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ABSTRACT
Explainable AI becomes increasingly important as the use
of intelligent systems becomes more widespread in high-risk
domains. In these domains it is important that the user knows
to which degree the system’s decisions can be trusted. To facil-
itate this, we present the Intuitive Confidence Measure (ICM):
A lazy learning meta-model that can predict how likely a given
decision is correct. ICM is intended to be easy to understand
which we validated in an experiment. We compared ICM with
two different methods of computing confidence measures: The
numerical output of the model and an actively learned meta-
model. The validation was performed using a smart assistant
for maritime professionals. Results show that ICM is easier
to understand but that each user is unique in its desires for
explanations. This user studies with domain experts shows
what users need in their explanations and that personalization
is crucial.
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INTRODUCTION
The number of intelligent systems is increasing rapidly due
to recent developments in Artificial Intelligence (AI) and Ma-
chine Learning (ML). The applications of intelligent systems
begin to spread to high-risk domains, for example in medical
diagnoses [3], maritime automation [18] and cybersecurity [6].
The need for transparancy and explanations towards end users
is becoming a neccessity [8, 4]. This self-explaining capability
of intelligent systems allow these to become more effective
tools that allow their users to establish an appriopriate level
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of trust. The field of Explainable Artificial Intelligence (XAI)
aims to develop and validate methods for this capacity.

The process of explaining something consists of a minimum of
two actors: explainer and the explainee [12]. A large number
of studies in XAI focus on the system as the explainer and
how it can generate explanations. For example in methods
that focus on identifying feature importance [11, 15], those
that extract a confidence measure [7], those that search for
an informative prototypical feature set [10] or explain action
policies in reinforcement learning [9]. Although these are
effective approaches to generate explanations, they do not
validate their methods with the explainee. A working XAI
methods needs to incorporate the user’s wishes, context and
requirements [5, 13, 1]. As XAI tries to make ML models
more transparant, a requirement for XAI methods is to be
transparant themselves so the user can understand where the
explanation comes from.

The proposed Intuitive Confidence Measure (ICM), is a case-
based machine learning model that can predict how likely a
given model output is correct in (semi-)supervised learning
tasks. ICM is a meta-model that is stacked on top and indepen-
dent of its underlying ML model. The intuitive idea behind
ICM is that it uses past situations and any incorrect or correct
outputs in those situations to compute the probability that a
given output in some situation is correct. A high confidence
is given when the current situation and output is similar to
situations in which that output proved to be correct. Since
ICM is a case-based or lazy-learning algorithm it allows each
outputted confidence to be traced back to items in a data set or
memory [2]. For example, the confidence in some output is
low because this output is similar to past outputs that proved
to be incorrect that were given in very similar situations. This
is opposed to a confidence measure that uses active learning
where a (possibly large) set of parameters describe learned
knowledge that are difficult to explain or understand [8].

Other approaches to estimate a confidence value exist. Several
machine learning model types can already provide a proba-
bilistic output such as neural networks with soft-max output
layers. However, these confidence estimations can be inac-
curate as these models can learn to be very confident in an
incorrect output, as a trade-off for general improvement on the
overall dataset [14]. Other approaches may not prove to be
model agnostic. For example the usage of dropout in neural
networks [7].
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To test if ICM is indeed easy to understand, we performed an
experiment where we compared ICM as a lazy learned meta-
model to two different types of certainty or confidence mea-
sures: The numerical output of the underlying model itself and
an actively learned meta-model approach. We claim that ICM
is prefered over these two types because 1) the numerical out-
put of the underlying model is not always available, transparant
or accurate [14] and 2) an actively learned meta-model has no
clear connection between its outputted confidence and used
data [2]. ICM on the other hand is a meta-model and as such
independent of the workings of the underlying model except
for its outputs and ICM’s confidence values are directly related
to its training set due to lazy learning.

The experiment was performed within a maritime use case for
computer-controlled propulsion, we refer to our earlier paper
for a detailed description [18]. Participants had no knowl-
edge about ML and worked in a high-risk maritime domain
with extreme responsibilities. In our experiment we simulated
the operator’s working environment and presented the partici-
pant with classification outputs accomponied by a confidence
value. Later we interviewed the operators about their expe-
riences and presented them with the three measure types we
identified earlier; 1) a numerical model output, 2) an actively
learned meta-model and 3), our method, a lazily learned meta-
model. We tested the participant’s understanding of each of
the measures to validate whether ICM, and lazy learned mea-
sures in general, are indeed easier to understand and as such
prefered over numerical model outputs and actively learned
meta-models.

The experiment showed that ICM is indeed easier to under-
stand but each operator had various wishes of when, and even
if, a confidence value should be presented and all overesti-
mated their own understanding of complex ML methods. XAI
experiments with expert users such as these offer valuable
insights in what kind of explanations are required and when.

INTUITIVE CONFIDENCE MEASURE
ICM computes the probability that the given output is correct.
It does this by weighing the difference of that output with
the ground truths of a set of known past datapoints with the
similarity of the current datapoint with those past data points.
We visualized this in Figure 1 for a simple example where
Euclidean distance can be used as the similarity measure. This
figure illustrates the intutive idea that when a situation and
output is similar to past situations in which different outputs
proved to be correct, confidence will be low. The more similar
situations there are with a different and correct output, the
lower the confidence. If there are no similar situations, the
confidence will be unknown or uniform, depending on the
choice of presentation to the user. In the following paragraphs
we only explain the vital technical details of ICM, we refer to
earlier work for a more technical description and discussion
of its advantages and disadvantages [17].

ICM is based on the following three equations, with x as
an arbitrary data point, M an arbitrary data set, d the used
similarity function, σ as the standard deviation used for the
exponential weighting and M(T = A(x)) to select all data

points in M with the same groundtruth T as the output of
model A for x;

C(x|σ ,M) =
∑xi∈M(T=A(x)) exp

(
− d(x|xi)

2

2σ2

)
∑xi∈M exp

(
− d(x|xi)2

2σ2

) (1)

The memory or dataset M is sequentially sampled according
to three aspects from the trainset or during actual usage of the
system. This strategy prefers data points with 1) a ground truth
least common in the memory, 2) datapoints that are some time
apart to mitigate temporal dependencies and 3) datapoints that
are relatively dissimilar to the datapoints inside the memory.
We refer to the original paper of ICM for a detailed description
[17]. This memory is restricted to a fixed size, k, to prevent
extreme computational costs. The number of computations
increases exponentially with each added data point and to store
all data would quickly become unfeasibly for real world cases
where the model A and ICM may run for indefinite time.

ICM has several properties in common with other lazy learning
techniques such as k-Nearest Neighbours (k-NN). In specific
ICM is very similar to the weighted k-NN algorithm with
an exponential weighting scheme where the normalization
garantuees that all weights sum to one. ICM becomes an
instance of weighted k-NN for non-linear regression with the
model’s groundtruth as the dependent variable, the memory M
to mitigate computation cost and an arbitrary distance function
d.

EXPERIMENT
In a small experiment we compared the understanding of three
instances of different types of confidence measures by end-
users 1) ICM as a lazily learned meta-models, 2) the approach
by Park et al. as actively learned meta-models [16] and 3)
the soft-max output as a numerical output of the actual model.
The experiment was done based on a recent study with a
virtual smart assistant that supports an operator on a ship
with situation predictions to aid in his/her monitoring task
[18]. We simulated the operator’s work environment and the
virtual smart assistant and provided realistic scenarios and
responses from the assistant including a confidence value for
any made predictions. This simulation was used to introduce
the participants with the assistant and the numerical confidence
values it could provide.

This simulated work environment was followed by an inter-
view during which they received increasingly more informa-
tion about the three confidence measures. The goal of the
interview was to test how well and how quickly the partici-
pant understood each of the three confidence measures. The
interview went through several stages;

1. First stage

(a) Brief textual explanations of each measure and oppor-
tunity for the participant to rate his/her understanding
of the measure.

(b) Per measurement a moment for the participant to ask
questions to allow the supervisor to rate how well the
participant understands the examples.



(a) (b)

F
(c)

Figure 1: Figure that shows three examples of how ICM works in a 2D binary classification task (class A and B) given a current
data point with its output (square) and a set of known data points (circles) with their known ground truths.

(c) An explanation by the participant for each measure in
their own words to rate by a ML expert.

2. Second stage

(a) Three concrete examples, both visual and textual, for
each measure to illustrate its mechanisms where the
participant could rate his/her level of understanding for
each set of examples.1

(b) Per set of examples a moment to ask questions to the
supervisor, to allow the supervisor to rate how well the
participant understands the examples.

(c) An explanation by the participant for each example in
their own words to rate by a ML expert.

(d) The participant’s final preference for one of the three
confidence measures and an explanation of a given
confidence. A ML expert checked whether this expla-
nation overlaps with one of the three measures.

Results
The results of the five participants are shown in table 2. All
were experts and potential end-users in the maritime use case.
The two users saw no use for a confidence measure believed
that predictions should always be correct or otherwise not
presented at all. All participants believed that they had some
basic to advanced comprehension of each measure and its
set of examples, however the experiment supervisor and ML
expert disagreed with this for both the ‘numerical’ and ‘active
learning meta-model’ measures.

Both the supervisor and the ML expert concluded that most
participants had some degree of understanding for ICM. Only
one participant was not able to comprehend the textual expla-
nation but the understanding of ICM was on average rated
higher than that of the ‘numerical’ and ‘active learning meta-
model’ measures, by both the supervisor and ML expert.

The explanations about the numerical output were lacking
because participants had trouble comprehending that a model
could learn knowledge and represent it in parameters. They
had less difficulty for ICM because its outputs related clearly
1The textual descriptions and examples can be requested by e-mail.

to past situations. The explanations from the participants
regarding the ‘meta-model’ measure were the most inaccurate.
Nearly all participants had the tendency to see this measure
as a combination of ICM and a probabilistic output. This was
also the reason why three out five participants tended to prefer
this measure in the end, even though their own explanations of
the confidence values resembled the approach used by ICM.

CONCLUSION
In the introduction we stated that XAI methods should not only
be developed but also validated in experiments. We mentioned
that XAI methods should be transparant by themselves such
that the user can understand where the explanation comes from
and why it is given.

The Intuitive Confidence Measure (ICM) was developed as
a method to provide a confidence value alongside a machine
learning model’s output. It uses lazy-learning and intuitive
ideas to keep the method relatively simple with clear con-
nections between input and output. We performed a limited
usability study with qualitative interviews. These interviews
indicated that ICM is relatively simple to explain compared to
other confidence measures based on model output (e.g. values
from a softmax function) or values from meta-models based
on active learning.

The results showed that in a group of similar end-users, there
were mixed opinions about the necessity of a confidence mea-
sure and how it should be presented. However, most partici-
pants thought of ICM as an easy to understand measure and
could recall the workings of ICM accurately. Most of the
participants were even able to identify advantages and dis-
advantages of ICM in specific situations, showing a deeper
understanding. Future work will focus on a larger study to test
the intuitiveness of ICM, technical improvements to ICM to
mitigate disadvantages and way on how to generate confidence
explanations.

The development of new XAI methods for high-risk domains
is important, but their validation in experiments with domain
experts is equally important. Like the one presented in this
paper, experiments and usability studies with domain experts
can help shape the field of XAI.



Figure 2: This table shows the three sets of ratings (min. of 1 and max. of 4): 1) the participant’s own belief of understanding (row
‘own’), 2) the supervisor’s belief and 3) the ML expert’s opinion of how well the given explanations from the participant matches
the measures and examples. It shows whether the participant found a confidence measure useful, their prefered measure and the
best match with their explanation of a confidence value.
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