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Abstract. The life of individuals are strongly influenced by their health.
An example concerns salinity resistant plants, an invention which may
alleviate issues of climate change and rising sea levels. A different issue
conserns drug discovery for humans, such as accurate and inexpensive
cures available for the poor, personalized drugs, etc. In drug discovery the
applied strategy is to combine domain experts with data made accessible
through off-the-shelf software, and from the latter expect to identify
new drugs. While computational drug-discovery is known to be working
when number of candidate-factors are sufficiently small, the established
methods and software are unfeasible for mining in big-data knowledge
bases.
In this paper we address the above issue. We present an holistic ap-
proach for searches in big-data with complex relations. We demonstrate
how our novel strategies for integration of large heterogeneous data-
sets results in knowledge discovery. In our work we address issues of:
semantics, entity similarity, clustering, data-engine, hypothesis testing,
and user-interfaces. To verify our approach we implement data from 37
external data-resources, resulting in a database with more than 30 mil-
lion bio-medical relationships. When we compare our findings with exist-
ing literature we observe how our holistic approach for big-data mining
discover 1000+ novel candidates for drug interaction. To address key-
issues in knowledge discovery we have constructed 10+ new software-
approaches for data-mining, tools which enable the development of a
new method for mining of big-data. To enable reuse of our approaches,
they are available from: http://www.knittingTools.org/, http://www.
knittingTools.org/gui_lib_mine.cgi, https://bitbucket.org/oekseth/
mine-data-analysis/downloads/, and https://bitbucket.org/oekseth/

hplysis-cluster-analysis-software.

1 Introduction

In life-science a recurring task is to understand how and why entities relate: to
construct a hypothesis which translates discrete observations into a conceptual
figure capturing core-traits of an evaluated subject, as exemplified in Fig. 3 for
the research of [1]. An example concerns the effects of Cytoplasmic Phospholi-
pase A2 (cPLA2) enzyme which is associated to a number of diseases, such as
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Alzheimer [2] and Rhematism [3]. In knowledge-discovery researchers use man-
ual approaches to identify candidate interactions, as exemplified in [4] where the
authors use literature to manually construct a “heterogeneous network with 351
node” [4].

In contrast to established approaches for data-mining, an understanding of
drug-interactions require the analysis of possible interactions, as exemplified in
Fig. 1. While the “PubMed” database [5] contains “more than 27 million cita-
tions for biomedical literature” [5], the “Unified Protein Resources (UniProt)”
describes more than 47 million protein sequences [6]. “The Economist” asserts
that 50 per-cent of published research-literature are erroneous [7], hence the
established use of manually selected research findings to identify new drug can-
didates is challenging.

The high cost of drug development discourage the development of drugs for
the poor [8]. The cost of developing a single drug vary from $802 million to
$2.2 billion [9]. The drug-company of “AstraZeneca” spend on average $11+
billion ([10,11]) on each accepted drug. The main-cost of drug development is
the number of failed drugs [12], e.g., as observed by [13]: “only, one in 5,000
medicines makes it to the marked” [14]. Of importance is to address the above
issues in drug discovery, i.e., as “today’s pharmaceutical industry cannot sustain
sufficient innovation” [15] with today’s cost of drug-development. Hence, the
importance of accurate tools for knowledge discovery.

In this paper we relate the above perspectives, demonstrating how a new
holistic approach for mining of big data enable user-interactive drug discovery.
In the method and associated software we unify the approaches of user-centric
and software-centric approaches for data-mining, as depicted in Fig. 5. What
we assert is that an holistic approach which increase accuracy and performance
of data from disparate sources, software for mining, and tacit understanding, is
sufficient to address major issues in drug discovery, a view supported by [15].
“R&D efficiency represents the ability of an R&D system to translate inputs (for
example, ideas, investments, effort) into defined outputs (for example, internal
milestones that represent resolved uncertainty for a given project or product
launches), generally over a defined period of time” [15]. The ensemble of methods
and software, summarized in Fig. 5, address challenges which have prevented
established semantic data-bases from knowledge discovery, e.g., as observed with
respect to the issues encountered by [17,?,19].

In the work we have identified and addressed the issues of:

1. Disparate data: automatic approaches to unify distinctively different data,
where results are exemplified in Fig. 1.

2. Execution-time: high-performance software for accurate and large-scale data-
mining, as exemplified in Fig. 4;

3. User searches: interactive real-time data-mining which stimulate use of tacit
knowledge, as exemplified in Fig. 3 and Fig. 6.

The remainder of the paper is organised as follows. In section 2 we briefly
survey related approaches, before we in section 3 describe the approach. In the
result-section 4 we identify evaluate/discuss how the holistic approach address
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Fig. 1: Semantic inference and knowledge discovery. The above figure count each in-
ferred relationship for a subset of the predicates in our database In the figure pred-
icates at a semantic inference distance ≥ 2 capture inferences not known in public
drug-discovery databases, hence there are 1000+ identified candidates for knowledge
discovery. To increase accuracy of predictions the predicates, depicted as legends, are
constructed from a unification of data from “UniProt” [6] and “BioPax” [16].

current issues in big-data mining. This paper ends with a brief summary of
observations in section 6.

2 Related Work

A challenge in data-mining conserns the slow performance of software, as ob-
served for [20] in Fig. 4. A possible explanation of the latter is an unawareness
of high-performance software implementation strategies [21]. To exemplify, the
major efforts in “systems biology is on developing fundamental computational
and informatics tools” [22], an assertion motivated by how “a concerted effort
to bring all the useful tools for pathway analysis in a common platform is still
missing” [23]. When combining the observations of ([22,?]) and Fig. 4 we re-
alize how poor-performing software represents a hurdle in knowledge discovery.
To summarize, we observe that established approaches for data-mining suffers
from:

1. Disparate data: insufficient data-coverage and prediction, e.g., in [23,24,25,26,17];
2. Execution-time: high query response-time, e.g., in [20,?];
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Fig. 2: Computational complexity versus user-interaction in knowledge searches. The
above figure relates user-searches to the computational inference process. This re-
flects the flow of information, and complexity of software, for user-queries supported
at www.knittingTools.org. While major research efforts are invested in improving
performance of software categorized in the upper part of the figure, their return on
investment is limited, i.e., as captured from the figure. In contrast the majority of our
efforts are invested on improving the software modules depicted in the bottommost
part in the above figure, as exemplified in Fig. 5.

3. User searches: user-interfaces which limits domain-experts from accurate
data-searches and result-interpretation, e.g., in [18,28,29,30].

In below we briefly examine the above issues, focusing on issues concerned
with disparate data and execution-time.

2.1 Execution-Time: Tools for similarity, feature-selection and
clustering

There are more than 106 research-works concerned with data-mining1. An exam-
ple concerns the k-means cluster-algorithm, where new permutations are pub-
lished every year, e.g., with respect to [31]. The work of [32] observes how ex-
isting software for data-analysis under-utilizes computer-hardware. A popular
software-tool for cluster-analysis is the “cluster C” software [20]. From Fig. 4
we observe how the approach manages to outperform the software of [20] by
a factor of 100,000x+. While [33] provide a GPU-optimized implementation of
“DB-SCAN” [34], the GPU implementations limited support for user-defined pa-
rameters result in inaccurate cluster-predictions for numerous data-sets [35], e.g.,

1 Observation from searching on “Google Scholar” for terms such as PCA, k-means,
Sum of Squared Error (SSE), spearman, Euclid, correlation, similarity, etc.

www.knittingTools.org


with respect to issues in missing data and similarity-metrics. In order to eval-
uate accuracy of cluster-algorithms, application of feature-selection, and many-
dimensional hypothesis-testing, metrics for cluster-consistency are used [36]. Ex-
amples of cluster-consistency metrics are “Silhouette” [37], “Sum of Squared
Error (SSE)” [38], “Rand’s Index” [39] and “Rands Adjusted Index” [40], etc.
Therefore, accurate software for data mining need to be optimized both with
respect to number and execution-time of integrated metrics.

2.2 Disparate data and Execution-Time: Engines for data-access

A major challenge in big-data analytics concerns the slow performance of database-
engines [41,23,22,42]. To exemplify, the authors of [23] asserts that there is no
sound computational framework for database-management. The work of [43] ob-
serves how “big data analytics requires technologies to efficiently process large
quantities of data” [43]. To address the performance lag in database-engines
current approaches seeks to pre-compute queries [17,44,45], reduce RDF-dataset
through slicing [46], etc. However, a prevailing issue concerns the high time-cost
of queries: the search-engine of [47] use more than 13 minutes to evaluate a
simple query. What may be argued is that the choice of accurate data-engines
may address the performance issue. There is a large number of different data-
engines for high-performance querying of semantic data [48,49,50,?,?]. One of
these is the “Sesame” data-engine [53], a data-engine which is unable to provide
real-time query-answer-time to simple queries [54]. Our earlier work [55] iden-
tifies how the established B-tree ([56,41]) data-structure results in a 10,000x+
performance-delay when compared to accessing data stored in an in-memory 2d-
sparse data-structure, as discussed in [55]. In our [55] we demonstrates how a 2d
sparse data-structure may be used as an alternative to established data-engines,
a work which observe how application of a 2d sparse data-structure outperforms
MySQL by 10,000,000x+ for important bio-medical queries.

3 Method: A holistic method for knowledge discovery

In the integration of real-time user access to 30 million bio-medical relationships
we have faced the challenges described in research, as exemplified in section 2.
From the works of others we realize that it is not feasible to follow the estab-
lished strategies. To exemplify, major efforts by [17,?,19] are placed on trans-
lating data-formats into RDF. However, their approaches have not resulted in
knowledge discovery. In the unification of data-resources we have addressed is-
sues in assimilation of the graph-structured “BioPax” [16] formats and evidence-
annotations in “OBO” [60], i.e., where latter by definition is not supported by
the “SPAR-QL” query-language. An example of erroneous name-mappings is
seen for an entity with name “HDR” asserted by [61,?] to be an exact synonym
of the “gata3” gene. In contrast the established view is that “HDR” describes a
mechanism in cells [63]. The latter example is one of many fallacies observed in



Fig. 3: Our support for knowledge-inferences in filtered data. The above figure exem-
plify how our approach enable knowledge-discovery, as described in [57]. Each of the
sub-figures represent distinct data-sets capturing different hypothesis in [1]. The differ-
ences and similarities between the sub-figures provide clues of how guinea pigs develop.
Importantly, the above separation between entities reflect the findings in [1], hence our
interactive data-mining approach provide support for accurate and fast data-filtering
of user-defined data-sets.

multi-origin databases, hence integration of data need to take care when using
assertions from unreliable sources.

A different aspect concerns the execution-time of user-queries, exemplified
in Fig. 2. To address the high time-cost of translating external data-bases into
RDF, and searching RDF data-stores, we have designed a data-engine which
accepts semantic relationships. When measuring the response-time of queries we
observe how our new data-engine address issues in execution-time, as described
in our [55]. The/Our semantic data-engine address issues such as:

1. Disparate data: integration of evidence annotations, hence less relationships
to investigate during evidence-centered user-queries;

2. Execution-time: memory-cache aware data-searches, effective use of SSE [64],
memory-tiling [65], etc;

3. User searches: pre-computation of statistics, and ranks, for database-vertices
enable accurate suggestion when users type name of entities, as exemplified
in Fig. 6.

The above described strategy exemplify approaches which reduce search-
time without introducing erroneous heuristics, e.g., in contrast to [18]. Fig. 5
presents a summary of the approaches undertaken to optimize the performance
aspects of bio-medical knowledge discovery, hence a holistic method for data-
mining. To exemplify, we from Fig. 5 observe how the holistic approach address
issues in disparate data through a combination of manually curated rules (to
address quality issues in data-resources, e.g., the “HDR” use-case), application
of clustering to unify entities both with respect to their database-resource (e.g.,
“uniprot”), etc.
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Fig. 4: Time-difference of our hpLysis software versus established approaches. The
above figure capture the performance-difference of different strategies to compute the
pairwise similarity metric of“Kendall’s Tau” [58,59]. While the bottommost legend
represents the time-cost of our hpLysis software, the topmost legend capture the time-
cost of the popular “Cluster C” library [20]. The figure demonstrates how the hpLysis
approach out-performs [20] by a factor of 100,000x+.

4 Result

The holistic approach for drug-discovery, introduced in this paper, is constructed
to relate domain-experts to accurate interactions minted from big data. From
below sub-sections we assert that the approach manages to correctly address the
issues described in section 2.

4.1 Disparate data: Data-access in the bio-medical domain

There are more than 220 different knowledge sources in the bio-medical domain
[66]. Correctness and usability are characteristics which describe the most pop-
ular tools for knowledge integration. An example tool is cPath, written by [66],
which is built around a MySQL database [67]. From the performance measure-
ments of data-structures in sub-section 4.4 we observe how semantic searches
through MySQL results in a 10,000,000x+ performance-delay. The best tools
provide access to data which has been manually curated by field experts, such



as the Reactome tool [26] or the BioGrid tool [25]. The back-bone of the tools
is often the Gene Ontology (GO) [68], which is used to define the lexicographic
order of the genes and proteins. Translating compartmentalized knowledge into
an ontology for reasoning, such as the RDF format, is seen in [24,45]. The prob-
lem with both approaches is the performance and quality issues in knowledge
discovery.

4.2 Execution-Time: Relationship between implementation,
execution-time, and their influence

In data-mining the execution-time of software may render high-quality analytical
approaches useless, e.g., as inferred for large data-sets in Fig. 4. The application
of established implementation-strategies results in under-performing code due
to the challenges of compilers to identify strategies for performance tuning (as
it otherwise would not have been a time-difference between different software
implementations). In below we list a subset of observations from the holistic
optimization of approaches for data-mining:

1. Search-time: the test-cases listed in sub-section 4.4 relate the time-cost of
semantic searches in our novel database-engine to the established use of B-
trees ([56,41]), observing a time-difference of 10,000x+;

2. Data-mining: Fig. 4 compare the time-cost of strategies for computing “Kendall’s
Tau”. When our approach is compared to the popular “cluster-C” software
[20], a time-difference of 100,000x+ is observed;

3. Software complexity: Fig. 5 examplify how accurate and fast user-searches
involve steps in data-curation, analysis of semantic similarity, and construc-
tion of user-interfaces.

The above observations indicates that the application of low-level optimization
strategies is a central part in efforts for mining of big-data, reflecting observations
in section 2, hence the importance of an holistic optimization strategy.

4.3 User searches: application centered perspective

A sound interaction between software-tools and human domain-experts is seen
as an essential part of knowledge discovery. In below we exemplify a subset of
the strategies we have applied in the holistic approach (Fig. 5):

1. Semantic user-interactions: Fig. 6 exemplify how users are provided with sup-
port for both semantic queries (topmost sub-figures), interactive exploration
(sub-figures in the middle) and signature queries (bottom-right sub-figure);

2. Testing hypothesis: in Fig. 3 we observe how a combination of the “MINE”
metric [69] and our web-based framework for data-mining facilitate knowl-
edge discovery on filtered query-subsets.
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Fig. 5: An holistic approach for data-mining. The above figure depicts a collection of
labelled boxes, such as Pools of KBs and DBs and Visualization. The legend-text (top-
right) describe the classification of the different background rectangles, as discussed
in section 3. An example of a classification concerns the process of handling disparate
data, where tasks for data-parsing, entity optimization, and format-unification, are
combined into an automated approach. The size of the background-boxes reflect their
computational complexity, as discussed in Fig. 2. The uniqueness of our approach
concerns how we relate the existing strategies into one unified model, thereby avoiding
overheads associated with generalised approaches (such as RDF centered integration-
strategies). To exemplify, when approaches such as [19] apply Standardization they use
standardized rules for all of the integrated data-resources, hence entities from different
data-resources are syntactically correct while semantically inaccurate.

4.4 Reproducibility: interfaces to validate and elaborate our
approaches for data-mining

The results, summarized in this paper, may be re-produced through application
of our software, as listed in below:

1. Semantics and data: http://www.knittingTools.org/;
2. MINE data-mining: http://www.knittingTools.org/gui_lib_mine.cgi;
3. MINE high-performance software: https://bitbucket.org/oekseth/mine-data-analysis/

downloads/;
4. Software for data-analysis: https://bitbucket.org/oekseth/hplysis-cluster-analysis-software.

5 Use-cases: how the holistic approach improves drug
discovery

The holistic approach represented in this paper manages to address issues in big-
data analysis. The term big data depends on the complexity of data, algorithms,
and use-cases to be evaluated, e.g., where [70] asserts that a study of 857 proteins
implies a large-scale analysis. This section therefore seeks to address strategies
for:

http://www.knittingTools.org/
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https://bitbucket.org/oekseth/mine-data-analysis/downloads/
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Fig. 6: A user-interface for semantic queries. The above sub-figures depict the user-
interface for semantic searches, a user-interface designed for domain-experts without
interest in programming. The two uppermost sub-figures depicts the query-form for
submitting conditional questions. The drop-down menu observed in the top-left figure
exemplifies the support for auto-complete. In the middle-right sub-figure the query-
results is seen. To handle the frequent issue of 1000+ identified relationships, the table
include filter-options. When a user filters a subset of the query-result, it is visualized
in the middle-left sub-figure.

1. Disparate data: algorithms and data which may be accurately queried;
2. Execution-time: why the enabled performance-increase is important in drug

discovery;
3. User searches: how domain-experts may identify accurate prediction from

complex data.

5.1 Disparate data and user-searches

The “Knitting-Tools” web-server includes a number of pre-computed use-cases
(http://knittingtools.org/examples.cgi). The results have been manually
investigated and verified. Accuracy of predictions depends on data (Fig. 1) and
accessibility (Fig. 6). Below use-cases provides a brief introduction to how com-
plex searches may be applied on big-data.

Use-case(1): What is known for “notch2”? (http://knittingtools.org/
query.cgi?queryID=get_allRelations_forA_vertex). The use-case illustrates

http://knittingtools.org/examples.cgi
http://knittingtools.org/query.cgi?queryID=get_allRelations_forA_vertex
http://knittingtools.org/query.cgi?queryID=get_allRelations_forA_vertex


an exploratory search to identify all relationships, synonyms and provenance
(e.g., the set of databases) describing a vertex of interest, e.g., the “notch2”.
Amplifies the use of basic search functionality to fetch relationships in Knitting-
Tools, both for visual evaluation (Fig. 6), and as a prior data-gathering step
before application of software for pattern identification (sub-section 5.2 and sub-
section 5.3).

Use-case(2): What is known for “cdk4”, and how was this known? (http://
knittingtools.org/query.cgi?queryID=get_allRelations_forA_vertex_evidence_

and_synonyms). Extends use-case(1) with logic to fetch the synonymous vertices
(for each vertex in the set of identified relations) and the provenance for each re-
lationships. Provides insight into why the identified relationships were predicted,
i.e., their provenance.

question(3): Identify the regulations associated to the important event of
apoptosis (i.e., ’controlled cell death’). (http://knittingtools.org/query.cgi?
queryID=intro_basic_bio_2). The query identifies relationships associated to
pathways and regulations for chemical entities, proteins, genes, and pathways.
In the result provenance is associated to each relationship, a provenance which
becomes visible when clicking the green-plus button in the result-table (Fig. 6).

5.2 Pattern identification and usability

The MINE software combine an highly accurate algorithm for pattern iden-
tification [69] with a web-interface for interactive data-exploration (Fig. 3).
To evaluate the applicability of the MINE web-based software (http://www.
knittingTools.org/gui_lib_mine.cgi) the data-sets of [71], [72], and [1] are
evaluated. While the data-set by [1,71] provide explanation factors for growth of
guinea pigs, [72] analysis the variation in the guinea pigs goat-spots. The conclu-
sions presented by the authors are supported through application of the MINE
web-interface.

5.3 Execution-Time and knowledge discovery

For large data-sets the prediction accuracy relates directly to the execution-time
of data-mining software, i.e., a users are otherwise needed to explore smaller
data-samples and test fewer number of hypothesis. The below paragraphs exem-
plifies how our proposed approach increase accuracy of large-scale data-analysis.

Application(1). Large-scale ontology engineering (https://bitbucket.org/
oekseth/hplysis-ontology/). We have developed a new hpLysis-onto software
for high-performance engineering of bio-medical ontology. Ontologies are used in
a large number of application, e.g., to identify similarities of gene products from
experimental outcomes [73] The hpLysis-onto software address performance is-
sues in computation of transitive closures and transitive reductions, an issue
hampering analysis of large and complex data-sets. For the task to compute
transitive closures for all vertices, the software of [74] consumes more than one
day on the 24 MB “Gene Ontology” [68]. In contrast, the hpLysis-onto software

http://knittingtools.org/query.cgi?queryID=get_allRelations_forA_vertex_evidence_and_synonyms
http://knittingtools.org/query.cgi?queryID=get_allRelations_forA_vertex_evidence_and_synonyms
http://knittingtools.org/query.cgi?queryID=get_allRelations_forA_vertex_evidence_and_synonyms
http://knittingtools.org/query.cgi?queryID=intro_basic_bio_2
http://knittingtools.org/query.cgi?queryID=intro_basic_bio_2
http://www.knittingTools.org/gui_lib_mine.cgi
http://www.knittingTools.org/gui_lib_mine.cgi
https://bitbucket.org/oekseth/hplysis-ontology/
https://bitbucket.org/oekseth/hplysis-ontology/


manages to answer the latter query in less than one second, hence a significant
improvement in performance.

Application(2). Large scale Semantic similarity (https://bitbucket.
org/oekseth/hplysis-cluster-analysis-software). The hpLysis software is
updated with a new high-performance library for computation of 20+ seman-
tic similarity metrics. “Generally speaking, semantic similarity measures involve
the GO tree topology, information content of GO terms, or a combination of
both” [75]. The software proposed by [75] takes several hours to complete. The
hpLysis-semantic software improves the performance of established software ap-
proaches by 1000x+, i.e., without reducing the prediction accuracy. The latter is
enabled through increased utilization of computer memory hardware. Semantic
similarity-metrics are used to identify important traits in data-sets [76], e.g., to
(1) relate hypothetical assumptions to gene-expression-levels [3] and (2) with
respect to “Word Sense Disambiguation” (WSD) for automated analysis of text-
corpuses [77].

Application(3). Many-dimensional data-analysis ([36]). The hpLysis soft-
ware provides an API for high-performance computation of 20+ cluster-algorithms,
320+ pairwise similarity-metrics, 10+ metrics for string-similarity, and 20+
metrics for cluster-validity. The work enables a performance-improvement of
600x+ for pairwise similarity-metrics such as “Canberra” and “Cosine”, while
100,000x+ performance-improvement when compared to “Kendall’s Tau” (Fig.
4). In large-scale data-analysis the execution-time severely hamper the types of
relationship which may be explored, e.g., when analysing gene-expressions data-
sets for possible interactions, when using pathway-relationships (sub-section 5.1),
application of ontology annotations for similarity-assessment, mining of biblio-
metric data-bases (e.g., in [78]), etc. Therefore, hpLysis improves both accuracy
of data-generation and analysis of user-defined data (Fig. 6).

6 Conlusion and Future Work

We have presented both a method, a database, and 10+ software, for data-
mining. This paper argue that the holistic approach, which captures an en-
semble of approaches and high performance software, manages to overcome the
current hurdles in big-data drug-discovery. Fig. 6 exemplify how domain-experts
may interact with our real-time support for querying 30+ million bio-medical
relationships. In order to evaluate the quality of the approach we investigate
the number of accurate and unique relationships identified in our approach, ex-
emplified in Fig. 1. The 1000+ novel candidate interactions which are identified
highlight the ability of our approach to automatically identify relationship which
are not known in literature. Through an optimized data-engine the relationships
are accessible for users in real-time, exemplified in Fig. 3.

In this paper we have described an approach to unify our semantic inter-
face (www.knittingTools.org) with our high-performance software application
(e.g., https://bitbucket.org/oekseth/hplysis-cluster-analysis-software).
Through concrete use-cases we have exemplified how the approach address is-

https://bitbucket.org/oekseth/hplysis-cluster-analysis-software
https://bitbucket.org/oekseth/hplysis-cluster-analysis-software
www.knittingTools.org
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sues in disparate data, execution-time, and user searches, ie, parameters which
are critical in discovery of knowledge. From the examples we observe how our
method and 10+ novel software approaches address issues in big-data drug-
discovery. Therefore, we assert that our novel holistic approach may influence
strategies for mining of big-data.

6.1 Future Work

We plan to address the weakness of the user-interfaces and the unknown qual-
ity of our knowledge inferences. In order to improve our user-interfaces we are
now initiating efforts in usability testing for different target groups. Similarily,
we have initiated efforts to evaluate the drug-impact of our putative knowledge
discoveries. Both of the issues require year-long lab-experiments, hence the im-
portance of quality and performance enabled through our novel method and
software.
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52. Wylot, M., Cudré-Mauroux, P.: Diplocloud: Efficient and scalable management of
rdf data in the cloud. IEEE Transactions on Knowledge and Data Engineering
28(3), 659–674 (2016)

53. Huysmans, M., Richelle, J., Wodak, S.J.: Sesam: a relational database for structure
and sequence of macromolecules. Proteins: Structure, Function, and Bioinformatics
11(1), 59–76 (1991)

54. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2), 158–
182 (2005)

55. Ekseth, O.K., Hvasshovd, S.-O.: hpLysis database-engine: A new data-scheme for
fast semantic queries in biomedical databases. Under review: Provides details of
the in-memory data-engine: contact oekseth@gmail.com for the paper. (2017)

56. Bayer, R.: Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Informatica 1, 290–306 (1972). 10.1007/BF00289509

57. Ekseth, K., Hvasshovd, S.: hpLysis MINE: A high-performance approach for com-
putation of the accurate MINE simliarty-metric. http://www.knittingtools.org/
gui_lib_mine.cgi. Online; accessed 06. June 2017

58. Knight, W.R.: A computer method for calculating kendall’s tau with ungrouped
data. Journal of the American Statistical Association 61(314), 436–439 (1966)

59. Kendall, M.G.: Rank correlation methods. (1948)

60. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L.J., Eilbeck, K., Ireland, A., Mungall, C.J., et al.: The obo foundry: coordinated
evolution of ontologies to support biomedical data integration. Nature biotechnol-
ogy 25(11), 1251–1255 (2007)

61. Hoffmann, R.: A wiki for the life sciences where authorship matters. Nature genetics
40(9), 1047–1051 (2008)

62. Chawla, K., Tripathi, S., Thommesen, L., Lægreid, A., Kuiper, M.: Tfcheckpoint:
a curated compendium of specific dna-binding rna polymerase ii transcription fac-
tors. Bioinformatics 29(19), 2519–2520 (2013)

http://www.knittingtools.org/gui_lib_mine.cgi
http://www.knittingtools.org/gui_lib_mine.cgi


63. Davis, L., Maizels, N.: Homology-directed repair of dna nicks via pathways distinct
from canonical double-strand break repair. Proceedings of the National Academy
of Sciences 111(10), 924–932 (2014)

64. Intel: SSE computer-hardware-low-level parallelism. https://software.intel.

com/sites/landingpage/IntrinsicsGuide/. Online; accessed 06. June 2017
65. Drepper, U.: What every programmer should know about memory. Red Hat, Inc

11, 2007 (2007)
66. Cerami, E., Bader, G., Gross, B., Sander, C.: cpath: open source software for

collecting, storing, and querying biological pathways. BMC bioinformatics 7(1),
497 (2006)

67. MySQL: MySQL database engine. https://www.mysql.com/ (2017)
68. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,

Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for
the unification of biology. Nature genetics 25(1), 25–29 (2000)

69. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turn-
baugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel asso-
ciations in large data sets. science 334(6062), 1518–1524 (2011)
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