
Towards a simple but useful ontology design
pattern representation language

Pascal Hitzler1, Aldo Gangemi2,3, Krzysztof Janowicz4,
Adila A. Krisnadhi1,5, and Valentina Presutti2

1 Data Semantics (DaSe) Laboratory, Wright State University, Dayton, OH, USA
2 Semantic Technology Laboratory, ISTC-CNR, Italy

3 LIPN Université Paris 13
4 STKO Lab, University of California, Santa Barbara

5 Universitas Indonesia

Abstract. The need for a representation language for ontology design
patterns has long been recognized. However, the body of literature on
the topic is still rather small and does not sufficiently reflect the di-
verse requirements on such a language. Herein, we propose a simple but
useful and extendable approach which is fully compatible with the Web
Ontology Language and should be easy to adopt by the community.

1 Introduction

Ontology Design Patterns (ODP) have become an established paradigm for on-
tology engineering; see [15] for a recent overview of the state of the art. At the
same time, support for this approach in the form of tools, available patterns and
detailed workflows is still limited and requires further development [6]. A partic-
ularly important missing piece [12] is a suitable language for the representation
of ontology design patterns and their relationships.

Some proposals for such a language have already been made, however they
fall short in some respects regarding what will ultimately be needed; see section 6
for a discussion. In particular, we argue that they are too complicated for easy
adoption and too complex for most applications.

In this paper, we make a proposal for a simple representation language for
ontology design patterns. The proposed language is practically useful, aligns
with existing standards and tools, and is extensible towards a more complex
representation paradigm which can be developed by the community as needed. In
fact, one of the goals of our proposal is to raise questions and solicit a discussion
within the community.

Central to our proposal is the systematic use of OWL annotation proper-
ties, which are available since the revision of the OWL standard in 2009 [17].
We will use such annotation properties to indicate patterns and to express re-
lationships between patterns and ontology modules. Thus, our first version of
an ontology design pattern representation language consists of a set of OWL
annotation properties together with guidelines for their use. The approach has
several advantages:



2 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

– OWL annotation properties are part of the OWL standard, i.e. our approach
is fully compatible with OWL, and, thus, can be adopted easily by users
familiar with the Web Ontology Language.

– Main ontology modeling tools such as Protégé [29] natively support the use
of OWL annotation properties.

– The representation language can be further developed by the community,
by extending or revising the annotation properties used or by providing
processes and methodologies for their use.

– Further development of the representation language can include the defini-
tion and community adoption of patterns for the representation of relevant
information, i.e., the community can apply its own principles to the future
development.

The rest of the paper will be structured as follows. In section 2 we will discuss
the desired capabilities of the representation language. In section 3 we will give a
conceptual overview of the language. In section 4 we will discuss the implemen-
tation of the language by means of OWL annotation properties. In section 5 we
provide some examples. Section 6 discusses related work, and section 7 provides
conclusions and a path forward for the representation approach.

2 Desired Capabilities

The process of utilizing ontology design patterns for modeling has been worked
out by now [5,15,20]. This modeling approach contributed to the development of
modular6 ontologies, where the modules are based on ontology design patterns
[20,22,23]. Critical for this modeling approach is the reuse and adaptation [13] of
already existing ontology design patterns. Unfortunately, however, the primary
language for representing both ontology design patterns and the resulting modu-
lar ontologies is the Web Ontology Language (OWL) [17], which does not specify
any native support for ontology design patterns or for modularization informa-
tion. As a result, information about patterns and the corresponding modeling
processes often gets lost after modeling has been completed, or is at best con-
veyed in the documentation. Consequently, a suitable language for representing
such information is needed.

In this paper, we propose such a language and our guiding principles are
simplicity, usefulness, adherence to existing standards, and extensibility. In more
detail, we seek the following capabilities.

– Full compatibility with the OWL standard and with OWL supporting tools.
– Support for the identification of ontology design patterns as such (i.e., as

distinct from ontologies), including identification of relevant parts of such
patterns.

6 We are aware that the term “module” in the context of ontologies is rather over-
loaded. In this paper, we mean it in the sense of [22,23], and other modularization
approaches may or may not fit into what we are doing.



Towards an ontology design pattern language 3

– Support for representing relevant relationships between patterns. For in-
stance, one should be able to express that a pattern is a refinement or a
generalization of another pattern, or that it is closely related to another
pattern.

– Support for the identification of modules in ontologies generated using a
modular, ontology-design-pattern-based approach.

– Support for representing relationships between ontology modules and the
ontology design patterns which have been used as templates for these mod-
ules.

– Extensibility of the language by means of community-provided patterns for
representing relevant information about patterns and modules.

In this first proposal, we will not address all of the mentioned aspects com-
prehensively. Instead, we propose selected steps towards this goal in the form of
an extensible approach which can be refined by the community. For example,
how exactly relationships between patterns should be recorded is still subject to
research. Eventually, we envision that investigations will lead to ontology design
patterns in their own right which can be used for representing such relationships.
These patterns can then be used as extensions to our proposal.

3 Conceptual Overview

The approach we propose for representing ontology design patterns, ontology
modules, and their relationships, is based on OWL annotation properties. Such
annotations can be made for ontologies, axioms, and entities [25]. Relevant an-
notations for our purposes fall into three categories: (1) annotations indicating
that an axiom or entity belongs to a certain module or pattern, (2) annotations
indicating a pattern-relevant type of an axiom or entity, e.g. whether it is an
external pattern, or a required class when the pattern is used as a template, and
(3) annotations indicating relationships between patterns or between patterns
and modules.

In this initial proposal, we focus on the first type, i.e. on annotations in-
dicating that an axiom or entity belongs to a certain module or pattern. We
also partially address the second type and third type, more precisely indicating
pattern-relevant types and recording simple relationships between patterns or
patterns and modules. In other words, we focus on representational issues which
we believe should be uncontroversial and directly usable. We do not address
more complex representational issues although we discuss some, as we believe
that developing suitable representations requires more community discussion.
However, our approach is extensible for this purpose, and we will return to this
point at the end of this paper.

We define our representation language in the form of an ontology, where some
of the properties (aka binary relations) are to be understood as annotation prop-
erties. This perspective naturally opens up the discussion of suitable ontology
design patterns for extending this ontology.

Concrete competency questions which we address include the following:



4 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

1. Given a module within an ontology, which patterns was this module based
on?

2. List all classes, properties, individuals, axioms, belonging to a given module
or pattern.

3. What are the modules a given ontology consists of?
4. Is this pattern (or module) a specialization or generalization of another pat-

tern (or module)?

4 The OPLa ontology

In this section, we present the OPLa ontology which will serve as ontology design
pattern representation language. We first define it in terms of an ontology, and
show how to use it in section 5.

Figure 1 shows a schema diagram of the OPLa. We suggest the namespace
http://ontologydesignpatterns.org/opla/ and the prefix opla. Individuals,
Properties, Classes and Axioms are OntologicalEntities, and a collection of such
entities is called an OntologicalCollection. An OntologicalCollection is either an
Ontology or a Module or a Pattern. In principle one may question whether these
three classes are disjoint or not. Considering that clear definitions are still to be
discussed and agreed upon by the community, we feel that including disjointness
axioms would be overcommitting at this stage. Our working definitions are as
follows – they are not meant to be prescriptive, but capture what we believe is
often general practice based on our experience: By Pattern we mean a conceptual
model expressed in an OWL file which solves a generic modeling problem, such
as how to model the roles of agents [7,11]. Patterns are inherently incomplete
in the sense that they refer to external concepts which may not be modeled
in detail, internally. For example, the agent role pattern would refer to a class
called Agent, but would not necessarily include a formal specification for agents.
Agent, in this case, would be what we call an external class (or external pattern),
i.e., when using the pattern within an ontology, a refined model of Agent, e.g.,
based on a different pattern, will mostly be in order. By Module we refer to a
part of an ontology which captures a complex concept or conceptual area of the
formalized domain. Often, modules will be modeled by making use of one or
several patterns, possibly refining them, and by placing the module within the
context of a larger ontology. An example would be the module Cruise from [22],
which is based on patterns for events, agent roles, and trajectories (and some
others).

Now, the property isNativeTo is used to indicate what Ontology, Module, or
Pattern an OntologicalEntity belongs to, i.e. it is a core element. The property
is not functional, i.e. multiple assignments are allowed. Let us consider the case
where we have an ontology which consists of several modules. Each Ontologi-
calEntity may be native to one or more modules within the ontology, and this is
indicated using the isNativeTo property. At the same time, this OntologicalEn-
tity may be native also to the overall ontology. Likewise, when defining a pattern,
we can use the isNativeTo property to indicate for each OntologicalEntity of the
pattern that it is actually native to this pattern.

http://ontologydesignpatterns.org/opla/


Towards an ontology design pattern language 5

Fig. 1. Schema diagram for the OPLa ontology. White-headed arrows indicate subclass
relationships. In the top row (boxes indicated in yellow) are individuals, while all
remaining boxes (in orange) indicate class names.

There are several advantages of these declarations. It is now possible to pro-
grammatically extract all entities which belong to a module within an ontology.
The idea – following [20,22] – is that modules represent entities which can be
discussed separately, e.g., with domain experts, or are replaceable by other (more
refined) modules while the remaining ontology can stay mostly untouched. Ax-
ioms can, of course, span several modules, and would thus be native to them.
Also, if modules are reused elsewhere, then the corresponding part of an OWL
file can be imported or even copied into the new ontology, while the annotation
properties are kept and thus provide a type of provenance information for these
modules. An additional advantage is the support to alignment procedures. For
example, if the same module is reused by several ontologies it will be simpler



6 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

to integrate them and their underlying data, because part of their knowledge is
encoded by a shared formalization.

The top row in Figure 1 is meant to be used with patterns only. As indicated
above, they are used to state that a class (or property or individual) used in
an OWL model describing a pattern, is in fact an external class and so on. We
envision that this will be helpful in particular for tools which support ontology
engineers in assembling ontologies by connecting (refinements of) patterns. The
identifiers externalIndividual, externalProperty, externalPattern, externalClass
are individuals.

Regarding the bottom row, we use simple properties to indicate simple re-
lationships between different OntologicalCollections. An ontological collection
would usually be constructed by reusing one or several patterns as templates,
indicated by the property reusesPatternAsTemplate. As defined above, we al-
ways consider a module to be part of an ontology, and this is indicated by the
isNativeTo property. A pattern can be declared to be a specialization, a gener-
alization or a derivation of another pattern, and two patterns can be declared
to be related in some unspecified way, and analogous properties are available for
modules.

In terms of axiomatization, we declare scoped (also called guarded) domain
and range restrictions for ofExternalType and reusesPatternAsTemplate.

Individual v ∀ofExternalType.{externalIndividual}
{externalIndividual} v ∀ofExternalType−.Individual

Property v ∀ofExternalType.{externalProperty}
{externalProperty} v ∀ofExternalType−.Property

Class v ∀ofExternalType.{externalPattern} t {externalClass}
{externalPattern} v ∀ofExternalType−.Class

{externalClass} v ∀ofExternalType−.Class

OntologicalCollection v ∀reusesPatternAsTemplate.Pattern

Pattern v ∀reusesPatternAsTemplate−.OntologicalCollection

For isNativeTo, we declare scoped domains and ranges, and an existential for
module (second line below).

OntologicalEntity v ∀isNativeTo.OntologicalCollection

Module v ∃isNativeTo.Ontology

Module v ∀isNativeTo.Ontology

Ontology v ∀isNativeTo−.(Module t OntologicalEntity)

Module t Pattern v ∀isNativeTo−.OntologicalEntity

For the remaining properties in the bottom row, we also only declare scoped
domain and range restrictions; we do not list the axioms as they are straightfor-
ward.



Towards an ontology design pattern language 7

Note, however, that all properties mentioned above will be annotation prop-
erties, as they do not belong to the actual specification, in terms of content, of the
ontology, module, or pattern. As OWL DL does not allow us to declare complex
axioms over annotation properties, inclusion of these axioms would render the
ontology to be in OWL Full but not in OWL DL. Our suggested usage, however,
is that the axioms are not included in the ontology (or pattern), and in fact the
classes shown in Figure 1 should not be used, i.e. classes should not be typed as
opla:Class etc. Rather, the schema diagram is informative only, in the sense that
it tells us between which entities the annotation properties should be declared,
and the axioms are meant as documentation, mainly for disambiguation for the
human user [16]. They are not intended for reasoning purposes. Used in this
sense, an OWL DL ontology (or pattern) endowed with these annotations will
still be in OWL DL.

5 OPLa Usage Examples

In order to show how OPLa properties can be used for annotating ontology
patterns, we apply them to some existing patterns and ontologies that are
available at the http://ontologydesignpatterns.org portal. Figure 2 depicts
the main classes and properties of the Observation pattern (prefix obs: which
stands for http://www.ontologydesignpatterns.org/cp/owl/observation.

owl). The dotted boxes with a URI on top represent an ontological collection.
Everything within a box belongs to it (in OPLa terms, it is native to it). Dotted
orange boxes represent restrictions, green parallelograms represent datatypes.
The Observation pattern models the situations of observing objects and ex-
pressing such observations in terms of values assigned to a number of param-
eters. The classes Observation and Parameter belong to the pattern, which is
expressed by the property opla:isNativeTo. The class Parameter is not defined
in detail within this pattern, it could refer, e.g., to the concept formalized by a
class belonging to the DOLCE+DnS UltraLite ontology (prefix dul: which stands
for http://www.ontologydesignpatterns.org/ont/dul/DUL.owl). This is ex-
pressed by using the opla:ofExternalType annotation property. This simple triple
allows us to explicitly state the ambiguity of a class for which we provide
only a shallow or no formalization. This may have an impact when one aligns
to our model through this concept, and this impact grows and affects the
quality of Semantic Web ontologies as the alignments propagate in a Linked
Data context. Finally, the Observation pattern specializes the Situation pat-
tern (prefix sit: which stands for http://www.ontologydesignpatterns.org/

cp/owl/situation.owl), which is indicated by means of the annotation prop-
erty opla:specializationOfPattern. In summary, we use the following annotations
(expressed in Turtle).

:Observation opla:isNativeTo obs: .

:Parameter opla:isNativeTo obs: ;

opla:ofExternalType opla:externalClass .

obs: opla:specializationOfPattern sit: .

http://ontologydesignpatterns.org
http://www.ontologydesignpatterns.org/cp/owl/observation.owl
http://www.ontologydesignpatterns.org/cp/owl/observation.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/cp/owl/situation.owl
http://www.ontologydesignpatterns.org/cp/owl/situation.owl


8 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

Fig. 2. The Observation pattern annotated with three OPLa properties: isNativeTo,
ofExternalType, and specializationOfPattern.

As a second example, the Dolce+DnS UltraLite (DUL) ontology is an-
notated for indicating the patterns that it reuses as templates (although for
the sake of space we only show five of them). To this end we use the anno-
tation property opla:reusesPatternAsTemplate. The reused patterns are: Sit-
uation as mentioned before, Description (prefix des: which stands for http:

//www.ontologydesignpatterns.org/cp/owl/description.owl), TimeInter-
val (prefix ti: which stands for http://www.ontologydesignpatterns.org/cp/
owl/timeinterval.owl), Classification (prefix cla: which stands for http://

www.ontologydesignpatterns.org/cp/owl/classification.owl), and Agen-
tRole (prefix ar: which stands for http://www.ontologydesignpatterns.org/
cp/owl/agentrole.owl). More specifically, we include the following triples.

dul: opla:reusesPatternAsTemplate sit: .

dul: opla:reusesPatternAsTemplate des: .

dul: opla:reusesPatternAsTemplate cl: .

dul: opla:reusesPatternAsTemplate ti: .

dul: opla:reusesPatternAsTemplate ar: .

Finally, we show what a complete annotation for a pattern may look like. For
this purpose, we use the EventCore pattern [21] for spatiotemporal events. The
schema diagram is given in Figure 3, the dashed yellow boxes indicate external
patterns.

There are several axioms to this pattern, as specified in [21]. For sake of
simplicity, we use only a simple one, the range declaration for subEventOf, which

http://www.ontologydesignpatterns.org/cp/owl/description.owl
http://www.ontologydesignpatterns.org/cp/owl/description.owl
http://www.ontologydesignpatterns.org/cp/owl/timeinterval.owl
http://www.ontologydesignpatterns.org/cp/owl/timeinterval.owl
http://www.ontologydesignpatterns.org/cp/owl/classification.owl
http://www.ontologydesignpatterns.org/cp/owl/classification.owl
http://www.ontologydesignpatterns.org/cp/owl/agentrole.owl
http://www.ontologydesignpatterns.org/cp/owl/agentrole.owl


Towards an ontology design pattern language 9

Fig. 3. Schema Diagram: Core Pattern for Events

is
> v ∀subEventOf.Event

and which can be expressed in OWL/RDF Turtle format as

ec:subEventOf rdfs:range ec:Event .

assuming ec: as namespace for the EventCore pattern.
As we see from the diagram, we have four properties and four classes. For

each of these, we now record that they are native to EventCore, and for three
classes we indicate that they are external classes.

ec:Event opla:isNativeTo ec: .

ec:SpatioTemporalExtent opla:isNativeTo ec: ;

opla:ofExternalType opla:externalClass .

ec:ParticipantRole opla:isNativeTo ec: ;

opla:ofExternalType opla:externalClass .

ec:InformationObject opla:isNativeTo ec: ;

opla:ofExternalType opla:externalClass .

ec:subEventOf opla:isNativeTo ec: .

ec:hasSpatioTemporalExtent opla:isNativeTo ec: .

ec:hasInformationObject opla:isNativeTo ec: .

ec:providesParticipantRole opla:isNativeTo ec: .

To express that the axiom given above is native to the pattern, we need
to follow the OWL specification regarding the annotation of axioms, which in
Turtle syntax requires reifying the axiom. We thus add the following.

[] rdf:type owl:Axiom ;

owl:annotatedSource ec:subEventOf ;

owl:annotatedProperty rdfs:range ;

owl:annotatedTarget ec:Event .



10 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

6 Related Work

Creating a framework to describe reusable solutions for problem solving is at
least as old as Christopher Alexander’s work on design patterns [1], which in-
cludes a template for describing them, which has been reused or adapted by
the software engineering community [24,14,28,9], and eventually in ontology en-
gineering [8,30,27,26,10,7,11], where they have been variously called knowledge
patterns [8], semantic patterns[27], ontology engineering patterns [26,7], and fi-
nally ontology design patterns [10], as widely known nowadays.

The templates defined in those projects are eminently informal, following the
bottom-up intuitiveness and practicality that Alexander promoted. For example
(cf. [10] for a discussion), the dimensions of pattern description in software en-
gineering have been fully inspired by the original Alexandrian ones [1]: given an
artifact type, the pattern provides examples of it, its context, the problem

addressed by the pattern, the involved forces (requirements and constraints),
and a solution (or “approach”). In practice, what is addressed primarily by
pattern templates is the ability of a pattern to deal with problems, constraints,
needs, for a certain context, with examples of its advantages. The internal form,
structure, nature, or content that the artifact should have is mainly addressed
in the solution.

However, when using patterns in ontology design, the artifacts themselves
lean to a substantial amount of combinatorial structure, typically provided by a
logical representation, e.g., the adaptation of the Alexandrian template in [26]
adds an OWL encoding that implements each approach suggested, while in [10]
the authors admits multiple representations: an abstract encoding in a higher-
order logic, a concrete implementation in a KR language, and, as further detailed
in [11],7 a simple vocabulary to annotate ontology design patterns directly with
the Alexandrian dimensions represented in OWL, and basic relations between
them, and is therefore a predecessor to the formal meta-model proposed herein.

This creates a difference for ontology patterns, which are not only practi-
cal problem solving schemas, but also reusable components. In this sense, they
are closer to software libraries than software patterns. Such double nature of
ontology design patterns make them sibling to ontology modules and reusable
axiomatized theories, hence the reason why in this paper we tackle the relations
between ontologies, modules, and patterns explicitly.

Another important terminological clarification should be made with respect
to the literature: Alexander talks explicitly of a pattern language [2] as the result
of composing, “networking” patterns, which tend to constitute constellations,
collections, types, and dependencies among them. Of course, this is even more
obvious in ontology design, where patterns are combined in order to obtain the
best possible artifact, i.e., a qualitative ontology for a real use case.

7 This annotation vocabulary, used to annotate most ontology design patterns from
ontologydesignpatterns.org, is available at http://www.ontologydesignpatterns.

org/cp/owl/cpannotationschema.owl

http://www.ontologydesignpatterns.org/cp/owl/cpannotationschema.owl
http://www.ontologydesignpatterns.org/cp/owl/cpannotationschema.owl


Towards an ontology design pattern language 11

This sense inspired the pattern languages used in the conceptual modeling
community (cf. [4]). In reference work [3] the authors also provide a complex
UML framework to represent even the workflows, in which a pattern language
can be used methodologically, with entry points, actions, control flows, etc.

In the ontology design community, especially for the Semantic Web, the com-
positional notion of ontology pattern language is well known, since patterns are
typically collected into repositories, extracted from complex foundational or core
ontologies, or organized into complex pattern frameworks. However, neither the
term nor the conceptual modeling practice has been adopted, probably because
Semantic Web developers are less keen to systematize their practices into large
and complex methodologies. We notice that the original Alexandrian sense is less
systematic and prescriptive than the one formalized, e.g., by the authors of [3].

In this paper, we call pattern language a specific ontology that represents
the dimensions used to describe ontology patterns and their relations, while the
term pattern framework is often used to talk about a composition of patterns.
Finally, one more sense of ontology pattern language (OPL) is assumed by [18],
and refers to a programmatic approach to deal with logical patterns in OWL.
For more references, examples, discussions, and foundations, please refer to the
ODP book [15].

7 Conclusions and Future Development

In this work, we have motivated and described a design pattern representation
language, more specifically the OPLa ontology that makes use of OWL anno-
tation properties. OPLa provides the means to describe the relations of classes,
properties, and individuals to patterns and modules, thereby enabling the doc-
umentation of pattern and module usage during and after ontology engineering.
Aside of acting as provenance records, these annotations also facilitate search
for specific patterns, modules, and ontologies, and ease ontology alignment.

The work presented here is preliminary in the sense that benefits and short-
comings of OPLa can only be revealed by using it and by integrating OPLa
into tool chains, e.g., that either support the annotations via a graphical user
interface or by providing search capabilities. For instance, one could search for
ontologies that use a common pattern or for classes that specialize a particular
stub concept used (but not defined) in a pattern. As these stub concepts act as
semantic hooks, they provide a natural point of contact for ontology alignment
as well as a minimal interoperability fallback level for query federation more
generally [19].

In the end, we suggest that the proposal presented herein be merely a stepping
stone towards a more complex and sophisticated ontology or pattern language.
E.g., extensions of our proposal could consist of patterns how to express complex
relationships between OntologicalCollections. The next step, however, may be
to work towards tool support for the simple proposal made herein.

Acknowledgements. The authors acknowledge support by the National Science
Foundation under award 1440202 “Earthcube Building Blocks: Collaborative



12 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

Proposal: GeoLink – Leveraging Semantics and Linked Data for Data Sharing
and Discovery in the Geosciences” and award 1540849 “EarthCube IA: Collabo-
rative Proposal: Cross-Domain Observational Metadata Environmental Sensing
Network (X-DOMES)”.

References

1. Alexander, C.: The Timeless Way of Building. Oxford Press (1979)
2. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford University

Press (1977)
3. de Almeida Falbo, R., Barcellos, M.P., Ruy, F.B., Guizzardi, G., Guizzardi, R.S.S.:

Ontology pattern languages. In: Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi,
A., Presutti, V. (eds.) Ontology Engineering with Ontology Design Patterns –
Foundations and Applications, Studies on the Semantic Web, vol. 25, pp. 133–159.
IOS Press (2016)

4. de Almeida Falbo, R., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns:
Clarifying concepts and terminology. In: WOP 2013, Workshop on Ontology and
Semantic Web Patterns. Proceedings of the 4th Workshop on Ontology and Se-
mantic Web Patterns co-located with 12th International Semantic Web Conference
(ISWC 2013) Sydney, Australia, October 21, 2013. CEUR Workshop Proceedings,
vol. 1188. CEUR-WS.org (2013)

5. Blomqvist, E., Hammar, K., Presutti, V.: Engineering ontologies with patterns
– the eXtreme Design Methodology. In: Hitzler, P., Gangemi, A., Janowicz, K.,
Krisnadhi, A., Presutti, V. (eds.) Ontology Engineering with Ontology Design
Patterns – Foundations and Applications, Studies on the Semantic Web, vol. 25,
pp. 23–50. IOS Press (2016)

6. Blomqvist, E., Hitzler, P., Janowicz, K., Krisnadhi, A., Narock, T., Solanki, M.:
Considerations regarding ontology design patterns. Semantic Web 7(1), 1–7 (2016)

7. Blomqvist, E., Sandkuhl, K.: Patterns in ontology engineering: Classification of
ontology patterns. In: Chen, C.S., Filipe, J., Seruca, I., Cordeiro, J. (eds.) ICEIS
(3). pp. 413–416 (2005)

8. Clark, P., Thompson, J., Porter, B.: Knowledge patterns. In: Cohn, A.G.,
Giunchiglia, F., Selman, B. (eds.) KR2000: Principles of Knowledge Representation
and Reasoning. pp. 591–600. Morgan Kaufmann, San Francisco (2000)

9. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley (March 1995)

10. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) The Semantic Web – ISWC 2005,
4th International Semantic Web Conference, ISWC 2005, Galway, Ireland, Novem-
ber 6-10, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3729, pp.
262–276. Springer (2005)

11. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, 2nd Edition, pp. 221–243. Springer, Berlin, Ger-
many (2009)

12. Hammar, K., Blomqvist, E., Carral, D., van Erp, M., Fokkens, A., Gangemi, A.,
van Hage, W.R., Hitzler, P., Janowicz, K., Karima, N., Krisnadhi, A., Narock,
T., Segers, R., Solanki, M., Svátek, V.: Collected research questions concerning
ontology design patterns. In: Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi,
A., Presutti, V. (eds.) Ontology Engineering with Ontology Design Patterns –



Towards an ontology design pattern language 13

Foundations and Applications, Studies on the Semantic Web, vol. 25, pp. 189–198.
IOS Press (2016)

13. Hammar, K., Presutti, V.: Template-based content ODP instantiation. In: Pro-
ceedings of the Workshop on Ontology and Semantic Web Patterns (7th edition),
Kobe, Japan, October 2016 (2017), to appear

14. Harrison, N.B., Avgeriou, P., Zdlin, U.: Using patterns to capture architectural
decisions. Software 24(4), 38–45 (2007)

15. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.): Ontol-
ogy Engineering with Ontology Design Patterns – Foundations and Applications,
Studies on the Semantic Web, vol. 25. IOS Press (2016)

16. Hitzler, P., Krisnadhi, A.: On the roles of logical axiomatizations for ontologies. In:
Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.) Ontol-
ogy Engineering with Ontology Design Patterns – Foundations and Applications,
Studies on the Semantic Web, vol. 25, pp. 73–80. IOS Press (2016)

17. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation
(11 December 2012), http://www.w3.org/TR/owl2-primer/

18. Iannone, L., Rector, A.L., Stevens, R.: Embedding knowledge patterns into OWL.
In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.P.B. (eds.) The Semantic Web:
Research and Applications, 6th European Semantic Web Conference, ESWC 2009,
Heraklion, Crete, Greece, May 31-June 4, 2009, Proceedings. Lecture Notes in
Computer Science, vol. 5554, pp. 218–232. Springer (2009)

19. Janowicz, K.: Modeling ontology design patterns with domain experts-a view from
the trenches. In: Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti,
V. (eds.) Ontology Engineering with Ontology Design Patterns – Foundations and
Applications, Studies on the Semantic Web, vol. 25, pp. 233–243. IOS Press (2016)

20. Krisnadhi, A., Hitzler, P.: Modeling with ontology design patterns: Chess games
as a worked example. In: Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A.,
Presutti, V. (eds.) Ontology Engineering with Ontology Design Patterns – Foun-
dations and Applications, Studies on the Semantic Web, vol. 25, pp. 3–22. IOS
Press, Amsterdam (2016)

21. Krisnadhi, A., Hitzler, P.: A core pattern for events. In: Proceedings of the Work-
shop on Ontology and Semantic Web Patterns (7th edition), Kobe, Japan, October
2016 (2017), to appear

22. Krisnadhi, A., Hu, Y., Janowicz, K., Hitzler, P., Arko, R.A., Carbotte, S., Chan-
dler, C., Cheatham, M., Fils, D., Finin, T.W., Ji, P., Jones, M.B., Karima, N.,
Lehnert, K.A., Mickle, A., Narock, T.W., O’Brien, M., Raymond, L., Shepherd,
A., Schildhauer, M., Wiebe, P.: The GeoLink Modular Oceanography Ontology.
In: Arenas, M., Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas,
K., Groth, P.T., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.)
The Semantic Web – ISWC 2015 – 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9367, pp. 301–309. Springer (2015)

23. Krisnadhi, A.A.: Ontology Pattern-Based Data Integration. Ph.D. thesis, Wright
State University (2015)

24. Maplesden, D., Hosking, J.G., Grundy, J.C.: A visual language for design pat-
tern modelling and instantiation. In: 2002 IEEE CS International Symposium on
Human-Centric Computing Languages and Environments (HCC 2001), September
5-7, 2001 Stresa, Italy. pp. 338–339. IEEE Computer Society (2001)

http://www.w3.org/TR/owl2-primer/


14 Hitzler, Gangemi, Janowicz, Krisnadhi, and Presutti

25. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition). W3C Rec-
ommendation 11 December 2012 (2012), available from http://www.w3.org/TR/
owl2-syntax/

26. Semantic Web Best Practices and Deployment Working
Group: Ontology Engineering and Patterns Task Force (OEP).
http://www.w3.org/2001/sw/BestPractices/OEP/ (2004)

27. Svatek, V.: Design patterns for semantic web ontologies: Motivation and discus-
sion. In: Abramowicz, W. (ed.) Proceedings of the 7th Conference on Business
Information Systems, BIS 2004. Poznan (2004)

28. Tidwell, J.: Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly
(April 2007)

29. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: A collaborative
ontology editor and knowledge acquisition tool for the web. Semantic Web 4(1),
89–99 (2013)

30. Van Der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow
Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/

	Towards a simple but useful ontology design pattern representation language

