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Abstract. A CBR approach to Human Activity Recognition (HAR) uses the
kNN algorithm to classify sensor data into different activity classes. Different
feature representation approaches have been proposed for sensor data for the pur-
pose of HAR. These include shallow features, which can either be hand-crafted
from the time and frequency domains, or the coefficients of frequency transfor-
mations. Alternatively, deep features can be extracted using deep learning ap-
proaches. These different representation approaches have been compared in pre-
vious works without a consistent best approach being identified. In this paper, we
explore the question of which representation approach is best for KNN. Accord-
ingly, we compare 5 different feature representation approaches (ranging from
shallow to deep) on accelerometer data collected from two body locations, wrist
and thigh. Results show deep features to produce the best results for KNN, com-
pared to both hand-crafted and frequency transform, by a margin of up to 6.5%
on the wrist and over 2.2% on the thigh. In addition, KNN produces very good
results with as little as a single epoch of training for the deep features.
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1 Introduction

Human activity recognition (HAR) is the computational discovery of human activity
from sensor data and is receiving increasing interest in the areas of health care and
fitness [3]. This is mainly driven by the need to find innovative ways to encourage
physical activity. An example of a health application of HAR is SELFBACK ! [1],
an EU funded project that is developing a self-management system for patients with
Lower Back Pain. The motivation for this work is driven by the need for an effective
HAR component for SELFBACK, which is required to accurately measure adherence
to physical activity targets.

HAR is generally considered as a classification problem where a classifier is trained
to identify user activity from sensor data. A CBR approach to this problem makes use of

! http://www.selfback.eu/
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a kNN classifier in order to facilitate similarity-based reasoning and explanation. How-
ever, the effectiveness of a kNN classifier depends on the quality of the feature represen-
tation used. Different feature representation approaches have been proposed for HAR,
from shallow hand-crafted features to frequency transform features e.g. Fast Fourier
Transforms (FFT) and Discrete Cosine Transforms (DCT) coefficients, and more re-
cently, deep learning approaches. All these approaches have had some degree of success
and setbacks in performance [6]. It is our view that none of the previous works provides
a clear answer to which feature extraction approach is best. Also, previous works have
evaluated these feature representation approaches on combinations of different types of
data-sets with different mixes of sensor locations and classifiers. In this work, we focus
on the feature representation for the kNN classifier using data from two popular body
locations, wrist and thigh.

The main contribution of this work is an empirical evaluation of 5 different feature
representation approaches across three different classes of features i.e. shallow hand-
crafted features, shallow frequency transformation features and deep CNN derived fea-
tures, for kNN, using sensor data collected from two common body locations, the wrist
and the thigh. Wrist data is more prone to random noise compared to data collected at
other body locations (e.g. thigh) due to increased variations in movement and posture
possible with the hand while undertaking activities. Our goal in this work is to under-
stand which of these feature representations is better suited for the kNN classifier and
to analyse any differences in feature performance that may exist between the wrist and
thigh.

The rest of this paper is organised as follows: in Section 2, we highlight important
related work on feature representation for HAR. Our dataset is described in Section 3.
Evaluation is presented in Section 4 and conclusions in Section 5.

2 Related Work on Feature Representation for HAR

Many different feature extraction approaches have been proposed for accelerometer
data for the purpose of activity recognition [3]. We broadly classify these into hand-
crafted, frequency-transform and deep features.

2.1 Hand-crafted Features

This is the most common approach to HAR and involves the computation of a number of
defined measures on either the raw accelerometer data (time-domain) or the frequency
transformation of the data (frequency domain) [5]. These measures are designed to cap-
ture the characteristics of the signal that are useful for distinguishing different classes
of activities. In the case of both time and frequency domains, the input is a vector of
real values T = v1, Vg, ..., for each axis x, y and z. A function 6; is then applied
to each vector to compute a single feature value. Typical time domain features include
mean, standard deviation and percentiles [10]; while typical frequency domain features
include energy, spectral entropy and dominant frequency [2]. The time-domain and fre-
quency domain features used in this work are presented in Table 1

96



Time Domain Features |Frequency Domain Features
Mean Dominant frequency
Standard deviation Spectral centroid
Inter-quartile range Maximum
Lag-one-autocorrelation Mean
Percentiles (10,25,50,75,90) Median
Peak-to-peak amplitude Standard deviation
Power
Skewness
Kurtosis
Log-energy
Zero crossings
Root squared mean

Table 1. Hand-crafted features for both time and frequency domains.

While hand-crafted features have worked well for HAR, a significant disadvantage
is that they are domain specific. A different set of features need to be defined for each
different type of input data i.e. accelerometer, gyroscope, time-domain and frequency
domain. Hence, some understanding of the characteristics of the data is required. Also,
it is not always clear which features are likely to work best [5]. Choice of features is
usually made through empirical evaluation of different combinations of features or with
the aid of feature selection algorithms [9].

2.2 Frequency Transform Features

Frequency transform features extraction involves applying a single function ¢ on the
raw accelerometer data to transform this into the frequency domain, where it is ex-
pected that distinctions between different activities are more emphasised. The main dif-
ference between frequency transform and hand-crafted features is that the coefficients
of the transformation are directly used for feature representation without taking further
measurements. Common transformations that have been applied include Fast Fourier
Transforms (FFTs) and Discrete Cosine Transforms (DCTs).

FFT is an efficient algorithm optimised for computing the discrete Fourier transform
of a digital input. Fourier transforms decompose an input signal into its constituent sine
waves. In contrast, DCT, a similar algorithm to FFT, decomposes a given signal into
it’s constituent cosine waves. Also, DCT returns an ordered sequence of coefficients
such that the most significant information is concentrated at the lower indices of the
sequence. This means that higher DCT coefficients can be discarded without losing
information, making DCT better for compression.

For frequency transform feature extraction, a transformation function (DCT or FFT)
¢ is applied to the time-series accelerometer vector 7 of each axis. The output of ¢ is
a vector of coefficients which describe the sinusoidal wave forms that constitute the
original signal. Accordingly the transformed vector representations, x' = ¢(x), y’ =
¢(y) and z’' = ¢(z), are obtained for each axis of a given instance. Additionally we
derive a further magnitude vector, m = {m;1,...,m; } of the accelerometer data for
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each instance as a separate axis, where m;; is defined as m;; = \/23; +y3; + 23}

As with x’, y’ and z’, we also apply ¢ to m to obtain m’ = ¢(m). The final feature
representation is obtained by concatenating the absolute values of the first [ coefficients
of X', y’, z’ and m’ to produce a single feature vector of length 4 x [. The value [ = 80
is used in this work, which is determined empirically. Further information on feature
representation using DCT and FFT can be found in [7].

2.3 CNN Feature Extraction

Convolutional Neural Networks (CNNs) have been applied for feature extraction in
HAR, due to their ability to model local dependencies that may exist between adjacent
data points in the accelerometer data [8]. CNNs are a type of Deep Neural Network
that is able to extract increasingly more abstract feature representations by passing the
input data through a stack of multiple convolutional operators [4], where each layer in
the stack takes as input, the output of the previous layer of convolutional operators. An
example of a CNN is shown in Figure 1.
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Fig. 1. Illustration of CNN

The input into the CNN in Figure 1 is a 3-dimensional matrix representation with
dimensions 1 x 28 x 3 representing the width, length and depth respectively. Tri-axial
acceleromter data typically have a width of 1, a length [ and a depth of 3 representing the
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x, y and z axes. A convolution operation is then applied by passing a convolution filter
over the input which exploits local relationships between adjacent data points. This op-
eration is defined by two parameters, D representing the number of convolution filters
to apply and C, the dimensions of each filter. For this example, D = 6 and C =1 x 5.
The output of the convolution operation is a matrix with dimensions 1 x 24 x 6, these
dimensions being determined by the dimension of the input and the parameters of the
convolution operation applied. This output is then passed through a Pooling operation
which basically performs dimensionality reduction. The parameter P determines the
dimensions of the pooling operator which in this example is 1 x 2, which results in
a reduction of the width of its input by half. The output of the pooling layer can be
passed through additional Convolution and Pooling layers. The output of the final Pool-
ing layer is then flattened into a 1-dimensional representation and then fed into a fully
connected neural network. The entire network (including convolution layers) is trained
through back propagation over a number of generations until some convergence criteria
is reached. Detailed description of CNNs can be obtained in [4].

Note that once the CNN is fully trained, it can used to provide feature representa-
tions for use with other types of classifiers e.g. KNN. This is achieved by cutting off the
trained network after the final pooling layer and just before the fully-connected neural
network. Each training example is then passed through the convolutional network in
order to obtain an abstract representation which is used to train the kNN classifier. A
similar operation is performed for each test example to obtain an abstract representation
which is passed to kNN for classification.

3 Dataset

A group of 34 volunteer participants was used for data collection. The age range of
participants is 18 - 54 years and the gender distribution is 52% Female and 48% Male.
Data collection concentrated on the activities provided in Table 2.

Activity Description

Walking Walking at normal pace

Jogging Jogging on a treadmill at moderate speed

Up Stairs  |Walking up 4 - 6 flights of stairs

Down Stairs|Walking down 4 - 6 a flights of stairs

Standing  [Standing relatively still

Sitting Sitting still with hands on desk or thighs
Table 2. Details of activities classes in our dataset.

This set of activities was chosen because it represents the range of normal daily ac-
tivities typically performed by most people. Data was collected using the Axivity Ax3
tri-axial accelerometer > at a sampling rate of 100Hz. Accelerometers were mounted

2 http://axivity.com/product/ax3
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on the right-hand wrists and right thighs of the participants. Activities are evenly dis-
tributed between classes as participants were asked to do each activity for the same
period of time (3 minutes).

4 Evaluation

Evaluations are conducted using a leave-one-person-out methodology where each user’s
data is held out for testing in turns, while the remaining 33 are used for training. In this
way, we are testing the general applicability of the system to users whose data is not
included in the trained model. Performance is reported using macro-averaged F1 and
kNN is used for classification with euclidean distance and the parameter k = 5.

The representations included in our comparison are as below:

- Time: Time domain hand-crafted features

- Freq: Frequency domain hand-crafted features
-DCT: DCT frequency features

- FFT: FFT frequency features

- CNN: CNN deep features with soft-max classifier
- CNN-kNN: CNN deep features with kNN classifier

For the CNN, after experimenting with different parameter settings, the final config-
uration used for thigh data had 3 convolution layers with 150, 100 and 80 convolution
filters respectively. The configuration used for wrist data had 5 convolution layers with
the same numbers of convolution filters as the thigh data in the first 3 layers and 60 and
40 convolution filters in the fourth and fifth layers respectively. Each convolution layer
was followed by a max pooling layer. A convolution filter of size 10 and pooling size of
2 were used on all convolution and pooling layers respectively. The last pooling layer is
connected to a fully connected network with 2 hidden layers, where the first layer had
900 units and second layer had 200 units. A dropout probability of 0.5 was used for
each hidden layer. The final output layer had 6 units representing the 6 activity classes
in our dataset and uses soft-max regression. Loss is computed using cross-entropy and
the network is trained using back-propagation for 200 epochs.

4.1 Results

Results of our comparative evaluation are shown in Figure 2. The best results for both
thigh and wrist are achieved using deep features (CNN and CNN-kNN). This highlights
the fact that KNN, using deep features, can rival the performance of state-of-the-art deep
learners, while still providing the ability for similarity-based reasoning and explainabil-
ity that makes kNN desirable. In general, HAR performance is higher using thigh data
compared to wrist by a margin of up to 14.7% (for DCT). This indicates that the thigh is
a much better position for HAR compared to the wrist. However, the benefit from deep
feature representations is consistent on both wrist and thigh.

100



Out of the shallow features (Time, Freq, DCT and FFT), the best performance is
achieved using DCT. This is consistent with our previous findings [7]. However, in
comparison with DCT, CNN-kNN produces 6.5% and 2.2% improvement on the wrist
and thigh respectively. Both improvements are statistically significant at 95% using a
paired t-test.
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Fig. 2. Results of different representations(Time, Freq, DCT, FFT, CNN, CNN-kNN)

It is known that one of the major bottleneck of applying deep learning is the amount
of time required for training. Hence, it is important to understand the effect of training
time on the performance of both CNN and CNN-kNN. Particularly, we would like to
see the level of performance that can be achieved with minimum training time. Figure 3
presents the results of CNN and CNN-kNN at between 1 to 5 epochs of training for the
wrist (left) and thigh (right).

Wrist Thigh
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Epochs Epochs
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Fig. 3. Results for CNN and CNN-kNN after training for between 1-5 epochs.
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Note that CNN-kNN outperforms CNN on both wrist and thigh at all 5 training
epochs. Also, the performance of CNN-kNN is good (on par with Freq) even after
a single epoch of training. These results are an important finding of this work and
demonstrate the robustness of kNN in effectively using deep features, irrespective of
the amount of time spent on training.

Finally, we analyse the effect of the depth of our network on the quality of deep
features we are able to extract for KNN. Figure 4 shows the performance of CNN-kNN
with different numbers of convolution layers between 3 and 5. Note that the best per-
formance for the thigh is achieved using 3 convolution layers (0.949) and performance
gradually decreases with the addition of more convolution layer (0.947 for 4 and 0.937
for 5). In contrast, performance on the wrist produces a significant increase (at 95%
using a paired t-test) with additional layers from 0.73 for 3 layers to 0.84 for 5 layers.
This indicates that deeper layers are required for effective feature extraction on more
difficult datasets. However, a relatively shallow architecture seems sufficient for easier

datasets.
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Fig. 4. Results for CNN-kNN at different depths between 3-5 convolution layers.

5 Conclusion

In this paper, we have presented an analysis of different feature representation ap-
proaches for the purpose of human activity recognition using kNN. These feature rep-
resentation approaches can be broadly categorised into three classes: handcrafted, fre-
quency transform and deep features. Evaluation is conducted using accelerometer data
collection from two different body locations: wrist and thigh. Results show deep fea-
tures to significantly out-perform the other representation types on both wrist and thigh
by a margin of over 6.5% on the wrist, and 2.2% on the thigh. In addition, our eval-
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uation shows kNN to be very effective at using deep features, even when a minimum
amount of time spent in training these deep features.

Future work will investigate the use of RNN for feature extraction due to their ability

to model the sequential relationship inherent in the time series accelerometer data.
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