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Luis Muñoz-González, Emil C. Lupu

Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, London, UK.

Phone: +44 (0)20 7594 8249, Fax: +44 (0) 20 7594 8932

l.munoz@imperial.ac.uk, e.c.lupu@imperial.ac.uk

Abstract

Attack graphs offer a powerful framework for security risk assessment. They provide a compact

representation of the attack paths that an attacker can follow to compromise network resources from

the analysis of the network topology and vulnerabilities. The uncertainty about the attacker’s behaviour

makes Bayesian networks suitable to model attack graphs to perform static and dynamic security risk

assessment. Thus, whilst static analysis of attack graphs considers the security posture at rest, dynamic

analysis accounts for evidence of compromise at run-time, helping system administrators to react against

potential threats. In this paper, we introduce a Bayesian attack graph model that allows to estimate the

probabilities of an attacker compromising different resources of the network. We show how exact and

approximate inference techniques can be efficiently applied on Bayesian attack graph models with

thousands of nodes.

Index Terms

Attack Graphs, Security Risk Assessment, Bayesian Networks, Approximate Inference.

I. INTRODUCTION

The efforts to protect networks cannot cope with the sophistication of modern cyber attacks,

as shown by the history of data-breaches that organizations have suffered recently [1]. Identify

and patch vulnerabilities is not always possible, since lack of manpower or the impossibility

of interrupting critical systems prevents from doing so. Thus, assessing and prioritizing the

risks of the network is essential to optimize resources and the effort required to protect the
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network. However analysing the network risks in isolation offers a limited perspective of the

network security, given the complex interdependencies between vulnerabilities. In this sense,

Attack Graphs (AGs) [2], [3] provide a powerful framework to represent prior knowledge about

vulnerabilities and network connectivity, depicting the paths of an attacker through the system

by exploiting successive vulnerabilities.

AGs allow system administrators to reason about threats and risks in a formal way to better

select countermeasures [4]. Two types of analysis can be performed: Static analysis determines

the a priori risks of the network when we consider the security posture at rest. Dynamic analysis

updates those risks in light of any indication of compromise at some of the networks components,

e.g. from Security Information and Event Management (SIEM) and Intrusion Detection Systems

(IDS). While the static analysis of AGs is useful for network hardening, the dynamic analysis

allows system administrators to profile the attacker’s paths and prioritize remediation strategies

to mitigate the effects of ongoing attacks.

Given the uncertainty about the attackers’ ability to exploit vulnerabilities, Bayesian Networks

(BNs) provide an adequate framework to model AGs [5]–[9], since they depict causal relation-

ships between random variables in a compact way. However, computing the unconditional and

posterior probabilities that are needed to perform static and dynamic analysis on AGs is an

NP-Hard problem. Therefore, the use of efficient inference techniques is of essence to reduce

the time and computational resources required and improve the applicability of the approach to

perform both static and dynamic analysis of Bayesian Attack Graphs (BAGs).

On the other side, given the typical clustered structure of corporate networks, the BAGs that

are expected in real scenarios should also reflect this cluster structure. In this paper we show

that this favours the scalability of exact and approximate inference algorithms to perform static

and dynamic analysis of BAGs, scaling up to graphs with thousands of nodes [8], [9]. This

modular structure of the networks and the BAGs can also facilitate analyses at different levels

of granularity, which can allow a better scalability for Bayesian inference algorithms and, at the

same time, produce risk assessments that can be more interpretable to system administrators,

especially for large corporate networks.

The remainder of the paper is organized as follows: In Sect. II we describe BAG models and

exact and approximate inference techniques to compute the probabilities needed for the static and

dynamic analysis. In Sect. III we show experimental results comparing exact and approximate

inference techniques for the static and dynamic analysis of synthetic BAGs of different sizes.
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Finally, in Sect. IV we discuss the future research directions that, in our opinion, should be

considered, to provide more efficient and scalable security risk assessment with AGs.

II. BAYESIAN ATTACK GRAPHS

AGs are graphical models that represent the knowledge about networks vulnerabilities and their

interactions, showing the different paths an attacker can follow to compromise a given objective

by exploiting a set of vulnerabilities. Along each attack path, vulnerabilities are exploited in

sequence, so after each successful exploit the attacker acquires more privileges towards her

goal. In the literature we can distinguish two main types of representations: state-based [10],

[11] and logical [3], [12] AGs.

In line with most of the recent literature on AGs, in this paper, we only consider logical AGs,

since state-based representations are known to scale exponentially with the number of nodes

and vulnerabilities in the network, making them impractical even for small corporate networks.

In contrast, logical AGs produce more compact representations that grow polinomially with the

number of vulnerabilities and the number of connected pairs of hosts [13]. Logical AGs rely on

the monotonicity principle: the attacker never relinquishes privileges once obtained. Although

not always applicable, this assumption is reasonable in most cases, as discussed in [3].

Some of the literature on AG analysis assumes that monotonicity induces a Directed Acyclic

Graph (DAG) structure [5], [7]. Although this is not completely true, and some directed cycles

may be present, monotonicity helps to get rid of many directed cycles related to duplicate attack

paths. However, [14] explain how to handle and eliminate remaining directed cycles without loss

of integrity. For the remainder of the paper, we will consider AGs with a DAG structure.

The uncertainty about the attacker’s behaviour and the DAG structure of the AG make Bayesian

networks (BNs) a reasonable alternative to model and analyse AGs. Thus, BNs allow to calculate

the probability of an attacker reaching a security condition (state) in the AG. More formally, a

BN can be definedd as a directed acyclic graphical model where the nodes represent random

variables and the directed edges represent the dependencies between these random variables. Let

X = {X1, ..., Xn} be a set of (continuous or discrete) random variables. The joint probability

distribution can be written as:

p(X) =

n
∏

i=1

p(Xi|pai) (1)

Then, under the BN representation, for each node Xi there is a directed edge from each node

in pai, the set of parents nodes of Xi, pointing to Xi. In the particular context of the BAG, the
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nodes represent the different security states that an attacker can acquire. We model the behaviour

of these states as Bernoulli random variables.

A. Conditional Probability Tables

The information available at each node in the BAG is the conditional probability distribution

p(Xi|pai), i.e. the probability of a node to be compromised given the state of its parent nodes

pai. In oder words, p(Xi|pai) represent the probabilities of an attacker reaching a security state

Xi given the observation of its preconditions pai and the vulnerabilities vi that can be exploited

to compromise Xi.

The probabilities of an attacker successfully exploiting vulnerabilities are parameters of the

BAG model that are used to calculate the conditional probability tables. A common approach to

estimate pvi , the probability of an attacker successfully exploiting a vulnerability vi, is by means

of CVSS [15], as proposed in [6]–[9]. More concretely the exploitability submetric of CVSS

can be considered more appropriate to estimate these probabilities since it tries to measure the

difficulty of exploiting a vulnerability.

To main types of conditional probability tables can be consider: AND and OR. In the first case

all preconditions must be satisfied to be able to compromise node Xi. In contrast, in the OR

case, only one precondition is needed to attempt to attack node Xi. Thus, the AND conditional

probability table can be calculated as:

p(Xi|pai) =











pli , ∃Xj ∈ pai|Xj = F

1− (1− pli) (1−
∏

j:Xj
pvj ), otherwise

(2)

whereas for OR conditional probability we have:

p(Xi|pai) =











pli , ∀Xj ∈ pai|Xj = F

1− (1− pli)
∏

j:Xj
(1− pvj ), otherwise

(3)

The leak factor pli models the non-perfect behaviour of the alert system and the possible presence

of unknown zero-day vulnerabilities. By combining (2) and (3) we can extend the construction

of conditional probability tables to intermediate cases, where different subsets of preconditions

need to be satisfied before trying to compromise Xi.
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B. Non-perfect Alert System and Zero-day Vulnerabilities

The leak factor pli in (2) and (3) models the cases where, even when all the preconditions

are in the False state, i.e. not achieved by the attacker, there is still some non-zero probability

of Xi taking the True state. The reason for this is because the attacker can successfully exploit

a zero-day vulnerability to compromise Xi or because the alert correlation system has triggered

a false alarm.

Defining the error probability of the alert system as pe, and the probabilities of an attacker

successfully exploiting a zero-day vulnerability for a node in the BAG as pzi , the leak factor

can be computed as:

pli = 1− (1− pe)(1− pzi) (4)

Estimating pe, the error probability of the alert correlation system, is far from a trivial task.

Although some ad hoc methodologies have been applied in the literature [16], [17], it still

remains an open problem. The difficulty relies on the dynamic aspects of the system behaviour.

However, even a rough estimate of pe can be useful to provide better risk assessments with

BAGs.

Estimating pzi , the probability of an attacker successfully exploiting a zero-day vulnerability

to compromise node Xi is even more challenging. First, we need to estimate the probability

of having zero-day vulnerabilities for the software running in each machine of the network.

Second, it is not trivial to estimate the easiness of exploitation of these potential vulnerabilities.

Finally, the preconditions needed for the attacker to exploit a zero-day vulnerability can be the

postconditions of longer attack paths. Thus, the severity of the potential zero-day vulnerabilities

should be considered different according to the proximity of the current node with respect to

the target node. As discussed in [9], similar to the estimation of the probability of successful

exploitation of vulnerabilities with CVSS scores, in the case of zero-day vulnerabilities we

can estimate the corresponding probabilities by means of the Common Weaknesses Scoring

System (CWSS) [18]. Thus, CWSS scores provide a quantitative measure measure of the unfixed

weaknesses present in a software application.

C. Static and Dynamic Analysis

For the static analysis of the BAGs, we are interested in calculating the unconditional prob-

abilities p(Xi) for all the nodes in the graph. Thus, p(Xi) corresponds to the probability of an
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attacker reaching a given security condition Xi. Using Bayes rule we can compute this probability

as:

p(Xi) =
∑

X−Xi

p(X) =
∑

X−Xi

n
∏

j=1

p(Xj |paj) (5)

where X −Xi indicates that we sum over all the set of random variables X except Xi. These

probabilities can be used as risk estimates to harden the network or to apply static risk mitigation

techniques.

For the dynamic analysis of the BAG, given evidence of attack on a set of nodes Xe (by

means of the alert correlation system), we need to compute the posterior probability p(Xi|Xe)

in all the nodes of the network, except for the set Xe. Applying Bayes rule we can compute the

posterior probability as:

p(Xi|Xe) =
p(Xi,Xe)

p(Xe)
=

∑

X−{Xi,Xe}
p(X)

∑

X−Xe
p(X)

(6)

The posterior probabilities provide a re-estimation of the risk at run-time, which can help system

administrators to plan and prioritize security measures to mitigate or contain an ongoing attack

[7].

The exact calculation of (5) and (6) is an NP-Hard problem [19]. Thus, efficient algorithms

such as Variable Elimination [20] or Junction Tree (JT) [21] are necessary even for small graphs.

However, the applicability of these techniques can be limited in cases where the graphs are dense,

demanding a lot of computational resources to compute (5) and (6). Even when the structure of

BAGs is expected to have some special properties, given the typical clustered network structure

and the limited number of attack paths to compromise a node, there are no guarantees about

the computational complexity for these exact inference techniques. An experimental comparison

between Variable Elimination and JT is presented in [8], showing that JT outperforms Variable

Elimination both in terms of memory and time needed to compute the unconditional and posterior

probabilities. Thus, JT can be applied to perform both static and dynamic analysis to graphs up

to a few thousands of nodes.

Approximate inference in BNs is also known to be NP-Hard [19], but efficient techniques

like Loopy Belief Propagation (LBP) [22] allow to efficiently estimate (5) and (6). Since for

BAGs we only have Bernoulli random variables, LBP scales in time and memory as O(N2s),

where N is the number of nodes in the BAG, and s is the scope of the biggest factor, i.e. the

maximum number of parent nodes that a node can have in the graph. Since we expect to have
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some security in-place we expect s to be small. Then, as shown in [9], LBP allows to scale-up

to larger BAGs compared to exact inference techniques. Despite LBP do not provide the exact

values for the unconditional and posterior probabilities, we should not be deterred about the

estimates produced by LBP, since the probabilities of exploitation of vulnerabilities, modelled

through CVSS scores, are already a rough estimate and, on the other hand, as shown in [9], the

accuracy of LBP to estimate (5) and (6) is more than reasonable to help system administrators

to harden the networks or to propose countermeasures to mitigate the effect of ongoing attacks.

III. EXPERIMENTS

In this section we present an experimental evaluation comparing the time performance of

LBP and JT for the static and dynamic analysis of BAGs, i.e. the time required to compute the

unconditional and posterior probabilities respectively. We have used the Bayes Net toolbox for

Matlab1 as the core implementation for all the algorithms.

Following a similar methodology than in [8], [9] we have generated synthetic AGs for the

experiments. Unfortunately, currently, there are no collections of AGs of similar variety obtained

empirically from real systems. To the best of our knowledge no collections of empirically

obtained AGs exist in the public domain at all. Then, to provide a comprehensive evaluation of

the algorithms with AGs of different sizes and interdependencies we need to resort to synthetic

AGs.

Since typical corporate networks are structure into subnetworks and contain several hosts with

common software installations, we can expect some form of cluster structure in the corresponding

AG. Moreover, we expect a reduced number of vulnerabilities allowing the attacker to escalate

privileges across different subnetworks, as routing and firewall rules between subnetworks usually

hinder the progression of the attack. This is in line with the AG examples shown in [23],

where only attacks across subnetworks are considered. To generate the synthetic graphs we have

considered networks with clusters (subnetworks) of the same size nc. For each cluster we have

generated pseudo-random graphs with a DAG structure where we limit the maximum number

of possible parents to each node to m. Finally, the dependencies across clusters are modelled

by adding one edge from one node in each cluster to one node in each of the other clusters,

provided that the DAG structure required for BNs is preserved.

1https://github.com/bayesnet/bnt
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Fig. 1. Time to compute the unconditional probabilities for LBP and the JT algorithm for cluster networks with different cluster

sizes (nc = 20 and 50) and m = 3 for the static analysis of the BAGs.

For the experiments we have generated synthetic graphs with nc = 20 and 50, m = 3, varying

the total number of nodes from 100 to 1, 000. The values of the probabilities of successful

exploitation of vulnerabilities are drawn at random from the distribution of CVSS scores in [24].

For each graph size explored, we have generated 20 independent graphs for each value of nc

considered.

In Fig. 1 we show the average time2 required to compute the unconditional probabilities for

the static analysis of the BAGs. We observe that JT scales exponentially with the number of

nodes, whereas LBP3 scales linearly and requires less time to perform the analysis. The size of

the clusters does not have an impact in the time performance of LBP and, in the case of JT, the

difference between the two cases is moderate.

In Fig. 2 we report the time required to perform the dynamic analysis, when we observe

evidence of attack in 3 nodes (chosen at random). In Fig. 2(a) we can observe that both JT

and LBP scale linearly with the number of nodes and that the cluster size, nc, has a very small

impact on the performance. However, in contrast to the static analysis, JT is much faster than

LBP, computing all the posterior probabilities in less than 1 second for BAGs with 1, 000 nodes,

as can be appreciated with more detail in Fig. 2(b).

The experimental results suggest that JT is more appealing to perform dynamic security risk

assessment with BAGs. However, the exponential scalability for the static analysis, which in

the case of JT is required before performing dynamic analysis, limits its applicability to large

2The experiments have been conducted in a 16 GB computer with an Intel Core i7 processor at 3.40 GHz.

3We have used the parallel version of LBP [19].
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Fig. 2. Time to compute the posterior probabilities for LBP, and the JT algorithm for cluster networks with different cluster

sizes (nc = 20 and 50) and m = 3 for the dynamic analysis of the BAGs (when we observe evidence of attack at 3 random

nodes): (a) Time in natural scale; (b) Time in logarithmic scale.

networks. In contrast, LBP scales linearly for both the static and dynamic analysis of the graph.

Despite LBP is slower than JT for the dynamic analysis, as shown in [9], LBP allows to monitor

the values of the posterior probabilities at each iteration of the algorithm. Therefore, we can also

obtain accurate estimates for the posterior probabilities before the algorithm converges.

IV. DISCUSSION

Attack Graphs are a powerful tool for static and dynamic risk assessment of networks, since

they take into account the interdependencies between vulnerabilities depicting the ways an

attacker can compromise different network resources. Bayesian networks allow to measure the

risk at the different nodes of the AG given the likelihood of successful exploitation of the

vulnerabilities present in the networks and the relation between the preconditions needed to

compromise a node. Although computing the probabilities in BNs is an NP-Hard problem, we

have shown that the use of appropriate inference techniques such as Junction Tree and Loopy

Belief Propagation, can allow to use BAGs for static and dynamic risk assessment, helping

system administrators to enforce the security of the networks and mitigate the effect of ongoing

attacks.

However, the heterogeneity of modern infrastructures and the dynamic aspect of the networks

limits the application of traditional attack graph generation tools for these environments. Then,

new methodologies and models are needed to cope with the requirements of modern networks.
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In the remainder of this section, we discuss some of the limitations and opportunities for the

development of new attack graph models for both generation and analysis of AGs.

Although logical representations of AGs [3], [12] scale in a polynomial way with the number

of nodes and vulnerabilities in the networks, their applicability is still limited to large scale

scenarios, with thousands or millions of devices. Even if they can be computed, in these cases

they offer a limited usability for system administrators. Thus, new mechanisms are needed

to generate more scalable and interpretable AG models. This can be achieved by clustering

security domains that are very similar. For example, within subnetworks, often we can find

many machines that are configured similarly, so the vulnerabilities present on those machines

should also be similar. Thus, in terms of privilege escalation, compromising one or several of this

machines can be considered equivalent.4 On the other hand, the concept of “security domain”

used in traditional AG methodologies is often restricted to the security privileges that the attacker

can acquire on a single machine. This can be restrictive for modelling modern networks. For

instance, if the attacker compromise a user account (for example with a phishing attack), she

can have access to several machines or devices in the system.

Traditional AGs are built by considering only the network topology, reachability, and software

vulnerabilities [12], not considering other security aspects present in the attack surface of modern

infrastructures, such as IoT environments, where we should also consider the physical and human

vulnerabilities of the system. Thus, there is a need of new AG generation models capable of

describing this extended and complex attack surface considering the cyber, human, and physical

aspects of the network security.

Given the complexity and size of modern networks, different security perspectives can be

considered. Thus, high level abstractions of the AG can help to produce more interpretable rep-

resentations, as proposed in [25] to manage AG complexity for visualization. Similar approaches

can be adopted for AG analysis: Thus, we can allow for tractable analysis of AGs in very large

networks through lower resolution representations. This induces a trade-off between accuracy, the

level of resolution, and the tractability of the analysis. For example, in large corporate networks,

systems administrators may prioritize the contention of attacks to prevent their propagation

at subnetwork level. Then, once the attack is contained within a subset of subnetworks, finer

4Note that we are not considering data exfiltration scenarios, where compromising one or several machines can have a different

impact.
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analyses may be required to mitigate the effect of the attacks at machine level in the affected

subnetworks. To achieve this, we need to develop mechanisms to produce aggregate risk estimates

at different levels, capable of summarizing the state of a given subnetwork or a set of machines.

Then, Bayesian inference techniques can also be applied to perform static and dynamic analysis

in such aggregate models.
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