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Abstract. This research investigates similarities between cancer-related
drugs with respect to their mechanisms of action (MOA) guided by infor-
mation extracted from two resources: scientific literature and ontologies.
To find similarity between drug pairs, the Chemical Entities of Biological
Interest (ChEBI) ontology and Gene Ontology (GO) were leveraged to
compute drug and drug target features, respectively. A graph of drugs
was formed based on drug pairs clustered using two unsupervised graph
clustering algorithms: Chinese Whispers and Louvain Method. As a re-
sult of clustering, drugs that share the same dominant MOA were placed
in the same cluster. Additionally, the most prominent drugs in the en-
tire graph and within each cluster were identified according to graph
centrality measures. Quality of the clusters was assessed by calculating
silhouette coefficient values, ensuring consistency of results generated by
the two algorithms, and employing the help of a domain expert who
carried out manual evaluation.
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1 Introduction

Cancer, the abnormal growth of cells due to gene mutations, is one of the top
causes of mortality. In 2014 alone, cancer claimed 163,000 lives in the UK, which
means that on the average, 450 die every day [24]. One in every two people who
were born after 1960 in the UK will be diagnosed with cancer at some point in
his or her life [2]. With over 200 different types, cancer is usually progressive,
chronic and has a mild phenotype making it hard to diagnose.

The discovery of anti-cancer drugs has not been a successful endeavour. The
rate at which new molecular entities (NMEs) are approved for clinical investi-
gation is low. In the US, between the period of 2010 and 2014, the maximum
number of approved NMEs was only 11 (in 2012) [14]. In addition to that, many
drugs fail in clinical trials. The recorded success rate in cancer trials is three
times lower than in clinical trials for cardiovascular diseases [13].

Numerous efforts have been carried out, based on different approaches, to
facilitate anti-cancer drug discovery such as: proteomic analysis to highlight pro-
tein drug targets [3], metabolic control analysis to highlight likely pathological



metabolism targets [6] or development of drug ontology databases [7, 8] for in-
depth understanding of mechanisms of action (MOA) of known drugs. A MOA is
a biochemical interaction that results in a drug producing its desired therapeu-
tic pharmacological effect [1]. It depicts events happening at the chemical level,
including drugs binding with drug targets, as well as reactions with enzymes or
receptor sites [15]. To understand these mechanisms, different approaches have
been proposed, e.g., analysis of chemical properties of drugs as well as of drug
targets, and the extraction of drug-protein relationships from scientific literature.
However, no effort has attempted to combine these approaches to group drugs
according to their MOA. Clustering drugs which share similar MOA streamlines
the drug discovery process as it constrains the number of drugs that need to be
investigated with respect to their drug targets. It also provides the foundation
for understanding and advancing combinatorial drug therapies for cancer.

To fill this research gap, we propose an approach that makes use of infor-
mation from ontologies for clustering drugs in order to highlight similarities and
differences between them according to a range of physiochemical properties. The
approach is novel in that it seeks to identify groups or clusters of drugs which
are similar in terms of three features: (1) chemical structure, (2) biological role
and (3) drug target properties. In forming groups amongst a total of 831 drugs,
we investigated the use of unsupervised graph clustering techniques.

2 Related Work

Clustering drugs based on similarity is a well-known approach to drug discovery,
although there is great variation in terms of how similarity measures have been
defined. Gemma et al. 2006 [9], for instance, clustered lung cancer drugs based
on their gene expression profiles and sensitivity to multiple lung cancer cell lines.
The results suggested that one of the drugs acted particularly different than the
rest of the drugs; hence this drug might be useful in second-line chemotherapy
if it was not administered to a patient initially. A similar attempt was made
in Uhr et al. 2015 [23], whose research focussed on clustering 37 breast cancer
drugs based on their sensitivity to 42 breast cancer cell lines. This resulted in
six clusters which highlighted relationships between drugs and their sensitivities.
Meanwhile, Jeon et al. 2011 [11] employed k -means clustering on gene expres-
sion data to understand changes in mitochondrial proteins brought about by
mitochondrial DNA depletion. Their research revealed how cells compensate for
mitochondrial DNA depletion and it also led to the identification of proteins
that repair this depletion.

Ross et al. 2000 [20] presented a clustering approach which analysed 60 cell
lines (NCI-60) based on microarray analysis, i.e., the parallel monitoring of gene
expression levels in thousands of genes within the context of a specific biological
process across different environments or tissue samples (e.g., tumours). Hierar-
chical clustering was performed to cluster cell lines and genes, separately. Their
results showed that two of the breast cancer cell lines are similar to melanoma
cell lines, suggesting a relationship between the two types of cancers.



A data-driven approach was presented in Udrescu et al. 2016 [22] where in-
formation on drug-drug interactions (DDI) from the DrugBank database was
utilised to find communities based on Louvain Method [5]. Prominent drugs
were ranked using graph centrality measures [16] such as degree, betweenness,
closeness, eigenvector and PageRank centrality [17]. A total of 1,141 nodes (cor-
responding to drugs) and 11,688 links (corresponding to DDIs) were divided
into nine different clusters, each of which represented a specific class of drugs.
For example, one cluster represented drugs that targeted the immune system;
another pertained to drugs for the nervous system, and so on. Effectively, the
research identified functional drug categories and relationships.

While each of the related work presented above holds resemblance to our
own research methodology in attempting to cluster drugs based on their chem-
ical interactions, our work proposes a different set of features for highlighting
similarities between drugs. Specifically, the work last mentioned above assumes
all drug similarities to be of equal importance whereas we calculate similarity
scores based on various features, described in the next section.

3 Methodology

Our approach to clustering drugs according to their mechanisms of action is
based on their similarity with respect to the following types of information de-
rived from ontologies: (1) chemical structure, (2) biological roles, and (3) drug
target properties. Guided by a set of biomolecular events automatically extracted
from scientific literature, we formed a list of drugs and drug targets of interest,
whose features were calculated with the help of two ontologies: the Chemical En-
tities of Biological Interest (ChEBI) ontology [8] and the Gene Ontology (GO)
[7]. The rest of this section describes in detail our processing pipeline, also de-
picted in Figure 1.

3.1 Information extraction

A set of biomolecular events, i.e., interactions between drugs and their targets,
served as input to our clustering approach. These events were obtained using a
text mining workflow developed using the Argo workbench [18] and employed in
the work carried out by Zerva et al. [25]. Based on the processing of 6,529 full-
text papers relevant to melanoma1, a total of 3,168 events were extracted. Out of
these, 293 pertained to interactions between drugs (which we will henceforth refer
to as drug-drug interactions or DDIs) while 2,875 are drug-protein interactions
(DPIs). A list of 831 drugs was formed upon combining all unique drugs in the
DDI and DPI sets. For each drug in the DPI set, we also created a list of drug
targets.

1 Retrieved by calling the Europe PubMed Central API with a query containing
“melanoma”, its synonyms and names of melanoma cell lines



Fig. 1. Our processing pipeline for clustering drugs.

3.2 Drug feature extraction

ChEBI is an ontology that catalogues chemical structures and biological roles
of drugs. For each drug of interest in our list, we obtained related terms from
the “chemical structure” and “biological role” sub-trees of the ontology. Struc-
tural information among the tree terms was discarded and only terms appearing
between the drug and three levels up were stored, corresponding to individual
drugs2.

3.3 Drug target feature extraction

The Gene Ontology (GO) contains information on cellular components and
molecular functions of genes, as well as the biological processes they are involved
in. For each of the proteins that a particular drug interacts with—according to
our list of DPIs—we obtained a list of gene products from GO. For each gene
product, we obtained all related terms in GO up to a tree depth of three levels
up. The result is a combined list of GO terms associated with a particular drug.
A depiction of the different types of features extracted for any given drug is
shown in Figure 2.

3.4 Drug similarity measurement

Based on the features obtained in the steps described above, we measure the
similarity between drugs. Specifically, given any two drugs, two types of similarity
scores were calculated, i.e., the number of shared ChEBI terms and the number
of shared GO terms. From a total of 423,801 drug pairs, there were 92,700 and
208,499 pairs that have a non-zero number of shared ChEBI and GO terms,
respectively. The similarity score (i.e., the number of shared terms) between a
pair of drugs based on ChEBI terms varied from 1 to 49 while that based on
shared GO terms ranged from 1 to 8,526. In order to normalise them, we divided
each score by the respective maximum value observed, and then multiplied the
result by 100 to get a percentage.

2 The number of levels was constrained to three to ensure that succeeding steps will
be computationally feasible.



Fig. 2. Different types of features extracted from ontologies for any given drug.

There are however, many drug pairs whose similarity scores were very low,
indicating insignificant similarity between drugs. To overcome this problem, we
retained only drug pairs whose ChEBI and GO similarity scores are both at
least 10%. The threshold was set to this level based on our analysis of the data
distribution which informed our decision on an optimal cut off. A combined
similarity score is finally calculated by taking the mean of the two scores. If only
one of the scores exists for a drug pair (e.g., in cases where a score was obtained
by counting the number of shared ChEBI terms but none based on shared GO
terms, or vice-versa), we take half of the value of the lone score as the combined
similarity but only if it is at least 50%. Otherwise, the pair is discarded. After
this step, only 261 drug pairs remained, having 89 unique drugs.

The remaining drug pairs were combined to form an interconnected graph
following the Yifan Hu representation [10]. In this graph representation, nodes
represent drugs and weighted edges between nodes correspond to their similarity
score. It is found that approximately around 20% of the nodes in the graph were
not connected to the larger central interconnected graph. We consider them as
pertaining to drugs which are extremely unique in terms of their MOA, or irrel-
evant to cancer but were spuriously included during the information extraction
step. These nodes were therefore filtered out, retaining only 72 nodes.

3.5 Drug clustering and ranking

We investigated two algorithms for clustering the graph of drugs, namely, Chi-
nese Whispers (CW) [4] and Louvain Method (LM) [5]. CW assigns a class label
to each node based on the strongest weight of the neighbouring class, in itera-
tive cycles. Meanwhile, LM optimises graph modularity, which is a measure of
separation between densely connected regions of the graph.

All drugs in the graph were then ranked with respect to their prominence3 in
the whole graph according to: (1) degree, the number of immediate neighbors;

3 Pertains to importance based on their centrality within the graph



(2) closeness, the distance between each node and all other nodes in the graph;
(3) betweenness, the number of times a node is traversed along the shortest
distance between each node and all other nodes in the graph; (4) PageRank, the
probability distribution based on the likelihood of stopping on the node while
traversing connected nodes; and (5) eigenvector, the principal eigenvector in the
adjacency matrix of the graph. Additionally, drugs were also ranked within each
cluster using the same centrality measures.

4 Experiments and Results

Upon the application of Chinese Whispers and Louvain Method on our data,
we obtained the results shown in Figures 3 and 4, respectively, following the
Yifan Hu graph representation. For simplicity, each cluster is assigned a cluster
identifier and represented by a unique colour. Its distribution, i.e., the proportion
of the nodes in the graph that belongs to the cluster, is also indicated.

Cluster ID Color Distribution

CW C1 41.67%
CW C2 27.78%
CW C3 20.83%
CW C4 9.72%

Fig. 3. Result of drug graph clustering based on the Chinese Whispers (CW) algorithm.

Cluster ID Color Distribution

LM C1 40.28%
LM C2 29.17%
LM C3 20.83%
LM C4 9.72%

Fig. 4. Result of drug graph clustering based on the Louvain Method (LM) algorithm.



Table 1. Ten most prominent drugs with respect to the entire graph, according to five
centrality measures.

Rank Degree Closeness Betweenness PageRank Eigenvec-
tor

1 L-threonine L-gamma-glutamyl-L-
cysteine

L-threonine L-threonine sirolimus

2 sorafenib linifanib sirolimus Sorafenib L-
threonine

3 sirolimus PD-153035 sorafenib L-serine sorafenib

4 curcumin ibrutinib curcumin curcumin curcumin

4 curcumin ibrutinib curcumin curcumin curcumin

5 L-serine ceritinib L-serine Sirolimus selume-
tinib

6 vemurafenib GSK690693 tandutinib tandutinib vemu-
rafenib

7 Glu-Phe-Val desmosine L-
phenylalanine

selumetinib L-serine

8 selumetinib L-seryl group selumetinib Glu-Phe-Val trametinib

9 Phe-Asn L-tyrosine ombitasvir vemurafenib PLX-4720

10 Thr-Ser Glu-Met trametinib Phe-Asn borte-
zomib

In both cases, the graph of 72 drugs was divided into four clusters of varying
sizes. It is noticeable that similar clusters were produced by the two algorithms.
We can consider the following as equivalent to each other: CW C1 and LM C1,
CW C2 and LM C2, CW C3 and LM C3, and CW C4 and LM C4. While each
of the first two cluster pairs has only a one-node difference, the latter two pairs
correspond to exactly the same clusters.

Table 1 presents the most prominent drugs within the entire graph while
Table 2 provides a list of the same but only within each cluster. In both tables,
drugs are ranked according to prominence, calculated based on our chosen graph
centrality measures, as mentioned in Section 3.5. The three highest ranked drugs
across the different centrality parameters are exactly the same corresponding to
clusters from CW and LM except for one difference, shown in Table 2.

5 Analysis and Discussion

The thresholds which were applied to ensure that only drugs with considerable
similarity were retained—described in Section 3—significantly reduced the num-
ber of drugs which formed the graph. Out of 831 drugs in our initial list, only
72 were included in the graph for clustering. As both CW and LM clustering
algorithms are non-deterministic, they were applied on the data several times;
results were consistent over the different runs.

To assess the quality of our clustering results, we firstly computed the value
of the silhouette coefficient [21], a widely accepted metric for judging the quality



Table 2. Three most prominent drugs in each cluster obtained by Chinese Whispers
and Louvain Method, according to five centrality measures. The cell corresponding to
third rank of eigenvector-C2 is left empty as different results were obtained by CW
and LM, i.e., ‘L-threonine residue’ and ‘bortezomib’, respectively.

Clus-
ter
ID

Degree Closeness Betweenness PageRank Eigenvector

C1
sorafenib (-)-cubebin sirolimus sorafenib sirolimus

sirolimus regorafenib sorafenib curcumin sorafenib

curcumin cabozantinib curcumin sirolimus curcumin

C2

L-
threonine

desmosine L-threonine L-threonine L-threonine

L-serine L-seryl group L-serine L-serine L-serine

L-pheny
lalanine

L-tyrosine L-phenylalanine L-phenylalanine -

C3

Glu-Phe-
Val

L-gamma-glut
amyl-L-cysteine

ombitasvir Glu-Phe-Val Thr-Ser

Phe-Asn Glu-Met Thr-Trp Phe-Asn Thr-Trp

Thr-Ser Ala-Asp-Pro Thr-Ser Thr-Ser Glu-Phe-Val

C4
tandutinib PD-153035 tandutinib tandutinib tandutinib

afatinib linifanib afatinib afatinib afatinib

ibrutinib ibrutinib ibrutinib GSK690693 ibrutinib

of clusters where class labels are not predefined. Its value varies from -1 to 1,
where positive values are taken to mean good clustering while anything less than
zero is undesirable. Results obtained by CW and LM produced 0.294 and 0.292
as mean silhouette coefficient values, respectively. The cluster consistency is not
very strong, but it is still substantial and falls within the acceptable range [12].

CW and LM use different techniques in generating clusters. While CW re-
lies on random class distribution, LM is based on optimisation of modularity.
We computed the value of Adjusted Rand Index (ARI), a measure of similarity
between two clusterings, taking into account by-chance grouping [19]. The in-
dex can take a value that varies from -1 to 1, where -1 corresponds to lack of
correlation while 1 pertains to a perfect match. We obtained 0.95 as the value
of ARI for the clusterings produced by CW and LM, which is very high. This
strengthens our confidence in the results, as it suggests that the drug clusters
are consistent even across different algorithms.

Furthermore, our results were reviewed by a domain expert who was con-
vinced by the results and suggested that it is worth pursuing further research
into highlighting the dominant features for each cluster in order to uncover
relevant mechanisms of action. He expressed confidence in the viability of the
research and signified that it holds great potential.



6 Conclusion and Future Work

In this paper, we proposed a novel approach to highlighting similarities between
drugs, according to features derived from scientific literature and ontologies. Two
unsupervised clustering methods were employed, namely, Chinese Whispers and
Louvain Method. Upon the application of our approach to 72 drugs, the same
four clusters were independently produced by each of the clustering methods.
We then obtained a list of the most prominent drugs within the entire graph of
drugs as well as within each cluster.

The approach is a preliminary investigation and leaves room for improvement
and future work. The most important next step is the experimental validation of
the dominant MOA represented by each cluster using sources such as annotated
data sets or manual annotation by domain experts. Other methods that could
potentially improve the results include hierarchical clustering to explore sub-
cluster relationships or soft clustering to take into account membership of a drug
in multiple clusters. Feature engineering can also be extended, e.g., to increase
tree depth when extracting terms from ontologies.
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