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A Scenario-Based MDE Process for Dynamic Topology
Collaborative Reactive Systems — Early Virtual Prototyping
of Car-to-X System Specifications'

Joel Greenyer,2 Larissa Chazette Daniel Gritzner Eric Wete

Abstract: Car-to-X systems are safety-critical dynamic topology reactive systems (DTRSs), consisting
of collaborating reactive components with relationships and responsibilities that change at run-time.
This induces substantial complexity, and engineers need adequate means to model and validate such
systems already during the early design. To address this challenge, we developed a scenario-based
development process (SBDP) where DTRS requirements and environment assumptions are modeled
as independent scenarios, which can be analyzed formally and compiled into executable code. In
this paper we apply SBDP to a Car-to-X driver assistance system. We created a virtual prototyping
environment where the generated code is executed in a distributed system with Android devices acting
as the cars’ dashboards; the driving is simulated by a 3D simulator (OpenDS). This work shows how
the scenario-based design approach can be integrated with domain-specific simulators, which can
help clarify design issues. Moreover, it shows that scenario-based code could drive the final system.

Keywords: Reactive Systems; Dynamic Topology; Scenario-Based Specification; Collaborative
Systems; Model-Driven Engineering; Simulation

1 Introduction

Software-intensive systems in areas like transportation, production, or avionics often consist
of multiple reactive components that collaborate with each other and their environment.
Moreover, systems like mobile robot systems or cooperating cars (Car-to-X systems) have
a dynamic topology, which means that relationships between the components can change
at run-time, for example due to the physical movement of components. These changing
relationships influence the behavior of the components, which must fulfill context-specific
responsibilities. We call such systems Dynamic Topology Reactive Systems (DTRSs).

The design of DTRSs can be a complex challenge, not only due to their dynamic topology,
but also because of the distributed and concurrent nature of their software, and because
they often control complex physical/mechanical processes. Finally, the systems are often
safety-critical, and extra rigor is required during design.
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To address this challenge, we developed a formal scenario-based design approach for
DTRSs, based on the Scenario Modeling Language (SML) [GGG*17], an extended
textual variant of Live Sequence Charts (LSCs) [DHO1, HMO03], where context-specific
requirements and environment assumptions can be specified as a set of separate guarantee
and assumption scenarios that form a scenario-based assume/guarantee specification. This
approach has several advantages. First, the scenarios are aligned with how humans conceive
and communicate requirements during the early design. Second, they have a formal semantics
and can be formally analyzed for inconsistencies [GBC* 13]. Third, they can be executed via
the play-out algorithm [HMO03, GGG*17], which makes it possible to analyze the scenarios
via simulation or even to use them as code for the final system.

For the latter purpose, we developed a scenario-based programming (SBP) framework that
allows developers to program scenarios in Java, or to compile SML specification into SBP
code [GGK*17,GGSW17]. The code can also be executed in a distributed system [SGG*17].
This yields an MDE approach, which we call the Scenario-based Design Process (SBDP).

In this paper, we show how SBDP is applied to model, formally analyze, and finally generate
software for a Car-to-X system that helps drivers to safely pass obstacles that block one
lane of a two-lane road. The specific novel aspect presented in this paper is that, instead of
testing the software in real driving tests, we created a virtual prototyping system, where the
driving is simulated in an interactive 3D driving simulator (OpeENDS); the software runs on
a distributed system of an obstacle controller component running on a laptop, and the cars’
software running on Android devices that also act as the cars’ dashboards.

This paper highlights two aspects of our work. First, this simulator acts as a proof-of-concept,
showing that the code generated by SBDP could be executed in a distributed Car-to-X
system. Second, it demonstrates how scenario-based modeling can be integrated with
domain-specific simulators for the benefit that virtual prototyping can help clarify early
design issues with stakeholders. In this case, the cars’ coordination behavior scenarios can
be experienced in a 3D simulation that allows also non-technical stakeholders to assess
different driving situations and see how the scenarios interplay in these situations.

The integration with a domain-specific simulation tool can also help to validate the
environment assumptions in the specification. For example, assumptions on the possible
movements of cars could be overly strict, e.g. not consider that cars can do U-turns in certain
places where indeed they can. If such assumption scenarios, which are also compiled into
code, are violated during simulation, then engineers know which assumptions to re-assess.
Formal consistency checks can only unfold their full potential if such assumption validation
is done early as well.

Structure: We explain the example in Sect. 2, introduce SML and SBDP in Sect. 3 and 4.
We then present the virtual prototyping tool in Sect. 5, discuss related work in Sect. 6, and
conclude in Sect. 7.

A demo video is available here: https://youtu.be/Eiljxn3z1T8
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2 Example

As an example, we consider a car-to-x system that assists drivers in passing a narrow
passage created by obstacles such as road works. Figure 1 shows a sketch. The dashed lines
resemble certain points before the obstacle (approachingObstacle, obstacleReached, and
enterNarrowPassage) that the cars will pass and which will trigger certain aspects of the
obstacle coordination behavior. In the real system, these points could be markers on the
street or derived from GPS or other sensor data (e.g. camera, radar, LiDAR).

Reached

ﬂ obstacle-
=

obstacle controller

entered- .
L Narrow- ' approaching
Passage Obstacle

Fig. 1: Sketch of car-to-x narrow passage coordination assistance system

As an example, consider two guarantee scenarios that we formulate for this system:

G1: When a car approaches the obstacle, the obstacle controller allows or disallows the
car to enter the narrow passage before the car enters the narrow passage. G2: When
a car approaches the obstacle, it registers at the obstacle controller. Then the obstacle
controller checks whether another car is already registered for passing the obstacle. If so,
the obstacle controller adds the approaching car to a waiting list and disallows it from
entering; otherwise, it registers the car for passage and allows it to enter.

G1 and G2 describe complementary requirements: while both mention allowing or disal-
lowing a car to enter, a non-deterministic choice in G1 is refined in G2.

To specify the system further, more scenarios are added. For example, there are scenarios
for cars approaching from the opposite direction or for the behavior of allowing a car to
drive as soon as the narrow passage is cleared. There are also scenarios forbidding that cars
collide head-on in the narrow passage.

The system is a dynamic topology system, because there can be multiple obstacles, even
obstacles appearing or disappearing at run-time, and as cars move in the system they must
coordinate around different obstacles, i.e., they must coordinate specifically around the
ones that they are approaching. Such behavior can be modeled in SML, but we omit these
details for brevity. To present our first proof-of-concept implementation of our 3D virtual
prototyping environment, we limit the example to a system with one obstacle.
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3 Scenario-Modeling Language (SML)

In SML, scenarios as described above can be modeled formally. Parts of the SML specification
for the car-to-x system are shown in Listing 1. An SML specification defines how objects
in an object system shall interact by exchanging messages. A specification first refers to a
domain model (line 3) that defines the classes of objects that appear in the object systems,
e.g. cars or obstacle controllers.

Then, the SML specification defines which classes of objects are controllable (line 5).
Controllable are the components for which software is to be developed. Objects of classes
not listed here are uncontrollable. Uncontrollable objects are sensors, actuators, and other
external entities like users or external software components.

Furthermore, a specification contains one or more collaborations (line 7). A collaboration
describes how objects shall interact in order to achieve a certain goal. A collaboration
defines roles that are typed by classes in the domain model and represent objects in the
object system. The behavior is defined by scenarios:

Guarantee scenarios describe what the system components may, must, or must not do in
reaction to certain events. Assumption Scenarios describe what may, will, or will not happen
in the environment of the system, or how the environment, in turn, reacts to the system. Each
scenario essentially specifies an order of messages, and can contain control flow constructs
like alternatives, parallel fragments, and loops.

For dynamic topology systems, the scenarios can specify topological conditions under
which they apply and how roles bind to objects depending on the structural context. An
SML specification can also specify how the system topology evolves on the occurrence
of events, such as “the car moves”. Special messages can modify properties of receiving
objects (set-, or add-/remove- messages for single- or multi-valued properties). Topology
changes can also be modeled via graph transformation rules or programed transformation
rules [GGG*17]; we omit details for brevity.

Listing 1 shows how the two scenarios G1 and G2 presented on Sect. 2 are modeled using
the SML language. The listing also shows a simple assumption scenario, which specifies
that when the obstacle controller disallows a car to enter the narrow passage, the car must
not enter until the obstacle controller allows it.

The CoordinateProcessor represents a sensor component for detecting approachingObstacle,
obstacleReached, and enterNarrowPassage positions on the road. It also holds a pointer to
the obstacle controller of the obstacle that the car is currently approaching; this pointer is
updated specifically to the topological context, i.e. when the car passes one obstacle and
approaches another, this link changes as well.

The scenario semantics, more specifically, is as follows:

Object system, message events, and run: We consider synchronous communication where



A Scenario-Based MDE Process for Dynamic Topology Collaborative Reactive Systems -
Early Virtual Prototyping of Car-to-X System Specifications 115

1 | specification CarToXSpecification {

2

3 domain cartox

4

5 controllable { Car ObstacleController }

6

7 collaboration CarsPassObstacle {

8 dynamic role CoordinateProcessor cp

9 dynamic role ObstacleController oc

10 dynamic role Car car

11

12 guarantee scenario CarGetsSignalBeforeReachingObstacle
13 bindings [oc = cp.obstacleController] {

14 cp -> car.approachingObstacle ()

15 alternative {

16 strict oc —-> car.enteringAllowed ()

17 } or {

18 strict oc —-> car.enteringDisallowed ()

19 }

20 cp —-> car.enterNarrowPassage ()

21 }

22

23 guarantee scenario CarRegistersAtObstacle
24 bindings [oc = cp.obstacleController] {

25 cp —> car.approachingObstacle ()

26 strict urgent car -> oc.register ()

27 alternative [oc.passingCar == null] {

28 strict urgent oc -> oc.setPassingCar (car)
29 strict urgent oc -> car.enteringAllowed ()
30 } or [oc.passingCar != null] {

31 strict urgent oc -> oc.waitingCars.add (car)
32 strict urgent oc —-> car.enteringDisallowed()
33 }

34 }

35

36 assumption scenario DriverObeysSignal

37 bindings [cp = car.cp] {

38 oc -> car.enteringDisallowed()

39 oc -> car.enteringAllowed()

40 } constraints [ forbidden cp -> car.enterNarrowPassage () ]
41

42 }

43

44 }

List. 1: Part of car-to-x SML specification

the sending and receiving of a message is a single message event (the concepts can be
extended to asynchronous messages as well). A message event has one sending and one
receiving object, refers to an operation defined for the receiving object, and carries values
for parameters defined by its operation. A message event is (un)controllable if the sending
object is (un)controllable. A message event may have side-effects as already mentioned
above. An infinite sequence of message events and object systems (that evolve from an
initial one) is called a run.

Active scenarios, role binding: A scenario accepts or rejects a run, and is interpreted as
follows w.r.t. a run: As a message event occurs that corresponds to the first scenario message,
an active copy of that scenario, also called active scenario, is created, and the sending and
receiving roles of the scenario message are bound to the sending and receiving objects
of the message event. Then binding expressions are evaluated to calculate bindings for
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other roles. The active scenario progresses on the occurrence of further events that match
enabled messages under consideration of the assigned role bindings. An active scenario
terminates when its final message is enabled and a matching event occurs. A scenario
accepts a run if and only if there is never any violation in the process, as will be described
in the next paragraph. There can be multiple active scenarios at the same time, even of the
same scenario.

Message modalities (strict and urgent), violations, constraints: As long as a strict message is
enabled, no message events must occur that corresponds to a message in the same scenario
that is not currently enabled. If such a message does occur, this is called a safety violation. If
a system message (sending role is typed by controllable class) is enabled that is urgent, this
means that a corresponding message must occur before the next environment event occurs.
If this does not happen, this is called a liveness violation. SML supports other modalities,
also for modeling unbounded liveness properties, but we omit them for brevity. A scenario
can also have a constraints section with forbidden messages. They represent events that
must not occur while the scenario is active, otherwise leading to a safety violation.

Satisfying and SML specification, realizability: A run satisfies an SML specification if (a) it
leads to no violations of any guarantee scenario or (b) there is a violation in at least one
assumption scenario. Rationale: The guarantees need only be satisfied in environments that
satisfy the assumptions. We assume a setting where the controllable objects are fast enough
to send any finite number of messages before the next environment event occurs. If there
exists a strategy for the controllable objects to send controllable messages in reaction to
any sequence of uncontrollable events such that the resulting run satisfies the specification,
then the specification is realizable; Otherwise it is unrealizable, which means that the
environment can force the system to violate guarantees while satisfying the assumptions.

Play-out: The scenarios can also be executed via the play-out algorithm [HMO3]. In a
nutshell, the play-out algorithm waits for uncontrollable events until one activates one
or several guarantee scenarios with enabled urgent controllable messages. The algorithm
then selects one of these messages and executes the corresponding message event. This
process is repeated until there are no further active guarantee scenarios with enabled urgent
controllable messages. Then the play-out algorithm again waits for the next uncontrollable
event, and the process is repeated.

4 Scenario-Based Design Process (SBDP)

The Scenario-Based Design Process (SBDP) is illustrated in Fig. 2. It is supported by
ScenarioTooLs3, an Eclipse-&EMF-based tool suite. After modeling the SML spec-
ification (1), this specification can be analyzed via the play-out algorithm or a formal
realizability checking algorithm (2). The latter reduces the realizability checking problem to

3http://scenariotools.org
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the problem of solving a GR(1) game [CDHL16]. For example. if we forgot the assumption
DriverObeysSignal, then this algorithm can detect that the system cannot guarantee to avoid
head-on collisions in the narrow passage.

Next, the SML-to-SBP compiler generates Scenario-Based Programming (SBP) code,
where each scenario is a special thread; they interact to realize a play-out execution of the
scenarios [GGK*17,K17]. In the next step (4), code is added to bridge problem-specific
events in the specification to platform-specific events. For example, the cars’ position events
may be derived from GPS sensor data.

specification

SML Specification @ Sperinea @
I I (a) Check @ distributed
esmpien | B (CHETTIES realizabilty | execution:

Scenario Scenario (b) Verify play-out
executability

L smLto-sBP < (3)

SBP Program

Platform-
specific
functions

i monitoring i | execution

Platform-
specific
functions

i[ Assumption ||| | || Guarantee
| Scenario i Scenario

Platform
Sensors/Actuators/Ul

Fig. 2: Scenario-Based Development Process in a Distributed System

The SBP code can be deployed on a single node, or in a distributed setting @ The latter
works via a naive replicate-and-project approach that copies the complete code to each node
in the system, while each node has a specific setting defining which object(s) in the object
system a particular node represents. When running, all nodes synchronize on every event
in the system via the network, which guarantees that all nodes’ execution states are kept
consistent. This, however, also creates a communication overhead, which we are currently
seeking to reduce [SGG™17].

5 Virtual Prototyping Tool

We created a virtual prototyping tool by integrating the SBP code generated for our car-to-x
example with OpENDS [MMMM 3], a Java-based open source driving simulator tool. Here
we overview the simulator’s architecture.

The top of Fig.3 shows how the simulator is operated: Two test drivers drive their cars
in a multi-user interactive 3D driving simulation. Next to the screens that show the 3D
simulation, mobile Android devices, acting as elements in the cars’ dashboard, show the
drivers whether they are allowed to drive or not.

The underlying architecture is shown on the bottom of Fig.3: The multi-user driving
simulation is realized by two connected OpENDS instances, running on two PCs (laptops).
Three SBP components are deployed on three different hardware nodes: One component,
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the obstacle controller, runs on a PC (laptop), and the two car controller components run on
mobile Android devices. In a real car-to-x system, the obstacle controller would run on a
node of the road infrastructure. In a decentralized car-to-x system, each segment of a road or
each city block possibly could have such a control station. Or, as illustrated in Fig. 1, if the
obstacle appears in the form of a road work site, workers could set up such a communication
node to run the obstacle controller on. In a real car-to-x system, the car components would
run in the cars and show the signals on the dashboard or in a head-up display.

controller
(running on laptop)

@

collision with
marker object
happens in

! ®
------------------------------- > Network X ¢ \ision cvent s riapped 30 simulation
(MQTT) to specification-level event
» (e.g. approachingObstacle)

;"

car A (dashboard; running car B (dashboard; running
on Android mobile device) on Android mobile device)

Two OpenDS instances (running on two laptops) connected for a multi-driver simulation

Fig. 3: Test drivers operating the simulator and the underlying architecture

In a simulation, the obstacle coordination behavior is invoked as follows: As the drivers
drive their cars in the 3D simulation and approach an obstacle, their cars collide with marker
objects placed in the scene within certain distances of the obstacle (red and blue bars in the
top part of Fig. 3). They represent certain points of interest around the obstacle (cf. Fig. 1).
When a collision occurs (1), this event is translated into a corresponding specification-level
event, e.g., approachingObstacle, which is then sent over a network @ In our case, the
network is an MQTT network, but also other network protocols can be used. All events are
broadcast to all SBP components, which then collaboratively react to the events @, which
finally leads to STOP/GO signals being shown on the Android devices (4).

In order to achieve this OPENDS-SBP integration, it is mainly required to map simulation
events, like cars colliding with position markers, into specification-level events (2). OPENDS
offers ways to integrate such trigger code.
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6 Related Work

There is previous work on executing LSCs with 3D simulations [HSKSO08], but our work
uniquely combines distributed play-out for a dynamic topology systems with a 3D simulator.

There are a number of approaches for modeling reactive system that also address dynamic
topologies: MEcHATRONICUML is a component- and statechart-based modeling methodol-
ogy where reconfigurations can be modeled with graph transformations [BDG*14]. Kuhn et
al. present a role-based modeling framework (FRaMED) for context-sensitive systems and
systems where component relationships and roles may change [KBRA16]. In [TKG17], the
authors propose a framework for systems in dynamic cyber-physical spaces based on bigraph
transformations. With respect to these approaches, ours is different in that it supports a
more flexible behavior modeling approach based on scenarios.

Autonomous transport robots used in production environments like factories and storage
halls are another example of DTRSs. Distributed decision making algorithms such as shown
in [SSJ16] are developed to support the development of collaborative teams of robots on
these environments. Fault tolerance, flexibility and security are some of the properties that
can be verified through model checking.

7 Conclusion

We showed how a scenario-based design process for DTRSs can be integrated with domain-
specific simulators, for the example for car-to-x systems. The resulting virtual prototyping
system can be created early, which can facilitate the validation of environment assumptions
and the clarification of design issues with stakeholders.

For future work we plan to improve the distributed execution infrastructure, but also
investigate how such systems can be used to systematically and automatically test systems
with different initial topological configurations. We are also curious how to harness user
feedback in order to refine, extend, or change the specification.
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