
Overview of the FIRE 2017 IRLeD Track: Information Retrieval
from Legal Documents

Arpan Mandal
IIEST Shibpur

India

Kripabandhu Ghosh
IIT Kanpur

India

Arnab Bhattacharya
IIT Kanpur

India

Arindam Pal
TCS Research

India

Saptarshi Ghosh
IIT Kharagpur; IIEST Shibpur

India

ABSTRACT
The FIRE 2017 IRLeD Track focused on creating a framework for
evaluating different methods of Information Retrieval from legal
documents. Therewere two tasks for this track: (i) Catchphrase Ex-
traction task, and (ii) Precedence Retrieval task. In the catchphrase
extraction task, the participants had to extract catchphrases (legal
keywords) from Indian Supreme Court case documents. In the sec-
ond task of Precedence Retrieval, the participants were to retrieve
relevant or cite-able documents for particular Indian SupremeCourt
cases from a set of prior case documents.

CCS CONCEPTS
•Information systems →Information retrieval;

KEYWORDS
Legal Information Retrieval, Prior Case Retrieval, Legal Catchphrase
Extraction

1 INTRODUCTION
In a Common Law System1, great importance is given to prior cases.
A prior case (also called a precedent) is an older court case related
to the current case, which discusses similar issue(s) and which can
be used as reference in the current case. A prior case is treated
as important as any law written in the law book (called statutes).
This is to ensure that a similar situation is treated similarly in every
case. If an ongoing case has any related/relevant legal issue(s) that
has already been decided, then the court is expected to follow the
interpretationsmade in the prior case. For this purpose, it is critical
for legal practitioners to find and study previous court cases, so as
to examine how the ongoing issues were interpreted in the older
cases.

With the recent developments in information technology, the
number of digitally available legal documents has rapidly increased.
It is, hence, imperative for legal practitioners to have an automatic
precedent retrieval system. The task of precedence retrieval can be
modeled as a task of information retrieval, where the current case
document (or a description of the current situation) will be used
as the query, and the system should return relevant prior cases as
results.

Additionally, legal texts (e.g., court case descriptions) are gen-
erally long and have complex structures [4]. This nature makes
their thorough reading time-consuming and strenuous, even after
1https://en.wikipedia.org/wiki/Common_law/ as seen on 6th November, 2017.

relevant cases are retrieved. So, apart from a precedence retrieval
system, it is also essential for legal practitioners to have a concise
representation of the core legal issues described in a legal text [10].
One way to list the core legal issues is by keywords or key phrases,
which are known as ‘catchphrases’ in the legal domain [6].

Motivated by the requirements described above,The IRLeD track
focused on the following two tasks: Catchphrase extraction, Prece-
dence retrieval.

1.1 Task 1: Catchphrase Extraction
Catchphrases are short phrases from within the text of the docu-
ment. Catchphrases can be extracted by selecting certain portions
from the text of the document.

In this task, a set of 400 legal documents (Indian Supreme Court
case documents) was provided to the participants. For 100 of these
documents (training set), gold standard catchphraseswere provided
— these gold standard catchphrases were obtained from a well-
known legal search system Manupatra (https://www.manupatra.
com/), which employs legal experts to manually annotate case doc-
uments with catchphrases. The rest 300 documents were used as
the test set. The participants were expected to extract the catch-
phrases for the documents in the test set.

1.2 Task 2: Precedence Retrieval
For this task, two sets of documents were provided:
(1) Current cases: A set of 200 Indian Supreme Court cases, for
which the prior cases were to be retrieved.
(2) Prior cases: For each current case, we obtained a set of prior
cases that were actually cited in the case decision. 1000 such cited
prior caseswere present in the second set of documents, alongwith
other 1000 documents which were not cited from any document in
the ‘current cases’ set.

For each document d in the first set (current cases), the partic-
ipants were to return a ranked list of documents from the second
set (prior cases), in a way that the cases that were actually cited
from d are ranked higher than the other documents (that were not
cited from d).

2 DATASET
We have developed two datasets corresponding to the two tasks:

(1) Data for Task 1: A collection of legal case documentswith
their catchphrases: We built a dataset containing 400 court case

https://en.wikipedia.org/wiki/Common_law/
https://www.manupatra.com/
https://www.manupatra.com/


Case Id Catchphrases
1953.INSC.24
http://liiofindia.org/in/cases/cen/
INSC/1953/24.html

Actual Delivery, Advocate-General, Alternative Remedy, Appropriate, Assessment, Car-
rier, Carrying on Business, Cause of Action, Commencement of the Constitution, Com-
petent Legislature, Consignment, Constitution of India, Constitutional Validity, Consump-
tion, Contract, Contract of Sale, Contravention, Cost, Dealer, Declared by Parliament, De-
duction, Definition, Delegate, Demand Notice, Despatch, Discrimination, Discriminatory,
Double Taxation, Existing Law, Export, Federal Court, Freedom of Trade

1991.INSC.12
http://liiofindia.org/in/cases/cen/
INSC/1991/12.html

Advisory Board, Allowance, Appropriate Government, Arrest, Constitutional Obligation,
Constitutional Question, Constitutional Safeguard, Detaining Authority, Detention, De-
tenu, Duty of the State, Earliest Opportunity, General Clauses Act, Grounds of Detention,
Guarantee, Legal Obligation, Liberty, Order of Detention

1983.INSC.27
http://liiofindia.org/in/cases/cen/
INSC/1983/37.html

Commutation, Confinement, Conspiracy, Constitution of India, Death Sentence, Funda-
mental Right, Imposition of Death Sentence, Judicial Proceeding, Life Imprisonment, Soli-
tary Confinement, Speedy Trial, Transportation for Life

Table 1: Examples of Indian SupremeCourt cases and catchphrases taken from theManupatra legal expert system (reproduced
from [6])

documents of the Indian Supreme Court, along with their catch-
phrases. The texts and their catchphrases were obtained from a
well-known legal search system Manupatra which uses human le-
gal experts to annotate court case documents with catchphrases.
All decisions and the corresponding Catchphrases are available in
text format. A few example Catchphrases are shown in Table 1
(reproduced from [6]).

The collection provided for the track consisted of 400 Indian
Supreme Court case documents. Out of these, 100 documents were
provided along with their gold standard catchphrases (training set)
while the participants were expected to find the catchphrases for
the rest 300 documents (test set).

(1) Data for Task 2: A collection of legal case documents,
and prior cases cited from them: We crawled a large number
of case documents of cases judged at the Supreme Court of In-
dia, from the site LIIofIndia (www.liiofindia.org/).2 The documents
were downloaded in HTML, and the downloaded HTML files were
then parsed to get the final texts.

The dataset for the task contained 1000 current (query) cases
that were judged after the year 2000, and 2000 prior cases that were
judged prior to the year 2000 (as described in the Introduction).
All filenames were anonymized, and all citation markers from the
current/prior cases were replaced with a special marker.

3 METHODOLOGIES FOR TASK 1:
CATCHPHRASE EXTRACTION

For the first task of Catchphrase extraction, we received a total of
ten runs from seven participating teams. All the runs were super-
vised in nature except the run UBIRLeD_1, as described in Table 2.
We briefly describe below the methodologies used by each team in
each of their runs.

• rightstepspune: This team participated from Right Steps
Consultancy, Pune. In the method in their only run, the
problem of catchphrase detection was modeled as sequen-
tial probabilistic labeling problem rather than a simple lin-
ear classification problem. Conditional RandomFields (CRF)

2LIIofIndia is a website hosted by the Legal Information Institute of India.

algorithm was chosen with primary features such as POS
(part-of-speech) and custom NER (Named Entity Recog-
nition) tags and numerous secondary features represent-
ing the context. They first tokensied the texts into tokens
using NLTK3 tokenizer. Then they applied POS (part-of-
speech) tags to each of the tokens again using the NLTK
toolkit. These features along with several other features
were used to train a model of CRF, which was then used
to predict the catchphrases.

• UBIRLED: This team participated from the University of
Botswana, Computer Science Department. They submit-
ted two runs. For this they have used two recently devel-
oped catchphrase extraction tools:
(1) RAKE (Rapid Automatic Keyword Extraction):

an unsupervised algorithm for keyword extraction [13].
(2) MAUI: a supervised algorithm for keyword extrac-

tion [8].
• AMRITA_CEN_NLP: This team participated from Am-

rita Vishwa Vidhyappetham, India and submitted a super-
vised and fully automatic run. For this they have first de-
termined a set of candidate catchphrases and hence repre-
sented the documents and candidate catchphrases as vec-
tors. They used Doc2Vec[5] for representing the texts as
vectors. Hence the scoring of candidate catchphrases was
simply done by measuring the cosine similarity of their
vector with the document vector.

• HLJIT2017: This teamparticipated from theHeilongjiang
Institute of Technology, China. They have submitted three
runs in total. In all the threemethods, they have approached
the task as a classification problem and have used super-
vised fully automatic techniques.

For the first two runs they used bagging techniques.
Here, the training set is divided into different sampling
sets. Then these sampling sets are hence used to train a
base classifier. They considered the base classifier as Deci-
sion tree[11] in one run and Random forest[3] in another
run. In the third run they have used RankSVM4 which

3http://www.nltk.org/
4urlhttp://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html

2

http://liiofindia.org/in/cases/cen/INSC/1953/24.html
http://liiofindia.org/in/cases/cen/INSC/1953/24.html
http://liiofindia.org/in/cases/cen/INSC/1991/12.html
http://liiofindia.org/in/cases/cen/INSC/1991/12.html
http://liiofindia.org/in/cases/cen/INSC/1983/37.html
http://liiofindia.org/in/cases/cen/INSC/1983/37.html
www.liiofindia.org/
http://www.nltk.org/


Run_ID R-Prec Prec@10 Recall@100MAP Overall
Recall

Method Summary

rightstepspune_1_task1 0.215 0.281 0.248 0.479 0.248 CRF, POS, NER
UBIRLeD_2 0.190 0.254 0.305 0.370 0.326 MAUI[8]
AMRITA_CEN_NLP_RBG1_1 0.168 0.144 0.535 0.200 0.652 Doc2Vec
HLJIT2017_IRLeD_Task1_3 0.086 0.122 0.151 0.165 0.152 RankSVM
bphc_withPOS_1 0.066 0.102 0.137 0.161 0.165 TF, POS tags
HLJIT2017_IRLeD_Task1_1 0.030 0.058 0.033 0.140 0.033 Decision Tree
HLJIT2017_IRLeD_Task1_2 0.034 0.060 0.044 0.124 0.044 Random Forest
Bits_Pilani_1 0.030 0.049 0.080 0.093 0.100 LSTM network
FIRE_2017_SR 0.026 0.025 0.087 0.062 0.161 POS, Deep Neural Network
UBIRLeD_1 0.023 0.014 0.172 0.046 0.499 RAKE[13]

Table 2: Evaluation of runs for Task 1: Catchphrase Extraction. Runs are sorted in descending order of the Mean Average
Precision.

uses Support Vector Machines (SVM) to solve the ranking
problem of ranking the catchphrases.

• bphc_withPOS_1: This team participated from Birla In-
stitute of Technology& Science, Pilani, India. Theymainly
concentrated on the preprocessing part and term scoring
methods rather than phrase scoringmethods. Theirmethod
extracts words rather than phrases. After a series of basic
pre-processing, for scoring different unigrams they con-
sidered the frequency of occurrence within the document.
Also, they have given a POS based weightage by checking
which POS tags were more likely to be present within a
catchphrase.

• BITS_Pilani: This team has participated from Birla Insti-
tute of Technology and Science, Pilani, India. They have
submitted a supervised and fully automatic approach for
extracting catchphrases.

The problem is formulated as a classification task and
the objective is to learn a classifier using LSTM network.
The proposed methodology involves a pipelined approach
and is divided into four phases:
– Pre-processing
– Candidate phrase generation
– Creating vector representations for the phrases
– Training a LSTM network

• FIRE_2017_SR: This team has participated from Indian
Institute of Engineering Science and Technology, Shibpur,
India. They have submitted one fully automatic super-
vised run. They used a deep neural network to train on
a number of different features of the actual phrases. For
extraction of catchphrases, a set of candidate phrases are
first selected using POS (part-of-speech) tags of the known
catchwords. Once the candidate phrases are obtained. These
candidate phrases are then classified using the deep neural
network already trained.

4 METHODOLOGIES FOR TASK 2: PRIOR
CASE RETRIEVAL

In the second task of Precedence Retrieval, we received twenty one
runs in total from nine participating teams. All of these runs were

fully automatic in nature and their performance is as shown in
Table 3. Described below are the methodologies used by each team
in each of their runs.

• flt_ielab: This team participated from Queensland Uni-
versity of Technology, Australia. They submitted a total
of three runs each of which use fully automatic methods.
For each of the query documents they have formed a set of
queries from the positions where the actual citations were
present5. Now the query formation was differently done
in the three runs as described below:
(1) flt_ielab_para: Here, the query was formed by con-

sidering a paragraph around the citation marker.
(2) flt_ielab_idf: Here, only 50% of the words were con-

sidered after weighing the terms by their idf (inverse
document frequency).

(3) flt_ielab_plm: Here, only 50% of the words given by
flt_ielab_idf were considered by its probability from
a parsimonious language model.

Before applying the above filters to get the query terms,
all terms were cleaned by removing stopwords and punc-
tuation marks. Once the query terms were ready, they
were used to retrieve prior cases using BM25[12] algorithm.

As, a single query document hasmultiple citationmark-
ers. So, the final set of retrieved documents was chosen to
be the top-scored 1000 documents from the union of re-
trieved documents by all these queries.

• HLJIT2017_IRLeD_Task2: This team fromHeilongjiang
Institute of Technology, China submitted three runs. Al
of the runs were fully automatic in nature. The runs are
described as follows:
– run_1: In this run they have used a language model

based on Dirichlet Prior Smoothing[14].
– run_2: For the second searchmodel they chose BM25

algorithm[12], which is awell-knownprobability based
model.

– run_3: In the third run they used lucene[7] which
implements a vector space model to estimate the rel-
evance of query and document.

5Note that the positions of the actual citations were marked using a marker in all the
text documents.

3



• SSN_NLP:This team participated from SSN College of En-
gineering, India. They submitted three fully automatic
runs as described below:
– run_1: They considered the TF-IDF vectors of each

document by using the TF-IDF vectorizer tool imple-
mented in scikit-learn6. While considering the TF-
IDF vectors they have considered only the nouns in
the document. Now, cosine similarity between the
query document and the set of prior cases are calcu-
lated and hence sorted to present the top scored doc-
uments.

– run_2: This is very similar to the first run except that
while calculating the TF-IDF vectors, verbs were also
considered in addition to nouns.

– run_3: This run considersWord2Vec vectors for each
document in addition to the TF-IDF vectors as de-
scribed in the second run.

• rightstepspune_1_task2: This team participated from
RightSteps Consultancy, India. They submitted one fully
automatic run. Formeasuring the similarity score between
a pair of cases, they have used a weighed average of three
different methods:
– Regular Expression based: Here, different legal statutes

(such as Articles) referred within the text were cap-
tured by using pattern matching. Once the list of
statutes have been obtained for a given query doc-
ument, the same is attempted for every prior cases.
All prior cases that has any statutes in common are
retrieved.

– Topic Modeling based: In this method they employ
the implementation of Latent Dirichlet Allocation (LDA)
as in the gensim package.7 Hence, score of similarity
is calculated based on ratio of matching topic-words
to the total.

– UsingDocumentVector: To generate the document
vectors the following steps were followed:
(1) Got every case as cleaned text, split it to form

list of words/tokens, for both, current and prior
cases.

(2) Created gensim TaggedDocument for each case
text, giving filename as tag.

(3) A Map of tag to the content i.e. word-list for
each cases were generated and saved for reuse.

(4) LDA model was built and saved. It was used
to generate document vectors for both current
and prior cases.

A similaritymatrixwas generatedwhere current cases
are rows and prior cases as columns with values as
cosine similarity between document vectors of the
current-prior case pair (row-column). The values act
as score for this particular approach.

• UB_Botswana_Legal_Task2: This teamparticipated from
University of Botswana, Botswana. They submitted three
fully automatic runs. One common part in all the runs

6A open source library in python available at: http://scikit-learn.org/stable/
7gensim is a python package available at https://radimrehurek.com/gensim/.

was the basic query formulation. For this, they have tok-
enized the text and removed all stopwords and stemmed
them using Porter Stemmer. The nest steps for each run
is described below:
– run_1: Using the formulated queries, they have de-

ployed the parameter-freeDPH termweightingmodel
from theDivergence fromRandomness (DFR) framework[2]
IR platform as our baseline system to score and rank
the prior cases.

– run_2: They used the first run as the baseline sys-
tem. In addition, they deployed the Sequential De-
pendence (SD) variant of the Markov Random Fields
for term dependence. Sequential Dependence only
assumes a dependence between neighbouring query
terms [9, 15]. In this work, they used a default win-
dow size of 2 as provided in Terrier-4.2.8

– run_3: They used the first run as the baseline system.
In addition, they deployed a simple pseudo-relevance
feedback on the local collection. They used the Bo1
model [1] for query expansion to select the 10 most
informative terms from the top 3 ranked documents
after the first pass retrieval (on the local collection).
They performed a second pass retrieval on this local
collection with the new expanded query.

• UBIRLeD: This is another team participating from Uni-
versity of Botswana, Botswana. They have submitted three
runs all of them being fully automatic in nature. For each
of the runs they have retrieved 1000 ranked prior case
judgments.

For the second and third runs they have parsed the
prior case documents into two parts. To identify the most
informative terms they have used topic modeling, specifi-
cally Latent Dirichlet Allocation (LDA). The terms identi-
fied using LDA were then used to parse prior cases into
documents with two fields:
(1) LDA_TEXT - A field containing words that have been

identified as most informative words for the collec-
tion of prior case judgments.

(2) OTHER_TEXT - A field containing other words that
have not been identified as most informative words.

The runs are as described below:
– run_1: ABaseline runwhere they have used the orig-

inal dataset, only parsing it to TREC format, the runs
were obtained using BM25 with default settings.

– run_2: This is the run for a field based retrieval ap-
proach where the weight of LDA_TEXT was set to be
far lower than the weight of OTHER_TEXT, specifi-
cally they have used BM25F weighting model, param-
eter settings for the weight assigned to LDA_TEXT
and OTHER_TEXT is 0.2 : 1.0 in Terrier respectively,
all other parameters were left as default.

– run_3: This is the run for a field based retrieval ap-
proach where the weight of LDA_TEXT was set to be

8Terrier is an open source Information Retrieval platform available at http://terrier.
org/.

4

http://scikit-learn.org/stable/
https://radimrehurek.com/gensim/
http://terrier.org/
http://terrier.org/


far bigger than the weight of OTHER_TEXT, specifi-
cally they have used BM25F weighting model, param-
eter settings for the weight assigned to LDA_TEXT
and OTHER_TEXT is 2.0 : 1.0 in terrier respectively,
all other parameters were left as default.

• bphcTask2IRLeD:This team has participated from Birla
Institute of Technology & Sciences, Pilani, India. They
have submitted one run that is fully Automatic in nature.
Here, they have considered a minimized set of words by
considering only 5000 such words whose combined score
of POS (part-of-speech) occurrence probability and IDF
(inverse document frequency) score is higher than the rest
of thewords. Using this focused subset of words they have
formed document vectors for each of the documents (both
prior cases and current cases). Each vector is of size 5000,
where each field corresponds to each word in the focused
set. Now a vector for a document is so formed that if a
word in the focused set is present then its value in the
corresponding field is the combination of its TF (term fre-
quency), IDF, and POS occurrence probability. Now, the
similarity score between two document vectors are mea-
sured by simply finding the dot product of the two. For
each Query Case, the similarity is calculated for between
this and all prior cases. Then the top ranked prior cases
are reported.

• AMRITA_CEN_NLP_RBG: This team has participated
from Amrita Vishwa Vidhyappetham, India and have sub-
mitted a fully automatic run. For this they have first repre-
sented the set of prior and current cases as vectors. To do
so, they have used the Doc2Vec algorithm as implemented
in the gensim package of python. Once the vectors are ob-
tained the similarity between a query case document and
a prior case is simply calculated as the cosine similarity
between the two vectors. The top ranked prior cases are
reported for each of the current cases.

• christfire_2017: This team participated from Christ Uni-
versity, Bangalore, India. They submitted three runs in to-
tal and all were fully automatic in nature. The three runs
are as described below:
– run_1: The following steps are followed.

(1) Data cleaning and citation context retrieval
(2) Linguistic Preprocessing and creation of Docu-

ment Term Matrix
(3) Application of Latent Dirichlet Allocation,LDA
(4) Similarity Calculation

– run_2: The following steps are followed:
(1) Data cleaning and citation context retrieval
(2) Linguistic Preprocessing and creation of Docu-

ment term Matrix
(3) Application of Latent Semantic Analysis, LSA
(4) Similarity Calculation

– run_3: The following steps were followed:
(1) Data cleaning and citation context retrieval
(2) Retaining only nouns from the data
(3) Linguistic Preprocessing and creation of Docu-

ment term Matrix

(4) Application of Latent Semantic Analysis, LSA
to get semantic relationships of nouns

(5) Similarity Calculation
In the preprocessing part the following steps were fol-
lowed:
Case Conversion, Special Character Removal, Num-
ber Removal, Stopword Removal, Legal Stopword Re-
moval (Words that appear commonly in all judgments),
and Document Stemming.
The citation context retrieval dealswith retaining only
those parts of the document that are around the cita-
tion markers. The similarity calculation is done by
measuring the cosine similarity among the two docu-
ment vectors (one of the current case another of the
prior case). Only the top 50 of the prior cases are re-
ported.

5 RESULTS
Table 2 compares the different runs for Task 1. RAKE being the
only unsupervised methods has scored significantly lower than
other supervised methods. Although CRF with POS and NER per-
forms well it is to be noted that their overall recall is not very good.
Whereas,the method using Doc2Vec gives better overall recall.

In Table 3, we have different runs of Task 2 and their evaluation
scores. It is to be noted that, using citation context(text around
the citation markers in the query case), greatly improves perfor-
mance for the top three methods. Other mentionable well perform-
ers would be Dirichlet Prior Smoothing and, TF-IDF vectors over
nouns and verbs. These, if used in conjunction with citation con-
text, might as well perform better.

Although, the runs are sorted according to their MAP scores,
it is to be noted that, in the legal context the Overall Recall is of
special importance. As, in real-life, legal practitioners might even
consider going through a hundred documents rather than going
through just ten of them while missing out some important poten-
tial citations. So, a good evaluation technique would be a combi-
nation of MAP and Overall Recall.

6 CONCLUDING DISCUSSION
The FIRE 2017 IRLeD track has successfully created a benchmark
collection of Legal Case Statements and their Catchphrases bywhich
we can compare the performances of various Catchphrase extrac-
tion methods over the legal domain. Also it has created a bench-
mark citation graph which can be used to evaluate methods for
the prior case retrieval tasks. It can be noted that the highest MAP
score is 0.390 in Table 3, which reveals the challenge in prior case
retrieval.

In future, we plan to conduct other tracks as well, where the
following can be considered: (i) Adding supervision to the prece-
dence retrieval task, e.g., by providing a citation network for the
documents in the set of prior cases, and (ii) adding new tasks such
as document clustering/classification.

ACKNOWLEDGEMENTS
The track organizers thank all the participants for their interest in
this track. We also thank the FIRE 2017 organizers for their support
in organizing the track.

5



Run_id MAP MRR Prec@10 Rec@100 Method Summary
flt_ielab_idf 0.390 0.719 0.236 0.781 IDF, citation context
flt_ielab_plm 0.386 0.710 0.237 0.771 Parsimonious language model, ci-

tation context
flt_ielab_para 0.364 0.702 0.221 0.749 Citation context
HLJIT2017_IRLeD_Task2_1 0.329 0.633 0.218 0.681 Dirichlet Prior Smoothing [14]

SSN_NLP_2 0.268 0.546 0.178 0.669 TF-IDF(nouns+verbs)
SSN_NLP_1 0.263 0.518 0.180 0.681 TF-IDF(nouns)
HLJIT2017_IRLeD_Task2_3 0.248 0.525 0.167 0.671 lucene
rightstepspune_1_task2 0.202 0.451 0.135 0.564 RegEx, LDA, Doc2Vec
HLJIT2017_IRLeD_Task2_2 0.178 0.407 0.129 0.595 BM25
UB_Botswana_Legal_Task2_R3 0.167 0.348 0.123 0.559 DPH-DFR [2], BoI model[1]
UB_Botswana_Legal_Task2_R1 0.149 0.351 0.112 0.546 DPH-DFR [2]

UB_Botswana_Legal_Task2_R2 0.108 0.302 0.079 0.43 DPH-DFR [2], Sequential Depen-
dence[9, 15]

SSN_NLP_3 0.101 0.277 0.076 0.435 Word2Vec(nouns+verbs)
UBIRLeD_2 0.098 0.190 0.069 0.380 LDA
UBIRLeD_3 0.090 0.170 0.062 0.373 LDA
UBIRLeD_1 0.072 0.142 0.049 0.299 BM25
bphcTASK2IRLeD 0.071 0.198 0.060 0.280 POS tags, TF, IDF
AMRITA_CEN_NLP_RBG1_1 0.006 0.015 0.003 0.058 Doc2Vec
christfire_2017_3 0.005 0.011 0.003 0.033 LSA(nouns only)
christfire_2017_2 0.003 0.010 0.002 0.044 LSA
christfire_2017_1 0.002 0.006 0.003 0.016 LDA

Table 3: Evaluation of runs for Task 2: Precedence Retrieval. Runs are sorted in descending order of theMAP orMean average
Precision.

REFERENCES
[1] G. Amati. 2003. Probabilistic Models for Information Retrieval based on Diver-

gence from Randomness. University of Glasgow,UK, PhD Thesis (June 2003), 1 –
198.

[2] G. Amati, E. Ambrosi, M. Bianchi, C. Gaibisso, and G. Gambosi. 2007. FUB, IASI-
CNR and University of Tor Vergata at TREC 2007 Blog Track. In Proceedings
of the 16th Text REtrieval Conference (TREC-2007). Text REtrieval Conference
(TREC), Gaithersburg, Md., USA., 1–10.

[3] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5–32. DOI:
http://dx.doi.org/10.1023/A:1010933404324

[4] Stefanie Brüninghaus and Kevin D. Ashley. 2001. Improving the Representation
of Legal Case Texts with Information Extraction Methods. In Proceedings of the
8th International Conference on Artificial Intelligence and Law (ICAIL ’01). ACM,
New York, NY, USA, 42–51. DOI:http://dx.doi.org/10.1145/383535.383540

[5] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proc. International Conference on Machine Learning (ICML),
Tony Jebara and Eric P. Xing (Eds.). JMLR Workshop and Conference Proceed-
ings, 1188–1196.

[6] Arpan Mandal, Kripabandhu Ghosh, Arindam Pal, and Saptarshi Ghosh. 2017.
Automatic Catchphrase Identification from Legal Court Case Documents. In
Proc. ACMConference on Information and KnowledgeManagement (CIKM). 2267–
2270.

[7] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Ac-
tion, Second Edition: Covers Apache Lucene 3.0. Manning Publications Co., Green-
wich, CT, USA.

[8] Olena Medelyan. 2009. Human-competitive automatic topic indexing. (2009).
http://cds.cern.ch/record/1198029 Presented on July 2009.

[9] Donald Metzler and W. Bruce Croft. 2005. A Markov Random Field Model for
Term Dependencies. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’05).
ACM, New York, NY, USA, 472–479. DOI:http://dx.doi.org/10.1145/1076034.
1076115

[10] J.L.T. Olsson. 1999. Guide To Uniform Production of Judgments, 2nd edn. Aus-
tralian Institute of Judicial Administration, Carlton South (1999).

[11] J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (01 Mar
1986), 81–106. DOI:http://dx.doi.org/10.1007/BF00116251

[12] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval
3, 4 (April 2009), 333–389.

[13] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic
Keyword Extraction from Individual Documents. John Wiley and Sons, Ltd, 1–20.
DOI:http://dx.doi.org/10.1002/9780470689646.ch1

[14] Fei Song and W. Bruce Croft. 1999. A General Language Model for Information
Retrieval. In Proceedings of the Eighth International Conference on Information
and Knowledge Management (CIKM ’99). ACM, New York, NY, USA, 316–321.
DOI:http://dx.doi.org/10.1145/319950.320022

[15] Edwin Thuma, Nkwebi Peace Motlogelwa, and Tebo Leburu-Dingalo. 2017. UB-
Botswana Participation to CLEF eHealth IR Challenge 2017: Task 3 (IRTask1
: Ad-hoc Search). In Working Notes of CLEF 2017 - Conference and Labs of the
Evaluation Forum, Dublin, Ireland, September 11-14, 2017. http://ceur-ws.org/
Vol-1866/paper_73.pdf

6

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/383535.383540
http://cds.cern.ch/record/1198029
http://dx.doi.org/10.1145/1076034.1076115
http://dx.doi.org/10.1145/1076034.1076115
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1002/9780470689646.ch1
http://dx.doi.org/10.1145/319950.320022
http://ceur-ws.org/Vol-1866/paper_73.pdf
http://ceur-ws.org/Vol-1866/paper_73.pdf

	Abstract
	1 Introduction
	1.1 Task 1: Catchphrase Extraction
	1.2 Task 2: Precedence Retrieval

	2 Dataset
	3 Methodologies for Task 1: Catchphrase Extraction
	4 Methodologies for Task 2: Prior case retrieval
	5 Results
	6 Concluding Discussion
	References

