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ABSTRACT
We present a high-level declarative programming language for repre-
senting argumentation schemes, where schemes represented in this
language can be easily validated by domain experts, including devel-
opers of argumentation schemes in informal logic and philosophy,
and serve as executable specifications for automatically constructing
arguments, when applied to a set of assumptions. Since argumen-
tation schemes are defeasible inference rules, both premises and
conclusions of schemes can be second-order schema variables, i.e.
without a fixed predicate symbol. Thus, while particular schemes
can be and have been implemented in computer programs, in general
argumentation schemes cannot be represented as executable spec-
ifications using logic programming languages based on first-order
logic, such as Prolog. Moreover, even if the conclusion (head) of
Prolog rules could be second-order variables, a depth-first, backward-
chaining search strategy, as typically used in logic programming,
would usually cause such programs to not terminate, since every
goal would match the head of such a scheme, including all goals cre-
ated by instantiating the body of the same scheme. The language for
representing argumentation schemes presented here, for the purpose
of automatically constructing arguments, uses Constraint Handling
Rules (CHR), a declarative, Turing complete, forwards-chaining,
rule-based programming language introduced by Thom Fruhwirth
in 1991. We also report on a legal pilot application, called DUCK,
which uses the system in a web application to help cloud service
providers comply with the new European General Data Protection
Regulation (GDPR).
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1 INTRODUCTION
Argumentation schemes [23] serve at least two functions:

(1) They provide normative standards for critically evaluating
arguments, by matching arguments to schemes to see if they
fit acceptable patterns of argumentation, to identify missing
premises, and to facilitate the asking of critical questions.

(2) They provide guidance for making (constructing, inventing,
generating) good arguments in the first place, i.e. arguments
that will satisfy the normative standards specified by the
schemes.

Computational models of argument can model either or both of
these functions of argumentation schemes. In this paper, we focus
on the second function. Whereas some prior work on computational
models of argumentation schemes consists of procedural programs

for generating arguments for specific schemes, e.g [2], our aim
is to develop a high-level declarative programming language for
representing, ideally, all argumentation schemes, where schemes
represented in this language can be easily validated by developers
of argumentation schemes in informal logic and philosophy and
serve as executable specifications for automatically constructing
arguments, when applied to a set of assumptions.

Argumentation schemes [23] are defeasible inference rules. Most,
like argument from expert opinion, are to some extent domain-
dependent, because they include predicates intended to be inter-
preted in a particular, domain-dependent way. Some, like defeasible
modus ponens, are more generic. Let’s take a closer look at these
two schemes.

First, here is a simplified version of the scheme for argument from
expert witness testimony, which is the prototypical argumentation
scheme most often used to introduce the concept of argumentation
schemes.

ARGUMENT FROM EXPERT WITNESS
TESTIMONY

Premises:
• E is an expert
• E asserts P

Conclusion: P

The expert witness scheme makes use of two domain-dependent
predicates:

• is-an-expert/1
• asserts/2

The numbers indicate the arity of each predicate. In the presenta-
tion of the scheme, the predicates are shown using an infix notation
close to natural language.

In the scheme, E and P are scheme variables. P is a second-
order variable, ranging over propositions. Notice that the conclusion
of the scheme is P. The conclusion does not mention a particular
predicate. When the scheme is applied, P is instantiated with a
particular proposition, with a particular predicate, and an argument
for the proposition P is constructed. The argument constructed can
be attacked in the usual ways, with a rebuttal (an argument for some
proposition which cannot be accepted if P is accepted, for example
¬P), an undercutter (an argument against the applicability of this
argument, for example an argument for E being biased), or a premise
defeater (an argument for some proposition contrary to a premise,
for example an argument con “E is an expert.”).

The second argumentation scheme we want to discuss is defeasi-
ble modus ponens.
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DEFEASIBLE MODUS PONENS
Premises:

• if P then Q
• P

Conclusion: (Presumably) Q

Defeasible modus ponens has the same form as modus ponens,
except that the conclusion is only presumably true, rather than nec-
essarily true. (The modality, “presumably”, is made explicit in the
example only for emphasis. The conclusions of all argumentation
schemes are presumably true.) An argument constructed by instanti-
ating this scheme can be attacked in the usual ways, for example by
a rebuttal, an argument for ¬Q.

Notice that the major premise of defeasible modus ponens, “if
P then Q.”, is not an atomic proposition, but rather a compound
proposition built by connecting two propositions, P and Q, using an
“if-then” (implication) operator. Thus, P and Q here are once again
second-order variables ranging over propositions. The conclusion of
the defeasible modus ponens scheme is also a second-order variable,
as is the conclusion of the expert witness testimony scheme. In
addition, the defeasible modus ponens scheme has a minor premise,
P, which is a second-order variable.

Argumentation schemes like these, with second-order variables,
are quite common. It is particularly common for the conclusion of
schemes to be a second-order variable, as in both of these examples.
Other examples include schemes for argument from abduction, anal-
ogy, credible source, established rule, ethos, ignorance, position to
know, and precedent.

We are aware of no computational models of argumentation
schemes which are capable of automatically constructing (invent-
ing, generating, deriving) arguments by instantiating second-order
schemes such as these. Prior computational models of argumentation
schemes are more limited. Either they are used to check whether ex-
isting arguments match the form of a given scheme, as in Aracauria
[19], are restricted to propositional (fully instantiated) schemes, as
in ArguMed [22], are not defined in sufficient detail to know whether
second-order variables are supported, e.g. Pollock’s OSCAR system
[17], are mathematical models which leave too many details unspec-
ified to be sufficient as a specification for implementing an inference
engine, such as ASPIC+1 [18], or are based on logic programming
methods enabling only first-order argumentation schemes to be used
to automatically construct arguments, such as Assumption-Based
Argumentation (ABA) [7] and earlier versions of Carneades [10].2

To understand more clearly the difficulties in representing argu-
mentation schemes using Horn clause logic, the subset of first-order
logic used by logic programming languages such as Prolog, let us
see how far we can get in representing the scheme for arguments
from expert witness testimony in Prolog. Let us first represent, as
Prolog “facts”, the following assumptions about a case:

expert(john).

asserts(john, caused_by(global_warming, humans)).

1The TOAST implementation of ASPIC+ [20] is propositional. Its rules are fully
instantiated axioms, with no variables.
2These earlier versions of Carneades allowed argumentation schemes with second-order
variables to be represented and used to manually construct arguments, by filling in forms,
and to check whether arguments correctly instantiate schemes, but not to automatically
construct arguments from a set of assumptions.

Given these facts, the challenge is to represent the expert witness
scheme as a single Prolog rule (Horn clause), in such a way that the
following query can be proven by Prolog, answering yes:
?- caused_by(global_warming, humans).

The above representation of the assumptions already shows how
one hurdle can be overcome. Although Horn clause logic is a subset
of first-order logic, it is possible to represent second-order proposi-
tions about atomic formulas, such as global warming being caused
by humans here, by reifying such atomic formulas as terms. So far,
so good.

But how can the expert witness scheme be represented? Here is
one approach, suggested to me by Trevor Bench-Capon but also
used by ABA [7, 200–201]:
holds(P) :- asserts(E,P), expert(E).

The idea here is to represent the second-order conclusion, P, of the
scheme with a first-order atomic formula, holds(P), by introducing
a unary holds predicate. This approach attempts to reduce general
inference rules, with premises and second-order variables, to first-
order axioms, i.e. inference rules with no premises and only first-
order variables in the conclusion. That is, strictly speaking there are
no premises in this Horn clause representation of the inference rule,
because a Horn clause is a first-order formula. The :- symbol in the
clause represents the material conditional logical connective, not a
deducibility relation.

While axioms can be viewed as a basic form of inference rule,
the attempt to represent more general inference rules using a holds
predicate like this has severe limitations. Since we will want to be
able to chain arguments together, by using argumentation schemes
to construct arguments for the premises of other arguments, we need
some way to convert atoms of the form holds(P) to P, so that
premises can be matched (unified) with P. It may seem that one way
to achieve this would be to add an additional rule for each predicate,
as in the following examples:
expert(P) :- holds(expert(P)).

asserts(E,P) :- holds(asserts(E,P)).

caused_by(X,Y) :- holds(caused_by(X,Y)).

From a knowledge-representation point of view, this seems rather
verbose and cumbersome, but presumably these additional rules
could be generated automatically, using some kind of preprocessor.
However this approach suffers from a more serious problem: Such a
rule would need to be generated for every predicate in the application
domain, and thus every goal would match the conclusion of every
argumentation scheme with a second-order variable as its conclusion,
due to Prolog’s goal-directed, backwards-chaining control strategy,
causing the search space to become infinite. Thus many (not all)
queries will cause the inference engine to enter an endless loop and
fail to terminate, depending on the order of facts and rules. Suppose,
for example, the Prolog program consists only of the following rules,
without any facts:
holds(P) :- asserts(E,P),expert(E).

expert(E) :- holds(expert(E)).

asserts(E,P) :- holds(asserts(E,P)).

caused_by(X,M) :- holds(caused_by(X,M)).

With these clauses, the following query causes an endless loop
and runs out of stack space:
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?- caused_by(global_warming,humans).

ERROR: Out of local stack

It is clear why this happens: The query causes an endless loop
between the holds and asserts rules:

(1) caused_by(global_warming,humans)

(2) holds(caused_by(global_warming,humans))

(3) asserts(E,caused_by(global_warming,humans))

(4) holds(asserts(E,caused_by(global_warming,...)))

(5) ...

Since this encoding of argumentation schemes requires the def-
inition of every predicate to have an additional holds rule, many
queries will not terminate in this way, making this encoding useless
in combination with Prolog’s simple depth-first, backwards-chaining
control strategy. Notice that the example query will not terminate
no matter how the clauses of the program are ordered, because the
program contains no facts. While the program can be made to ter-
minate for this particular goal (query) by adding sufficient facts
before the rules, this would not be a general solution to the control
problem, not even for other queries using the same rules, because
one cannot assume that there are sufficient facts to answer every
query affirmatively.

The event calculus [15] uses a holds predicate for a similar but
more limited purpose, for reasoning about the effects of actions
using Prolog. It does not suffer from the control issues discussed
here, because the holds predicate is used in a more focused way
only for a subset of the predicates, called fluents, which are state-
dependent in the domain model. These fluents are queried only
using the holds predicate. They are never mapped to object-level
predicates in the way suggested above.

There is one final and fatal problem with representing argumenta-
tion schemes directly in Prolog this way that is important to mention:
no arguments are constructed! Thus there is no way to resolve con-
flicts among arguments, to balance arguments or to use the arguments
to help understand or explain the results, for example using argument
diagrams.

All of these problems might be overcome by writing a meta-
interpreter for argumentation schemes in Prolog, but this would
be using Prolog in its capacity as a general-purpose programming
language, rather than as an inference engine for Horn clause logic.
Some expert system shells, in particular APES [14], were imple-
mented as meta-interpreters in Prolog. APES was able to generate
explanations which can be viewed as arguments from the traces of
rule applications [3]. However rules in APES were Horn clauses
and could not represent argumentation schemes with second-order
variables, for the reasons discussed above, and also did not generate
counterarguments or use a structured model of argument to resolve
attack relations among arguments. The alternative approach we in-
vestigate in this paper, using Constraint Handling Rules to represent
argumentation schemes, can also use Prolog as an implementation
language. Indeed several implementations of Constraint Handling
Rules in Prolog exist and we make use of the one provided by SWI
Prolog.

As suggested in the previous paragraph, this paper explores the
idea of representing argumentation schemes using another kind of
rule-based programming, Constraint Handling Rules, introduced

by Thom Frhwirth in 1991 [9], to overcome all of the problems
identified above by meeting the following requirements:

• Allow second-order variables in the premises and conclu-
sions of schemes

• Not require additional rules for bringing second-order propo-
sitions down to the object-level.

• Generate arguments as output
• Guarantee termination

The rest of this article is organized as follows. The next section
introduces Constraint Handling Rules, including examples. This is
followed by a section showing one way to represent argumentation
schemes using Constraint Handling Rules, in such as way as to gen-
erate arguments and overcome the other problems identified in this
introduction. The section also briefly describes two implementations
of this approach, one using the Constraint Handling Rules interpreter
provided as a library by SWI Prolog and the second based on our
custom implementation of Constraint Handling Rules in the Go pro-
gramming language. Next is a section about a pilot application based
on the approach, called DUCK (Data Use statement Compliance
checKer), where domain-dependent argumentation schemes are used
to model data use statements and data protection regulations in a
web-application for helping cloud service providers to comply with
these regulations. The final section presents our conclusions and
summarizes the main results.

2 CONSTRAINT HANDLING RULES
Constraint Handling Rules (CHR) is a declarative, forwards-chaining
rule language originally developed by Thom Frhwirth in 1991 [9].3.
Forwards-chaining rule engines, based on production rules, have
been used from the beginning in expert systems [4, 5]. Produc-
tion rules are condition-action rules, where the conditions of rules
are matched against data structures in working memory, a conflict-
resolution strategy is used to select a matching rule, and then the
action of the selected rule is executed, possibly modifying the work-
ing memory and performing side effects, such as outputting data to
a file. This process is then repeated until no rule matches the state of
the working memory.

While production rule systems have been widely and successfully
used for expert systems and implementing so-called “business rules”,
they do not have a declarative semantics. Declarative programming
languages are used to describe what the problem is, rather than a
procedure or algorithm stating how to solve the problem. Declarative
programming languages, or rather interpreters or compilers for these
languages, are clever enough to figure out how to solve the problem
on their own, from a description of the problem. Declarative pro-
gramming languages are typically based on well-founded theories of
mathematical functions and/or logic. Prolog [6], based on the Horn
clause subset of first-order logic, is perhaps the most prominent of
these declarative languages.

One of the achievements of CHR is to realize a forwards-chaining
rule language, similar to production rule languages, but with a declar-
ative semantics. CHR is so-named, because the language was initially
intended to be used to implement constraint solvers. A constraint
solver takes as input a set of relationships among variables, called
constraints, and derives further information about these variables.
3See also the CHR homepage at https://dtai.cs.kuleuven.be/CHR/
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Early constraint solvers were for particular domains, for example
propositional constraints over Boolean variables, or equations and
inequalities over integers. CHR is more general purpose. It enables
constraint solvers for a variety of domains to be specified, using
rules.

To make this clearer, let us take a look at the standard example
used to illustrate CHR, which defines rules for partial orderings:

reflexivity @ X leq X <=> true.

antisymmetry @ X leq Y, Y leq X <=> X = Y.

transitivity @ X leq Y, Y leq Z ==> X leq Z.

idempotence @ X leq Y \ X leq Y <=> true.

The predicate leq is intended to mean “less than or equal to”.
The words to the left of the @ symbol in these four rules are iden-
tifiers, naming the rules. The reflexivity, antisymmetry, and
transitivity rules specify the axioms of partial orderings, in a
form close to their usual expression in mathematics. The first rule, for
reflexivity, states that for all x, x = x. The idempotence rule allows
the second instance of X leq Y to be deleted from the constraint
store, since it is redundant.

There are three kinds of rules in CHR: simplification, propagation
and “simpagation’ rules, where simpagation rules are a hybrid kind
of rule combining the features of simplification and propagation
rules. All three kinds of rules are illustrated in the example. The
reflexivity and antisymmetry rules are simplification rules; the tran-
sitivity rule is a propagation rule; and the indempotence rule is a
simpagation rule.

Operationally, CHR rules are applied to a multiset of constraints
(similar to Prolog facts) in a data structure called the constraint store,
which serves the same function as the working memory in production
rule systems. Since the constraint store is a multiset, the same fact
may occur multiple times in the store.

When simplification rules, such as the reflexivity and antisymme-
try rules, are applied (“fired”), the constraints matching the patterns
on the left-hand side of the <=> symbol, called the head of the rule,
are replaced by the constraints on the right-hand side, called the
body of the rule. For people familiar with Prolog, this terminology
may be somewhat confusing, because in Prolog the head of a rule
represents its conclusion and the body its antecedents, opposite the
convention of CHR. (Moreover, unlike Prolog, a CHR rule may have
multiple conclusions.) But CHR’s use of the terms “head” and “body”
is nonetheless consistent with how these terms are used in Prolog,
because in both languages atoms are matched against patterns in
the head and, if the match is successful, replaced by atoms on the
right. The difference is that Prolog is a goal-directed, backwards-
chaining language, which reduces a goal by replacing it with new
goals, whereas CHR, on the other hand, as a forwards-chaining rule
language, applies rules to derive constraints, adding them to the
constraint store.

Simplification and simpagation rules also delete constraints from
the constraint store. Simplification rules replace the constraints
matching the head of the rule with the constraints matching the
body of the rule. Simpagation rules, similarly, replace the constraints
to the right of the backslash symbol, \, in the head of the rule, with
the constraints on the right. The matching constraints to the left of
the backslash symbol in the head are not deleted.

It might seem counterintuitive at first that a declarative language is
allowed to delete constraints from the store. But in CHR this is done
in principled way, in a way which does not change the meaning of the
constraints in the store. Simplification rules and simpagation rules
are used to simplify constraints, as their names suggest, by replacing
constraints matching the head with fewer constraints having the
same meaning. Consider the indempotence rule, for example. Since
the constraint store is a multiset, it may contain duplicate, redundant
constraints. The indempotence rule simplifies the constraint store by
removing duplicate constraints of the form X leq Y.

In addition to heads and bodies, CHR rules may also include,
in so-called “guards”, further built-in constraints. Which built-in
constraints are available depends on the particular implementation
of CHR. Guards are not illustrated here.

To get an idea of how the CHR inference engine works, let us see
what CHR derives when applying the rules defining partial orderings
above to the following “query”, i.e. giving the initial state of the
constraint store:

leq(A,B)

leq(B,C)

leq(C,A)

First, the transitivity propagation rule is fired and adds leq(A,C)
to the store. Next, the antisymmetry simplification rule is fired,
causing leq(A,C) and leq(C,A) to be removed and replaced by
A=C. CHR has built-in support for equality reasoning, which is then
used to derive leq(C,B) from leq(A,B). Now the antisymmetry
simplification rule is applied to leq(C,B) and leq(B,C), causing
these constraints to be replaced with B=C. No further rules can
be applied, so the process terminates and returns the constraint
store with A=C and B=C. Thus, CHR was able to infer that all three
variables are equal.

In addition to supporting forwards-chaining, CHR has some other
properties which may be desirable, depending on the application:

• Turing completeness: Any computable function can be rep-
resented using CHR rules.

• Every algorithm can be implemented in CHR with the best
known time and space complexity [21].

• CHR rules can be executed concurrently [16].
• The execution of CHR rules can be interrupted and restarted

at any time, with intermediate results approximating the
final solution.

• Constraints can be input incrementally as they become
known, during rule execution, without requiring recompu-
tation.

• Inference rules, rewrite rules, sequents, proof rules, and
logical axioms can be directly written in CHR [1].

The last three properties, in particular, appear attractive for repre-
senting and implementing argumentation schemes. Argumentation
typically takes place in dialogs, with evidence and arguments brought
forward and asserted by the participants incrementally, during the
course of the dialog. It would be useful if CHR could be used to
incrementally and efficiently construct arguments from evidence
during dialogs. Moreover, since argumentation schemes are (defeasi-
ble) inference rules, the ability of CHR to represent inference rules
directly would appear to be quite useful.
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3 REPRESENTATION AND
IMPLEMENTATION OF ARGUMENTATION
SCHEMES

In this section we show how to represent argumentation schemes
using CHR rules, and present an overview of the implementation
of the component for generating arguments with argumentation
schemes represented using CHR in this way, provided by Version 4
of the Carneades argumentation system.4

First we need a notation for argumentation schemes. Let us use
the syntax for schemes we have developed for Carneades 4, which
is based on the YAML markup language5, which in turn is syntactic
sugar for JSON,6, to make it easier to read and write. Here is a
version of the scheme for arguments from expert opinion using this
concrete syntax:

id: expert_opinion

meta:

title: Argument from Expert Opinion

source: >

Douglas Walton, Appeal to Expert Opinion,

The Pennsylvania University Press,

University Park, Albany, 1997, p.211-225.

variables: [E,D,P]

premises:

- expert(E,D)

- in_domain(P,D)

- asserts(E,P)

exceptions:

- untrustworthy(E)

- inconsistent_with_other_experts(P)

assumptions:

- based_on_evidence(asserts(E,P))

conclusions:

- P

This representation of argumentation schemes is, we claim, very
high level and quite close to the usual way schemes are represented in
informal logic. We have good evidence, from our collaboration with
Doug Walton, that informal logicians are able to read, understand
and validate schemes represented in this form.

There are a few things to notice about this syntax. First, the
schema variables are declared explicitly. This may seem burdensome,
but is useful for checking for misspelled variables in schemes, among
other purposes. Second, as proposed in [11], the two types of critical
questions are represented by exceptions and assumptions. Thirdly,
argumentation schemes may now have more than one conclusion,
though there is only one in this example. This change was motivated
by the desire to support the full CHR rule language. There can
be multiple conclusions in the body of CHR rules. But it has the
further advantage of reducing the number of schemes required when
several conclusions can be derived from the same premises. Fourthly,
note that this rule is an example of a scheme having a second-order
variable as its conclusion, S here. Finally, the example shows how
arbitrary meta-data about the scheme can be expressed. The various

4https://carneades.github.io/Carneades/
5http://yaml.org/
6http://json.org/

meta-data properties, such as title and source in this example,
are not predefined and can be freely selected.

We now show, by way of this example, how argumentation schemes
are translated into CHR rules. The expert opinion scheme is trans-
lated into the following rule:

expert_opinion @

expert(W,D),

in_domain(S,D),

asserts(W,S)

==>

S,

based_on_evidence(asserts(W,S)),

argument(expert_opinion,[W,D,S]).

As illustrated here, each argumentation scheme is translated into
a single CHR rule, in this example a propagation rule, with the same
name (identifier). The premises of the scheme are translated into
constraints in the head of the rule. The conclusions of the scheme
are translated into constraints in the body of the rule. Moreover, each
of the assumptions of the scheme are also added to the body of the
CHR rule, allowing them to be used to derive further information
by applying other rules. (The assumptions can be questioned and
retracted later, when evaluating the arguments constructed.) Finally,
an additional constraint is added to the end of the body of the rule, of
the form argument(<id>,[<variable>,...]), to keep a record
of the argument to be generated when applying the scheme.

Notice that the exceptions of a scheme are not translated and do
not appear in the resulting CHR rule. To understand how exceptions
are handled, we first need to explain the steps in the process for
generating and evaluating arguments:

(1) The argumentation schemes are translated into CHR rules,
as illustrated above.

(2) A set of assumptions, represented as ground atomic formu-
las, are translated into CHR constraints and added to the
initial state of the constraint store.

(3) The CHR inference engine is run, repeatedly applying the
rules to the constraint store until no rules match or until the
fail constraint, signaling failure, is derived.

(4) The argument constraints in the store, i.e. the constraints of
the form

argument(<id>,[<variable>,...])

are then translated into Carneades arguments and added to
the argument graph.

(5) Assumptions of arguments are added to the assumptions of
the argument graph.

(6) When adding arguments to the graph, undercutting argu-
ments are also added for any exceptions of the schemes
applied. This information can be looked up using the iden-
tifier of the scheme included in the record of the argument
in the constraint store.

(7) Finally, the arguments are evaluated, using the formal model
of structured argument in [13], to weigh and balance the
arguments, resolve attack relations among arguments and
label the statements in the argument graph in, out, or
undecided.

5
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In addition to supporting multiple conclusions in schemes, we
have extended argumentation schemes in further ways, in order to
support the full expressiveness of Constraint Handling Rules. To
illustrate one of these extensions, supporting simplification, here is
a reconstruction of the CHR rules for partial orders, represented as
argumentation schemes:

- id: reflexivity

variables: [X]

deletions:

- leq(X,X)

conclusions:

- true

- id: antisymmetry

variables: [X,Y]

deletions:

- leq(X,Y)

- leq(Y,X)

conclusions:

- X=Y

- id: transitivity

variables: [X,Y,Z]

premises:

- leq(X,Y)

- leq(Y,Z)

conclusions:

- leq(X,Z)

- id: idempotence

variables: [X,Y]

premises:

- leq(X,Y)

deletions:

- leq(X,Y)

conclusions:

- true

All of the premises which are to be deleted from the constraint
store when the scheme is applied are listed in a deletions block
of the scheme. Thus, similar to CHR simpagation rules, argumenta-
tion schemes here combine the features of CHR simplification and
propagation rules.

One caveat is order: Although all CHR rules can be expressed
in Carneades, it is not possible in Carneades to formulate the query
needed to reproduce the example presented in Section 2. This is
because CHR queries are represented by Carneades assumptions
and assumptions are restricted to ground atomic formulas. This
restriction assures that all arguments are fully instantiated. That is
all premises, conclusions, exceptions and assumptions of arguments
are assured to be ground atomic formulas.

Carneades can be configured to use one of two different imple-
mentations of CHR for generating arguments from argumentation
schemes using the method presented above: the implementation
which comes with CHR pre-installed with SWI Prolog7, and a new

7http://www.swi-prolog.org/

implementation of CHR in the Go programming language, by the
second author of this paper.8

Our new implementation of CHR is still under development but
nearing completion. While we do not expect it to have the perfor-
mance and maturity of the SWI Prolog implementation, it offers
several advantages for Carneades: it eliminates a dependency on an-
other system, making it easier to install and administer a Carneades
server, and enables us to experiment with CHR extensions. Two
extensions have already been implemented:

(1) Since CHR is Turing complete, termination of CHR pro-
grams cannot in general be guaranteed. Our implementation
of CHR allows the user to set a maximum number of rule
firings, to assure termination within roughly predictable
time limits, and returns the arguments constructed before
the limit was reached. The engine can be restarted to gen-
erate further arguments. This is very much in line with the
purpose and spirit of argumentation, as a rational method
for problem solving and decision-making when information
is inconsistent or incomplete.

(2) The second example argumentation scheme in the introduc-
tion, for defeasible modus ponens, cannot be implemented
using the SWI Prolog version of CHR. While it allows
second-order variables in the body (conclusion) of rules,
it does not allow them in the head (premises). We are not
sure whether this is a limitation of the SWI Prolog imple-
mentation of CHR, or the CHR specification. Either way,
our implementation of CHR removes this restriction and
allows second-order variables in both the head and body of
rules, enabling defeasible modus ponens to be represented.

4 THE DUCK DATA PROTECTION
APPLICATION

In the Data Usage Compliance Checker (DUCK) pilot project spon-
sored by Microsoft, we have applied the Carneades 4 inference
engine for argumentation schemes, based on CHR, to develop a web-
based regulatory compliance system to help cloud service providers
to use the ISO/IEC 19944 standard, entitled Information technology
— Cloud computing — Cloud services and devices : data flow, data
categories and data use, to develop data use documents which are
compliant with data protection regulations, in particular the new
European General Data Protection Regulation (GDPR). The DUCK
system is open source software, available on Github.9

Most argumentation schemes are to some extent domain-dependent,
because they make use of predicates with particular, intended mean-
ings, such as ‘expert’. We take this idea further by adopting the
position, expressed in [10, 12], that legal norms can be modeled as
domain-dependent argumentation schemes or, more strongly, are
argumentation schemes, because legal norms regulate not only how
to act, but also how to argue about legal issues. The knowledge base
of the DUCK system, following this approach, currently consists of
more than 100 domain-dependent argumentation schemes. Most of
these schemes model the taxonomy of concepts (ontology) defined

8https://github.com/hfried/GoCHR
9https://github.com/Microsoft/DUCK
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by the ISO/IEC 19944 standard.10 The remaining schemes model
provisions of the GDPR.

To give a brief impression of the GDPR part of the knowledge
base, consider the following three schemes:
- id: s1 # default

weight:

constant: 0.1

variables: [S]

premises:

- dataUseStatement(S)

conclusions:

- consentRequired(S)

- id: s2

variables: [S]

premises:

- notPii(S)

conclusions:

- notConsentRequired(S)

- id: s3

variables: [S]

premises:

- pii(S)

- li(S)

conclusions:

- notConsentRequired(S)

The first scheme, s1, says that data use statements presumably
require the explicit consent of the user. Requiring consent is the
default. The burden of proof is on the cloud service provider to
show that consent is not required. The second scheme says that
consent is not required if the data use statement does not make use
of personally identifiable information (pii). The first scheme has
been assigned low weight, 0.1 on a scale of 0.0 to 1.0. If no weight
has been specified for a scheme, it has the weight of 0.5. Thus, an
argument constructed from s2 will have more weight than an argu-
ment constructed from s1 and will rebut it when they are evaluated.
Argument weights have not been discussed in this article, because
it is focused on showing how CHR is used to model argumenta-
tion schemes for the purpose of generating arguments. See [13] for
further information about how weights are handled in Version 4 of
Carneades.

The third scheme, s3, provides a second way to construct an
argument for consent not being required. It says that even if the data
use statement makes use of personally identifiable data, consent is
not required if the cloud service provider has a legitimate interest
(li) in the data.

While these three schemes only scratch the surface of the DUCK
knowledge base, they are sufficient to illustrate all of the features of
Carneades argumentation schemes which have been applied in this
project. For every property of a data use statement, such as requiring

10Interestingly, CHR is expressive enough to efficiently implement, in a straightforward
way, a correct and complete reasoner for Description Logic, the decidable subset of
first-order predicate logic which is the formal foundation of the Web Ontology Language
(OWL) commonly used to define ontologies in the context of the Semantic Web.[8] The
ISO/IEC 19944 standard used in DUCK does not require this expressivity, but this may
prove useful later in the project.

consent or not, a scheme with low weight has been defined for the
default value of the property. Other schemes, with greater weight,
are then used to construct rebuttals overriding the default. Unlike in
Prolog, where negation as failure is used to always make the negated
proposition the default, the Carneades language for argumentation
schemes enables either a proposition or its contrary to be the default,
on a predicate by predicate basis. More generally, any position of
an issue can be the default. There can be more than two positions
(options) for resolving an issue.

5 CONCLUSIONS
Our experiments with using Constraint Handling Rules (CHR) to
represent argumentation schemes for the purpose of generating argu-
ments have been encouraging.

We have successfully implemented twenty-five of the most widely
used argumentation schemes of [23], including their critical ques-
tions.11 Ten of these twenty-five schemes have conclusions which
are second-order variables. Only one of the schemes, defeasible
modus ponens, has a second-order variable as a premise. Our imple-
mentation of CHR has been extended to allow second-order variables
in the premises of schemes.

Moreover, the approach has been successfully validated in the
DUCK project, which uses our CHR-based implementation of argu-
mentation schemes to generate arguments, in a system designed to
help cloud service providers to develop data use documents compli-
ant with data protection regulations.

Using CHR as a foundation for implementing argumentation
schemes provided us with an opportunity to extend the concept of
an argumentation scheme in various ways, to make it possible to
represent any CHR rule as an argumentation scheme. This enables
the Carneades language for argumentation schemes to inherit all
of the attractive features of CHR, including Turing completeness,
the possibility of concurrent execution, support for stopping and
restarting computation at anytime, with intermediate results available
for use, and support for inputting further information incrementally
during dialogues and other argumentation processes.

Conversely, the synthesis of CHR and argumentation provided
by Carneades provides additional benefits not provided by CHR
alone. CHR has no concept of negation. Carneades issues can model
negation or, more generally, a set of conflicting positions of issues.
Moreover, CHR provides no built-in support for defeasible reason-
ing. We use CHR to generate pro and con arguments, which are then
evaluated in a post-process, using a model of structured argument, to
support defeasible reasoning by weighing and balancing arguments
and resolving attack relations among arguments. Most importantly,
our system produces arguments which can be used to explain and un-
derstand CHR inferences, for example by visualizing the arguments
in argument maps.

While the method presented here for generating arguments using
Constraint Handling Rules was developed for the latest version of the
Carneades model of structured argument [13], it can be adapted for
use in any model of argument in which arguments are constructed by
instantiating argumentation schemes. We leave it for future research
by others to adapt the method to other models of structured argument.

11https://github.com/carneades/carneades-4/blob/master/examples/AGs/YAML/walton.yml
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