cosmological
Simulations // Computing in Science &
Engineering. 2015. Vol. 17, No 5. P. 18–26.

[3] Ekanayake J., Pallickara S., Fox G.
MapReduce for Data Intensive Scientific
Analyses // 2008 IEEE International
Conference on eScience (eScience’08). IEEE,
2008. P. 277–284.

[4] Zhang Z. et al. Scientific Computing Meets
Big Data Technology: An Astronomy Use
Case // 2015 IEEE International Conference on
Big Data. IEEE, 2015. P. 918–927.

[5] Nothaft F. A. et al. Rethinking Data-intensive
Science Using Scalable Analytics Systems //
2015 ACM SIGMOD International Conference
on Management of Data. ACM, 2015. P. 631–
646.

[6] Foster I., Kesselman C. (ed.). The Grid 2:
Blueprint for a New Computing Infrastructure.
Elsevier, 2003.

[7] Sukhoroslov O., Volkov S., Afanasiev A. A
Web-based Platform for Publication and
Distributed Execution of Computing
Applications // 14th International Symposium
on Parallel and Distributed Computing
(ISPDC). 2015. P. 175–184.

[8] Everest. http://everest.distcomp.org/
[9] Chard K., Tuecke S., Foster I. Efficient and

Secure Transfer, Synchronization, and Sharing
of Big Data // Cloud Computing. IEEE, 2014.
Vol. 1, No. 3. P. 46–55.

[10] Abu´ın J. M. et al. BigBWA: Approaching the
Burrows–Wheeler Aligner to Big Data
Technologies // Bioinformatics. 2015.
doi:10.1093/bioinformatics/btv506

113

http://everest.distcomp.org/

	1 Introduction
	2 Characteristics and Requirements for DIS
	3 Implementation of DIS with Everest
	4 Example DIS Implementation
	5 Conclusion
	Acknowledgements
	References

