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ABSTRACT
In this work, we focus on local explanations for data analytics;
in other words: given a datapoint ~x, how important was the
i-th feature in determining the outcome for~x? The literature
has seen a recent emergence of various analytical answers to
this question. We argue for a linear influence measure ex-
planation: given a datapoint ~x, assign a value φi(~x) to every
feature i, which roughly corresponds to feature i’s importance
in determining the outcome for ~x. We present a family of
measures called MIM (monotone influence measures), that are
uniquely derived from a set of axioms: desirable properties
that any reasonable influence measure should satisfy. Depart-
ing from prior work on influence measures, we assume no
knowledge — or access — to the underlying classifier labeling
the dataset. In other words, our influence measures are based
on the dataset alone and do not make any queries to the classi-
fier. We compare MIM to other linear explanation models in
the literature and discuss their underlying assumptions, merits,
and limitations.
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INTRODUCTION
An individual is denied a bank loan; knowing that they are in
good financial standing, they demand that the bank explain
its decision. However, the bank uses an ML algorithm that
automatically rejected the loan application. How should the
bank explain its decision? This example is more than anec-
dotal; recent years have seen the widespread implementation
of data-driven algorithms making decisions in increasingly
high-stakes domains, such as healthcare, transportation, and
public safety. Using novel ML techniques, algorithms are able
to process massive amounts of data and make highly accu-
rate predictions; however, their inherent complexity makes it
increasingly difficult for humans to understand why certain
decisions were made. By obfuscating the underlying decision-
making processes, such algorithms potentially expose human
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stakeholders to risks. These risks could include incorrect deci-
sions (e.g. Alice’s application was wrongly rejected due to a
system bug), information leaks (e.g. the algorithm was inad-
vertently given information about Alice that it should not have
seen), or discrimination (e.g. the algorithm is biased against
female applicants). Indeed, government bodies and regulatory
authorities have recently begun calling for algorithmic trans-
parency: providing human-interpretable explanations of the
underlying reasoning behind large-scale decision-making algo-
rithms. Our work represents a first formal axiomatic analysis
of automatically generated explanations of black-box classi-
fiers.

Our Proposal
We propose utilizing simple mathematical frameworks for
an explanation via influence measures: these are functions
that, given a dataset, assign a value to every feature; this
value should roughly correspond to the feature’s importance in
affecting the classification outcome for individual data points.
Slightly more formally, we are given a dataset X containing n
dimensional vectors, whose data points are labeled by a binary
classifier c, such that c(~y) =±1 for all~y ∈X ; now, given a
point of interest~x ∈X , we wish to identify the features in~x
that are ‘responsible’ for it being labeled the way it was. This
is done via a mapping φ whose input is the dataset X , its
labels (given by c), and the point of interest~x; its output is a
vector φ(~x) ∈ Rn, where φi(~x) corresponds to the influence of
feature i on the label of ~x. Intuitively, a large positive value
of φi(~x) should mean that feature i was highly important in
determining the label of ~x; a large negative value for φi(~x)
should mean that despite the value of i at~x,~x was assigned this
label. This approach carries several important benefits. First of
all, it is completely generic, requiring no assumptions on the
underlying classification model; secondly, linear explanation
models are simple and straightforward, even for a layperson
to understand (e.g. ‘Alice was denied her loan because of
the high importance the algorithm placed on her low monthly
income, and despite her never having to file for bankruptcy’).
The appeal of linear explanations has been recognized by the
research community; recent years have seen a moderate boom
of papers proposing linear explanations in data-driven domains
(see Section 1.2). However, this poses a new problem for end
users that wish to apply these methodologies: which linear
explanation is the ‘right’ one to choose? In other words,

. . . which linear explanations are guaranteed to satisfy
certain desirable properties?



We argue for an axiomatization of influence measures in clas-
sification domains. The axiomatic approach is common in the
economics literature: first one reasons about simple, reason-
able properties (axioms) which should be satisfied by any func-
tion (say, methods for dividing revenue amongst collaborators,
or agreeing on an election winner given voters’ preferences);
next, one should prove that there exists a unique function sat-
isfying these simple mathematical properties. The axiomatic
approach allows one to rigorously reason about the types of
influence measures one should use in a given setting: if the
axioms set forth make sense in this setting, there is but one
method of assigning influence in the given domain. It is, in
some sense, an explanation of an explanation method, a prov-
able guarantee that the method is sound; in fact, uniqueness
implies that it is the only sound method one can reasonably
use in a domain.

In a recent line of work, we identify specific properties that
any reasonable influence measure should satisfy (Section 3);
using these axioms, we mathematically derive a class of influ-
ence measures, dubbed monotone influence measures (MIM),
which uniquely satisfy these axioms (Section 4). Unlike most
existing influence measures in the literature, we assume nei-
ther knowledge of the underlying decision-making algorithm,
nor of its behavior on points outside the dataset. Indeed, some
methodologies (see Related Work in Section 1.2) are heavily
reliant on having access to counterfactual information: what
would the classifier have done if some features were changed?
This is a rather strong assumption, as it assumes not only ac-
cess to the classifier but also the potential ability to use it on
nonsensical data points1. By making no such assumptions,
we are able to provide a far more general methodology for
measuring influence; indeed, many of the tools described in
Section 1.2 will simply not be usable when queries to the clas-
sifier are not available, or when the underlying classification
algorithm is not known. Finally, grounding the measure in the
dataset ensures the distribution of data is accounted for, rather
than explaining the classification in terms of arbitrarily chosen
data points. The points can be very unlikely or impossible to
occur in practice, and using them can demonstrate a behavior
the algorithm will never exhibit in its actual domain. Despite
their rather limiting conceptual framework, our influence mea-
sures do surprisingly well on a sparse image dataset. We show
that the outputs of our influence measure are comparable to
those of other measures, and provide interpretable results.

Related Work
Axiomatic approaches for influence measurement are com-
mon in economic domains. Of particular note are axiomatic
approaches in cooperative game theory [9, 12, 3].

The first axiomatic characterization of an influence measure
for datasets is provided in [4]; however, they interpret influ-
ence as a global measure (e.g., what is the overall importance
of gender for decision making). Moreover, one of the axioms
proposed in [4] turned out to be too strong, severely limiting
the explanation power of the resulting measure. Indeed, as
1For example if the dataset consists of medical records of men and
women, the classifier might need to answer how it would handle
pregnant men

[6] show, the measure proposed by [4] outputs undesirable
values (e.g. zero influence) in many real instances. [1] propose
an empirical influence measure that relies on a potential-like
approach. However, as we show, their methodology fails to
satisfy reasonable properties even on simple datasets. Other
approaches in the literature either rely on black-box access to
the classifier [6, 8], or assume domain knowledge (e.g. that
the classifier is a neural network whose layers are observ-
able) [11]. Another notable axiomatic treatment of influence
in data-driven domains appears in [6]; in this work, it is shown
that a Shapley value based approach is the only way influence
can be measured when one assumes counterfactual access to
the black-box classifier. This result is confirmed in [7].

THE FORMAL MODEL
A dataset X = 〈~x1, . . . ,~xm〉 is given as a list of vectors in Rn

(each dimension i ∈ [n] is a feature), where every ~x j ∈X
has a unique label c j ∈ {−1,1}; given a vector ~x ∈X , we
often refer to the label of ~x as c(~x). For example, X can
be a dataset of bank loan applications, with~x describing the
applicant profile (age, gender, credit score etc.), and c(~x) being
a binary decision (accepted/rejected). An influence measure
is simply a function φ whose input is a dataset X , the labels
of the vectors in X denoted by c, and a specific point~x ∈X ;
its output is a value φi(~x,X ,c) ∈ R; we often omit the inputs
X and c when they are clear from context. The value φi(~x)
should roughly correspond to the importance of the i-th feature
in determining the outcome c(~x) for~x.

AXIOMS FOR EMPIRICAL INFLUENCE MEASUREMENT
We are now ready to define our axioms; these are simple prop-
erties that we believe any reasonable influence measure should
satisfy. We take a geometric interpretation of the dataset X ;
thus, several of our axioms are phrased in terms of geometric
operations on X .

1. Shift Invariance: let X +~b be the dataset resulting from
adding the vector~b ∈ Rn to every vector in X (not changing
the labels). An influence measure φ is said to be shift invariant
if for any vector~b ∈ Rn, any i ∈ [n] and any~x ∈X ,

φi(~x,X ) = φi(~x+~b,X +~b).

In other words, shifting the entire dataset by some vector~b
should not affect feature importance.

2. Rotation and Reflection Faithfulness: let A be a rotation
(or reflection) matrix, i.e. an n×n matrix with det(A) ∈ ±1;
let AX be the dataset resulting from taking every point~x in
X and replacing it with A~x. An influence measure φ is said to
be faithful to rotation and reflection if for any rotation matrix
A, and any point ~x ∈X , we have Aφ(~x,X ) = φ(A~x,AX ).
In other words, rotating or reflecting the entire dataset results
in the influence vector rotating in the same manner.

3. Continuity: an influence measure φ is said to be continuous
if it is a continuous function of X .

4. Flip Invariance: let −c be the labeling resulting from re-
placing every label c(~x) with −c(~x). An influence measure is
flip invariant if for every point ~x ∈X and every i ∈ [n] we
have φi(~x,X ,c) = φi(~x,X ,−c).



5. Monotonicity: a point ~y ∈ Rn is said to strengthen the
influence of feature i with respect to ~x ∈X if c(~x) = c(~y)
and yi > xi; similarly, a point ~y ∈ Rn is said to weaken the
influence of i with respect to~x ∈X if yi > xi and c(~x) , c(~y).
An influence measure φ is said to be monotonic, if for any
data set X , any feature i and any data point~x ∈X we have
φi(~x,X )≤ φi(~x,X ∪{~y}) whenever~y strengthens i w.r.t. ~x,
and φi(~x,X )≥ φi(~x,X ∪{~y}) whenever~y weakens i w.r.t. ~x.

6. Random Labels: an influence measure φ is said to satisfy
the random labels axiom, if for any dataset X , if all labels
are assigned i.i.d. uniformly at random (i.e. for all ~x ∈X ,
Pr[c(~x) = 1] = Pr[c(~x) =−1]); we call this label distribution
U . Then, for all~x ∈X and all i we have

Ec∼U [φi(~x,X ,c) | c(~x) = 1] =
Ec∼U [φi(~x,X ,c) | c(~x) =−1] =0

In other words, when we fix the label of~x and randomize all
other labels, the expected influence of all features is 0.

Let us briefly discuss the latter two axioms. Monotonicity is
key in defining what influence means: intuitively, if one is
to argue that Alice’s old age caused her loan rejection, then
finding older persons whose loans were similarly rejected
should strengthen this argument; however, finding older per-
sons whose loans were not rejected should weaken the argu-
ment. The Random Labels axiom states that when labels are
randomly generated, no feature should have any influence in
expectation; any influence measure that fails this test is in-
herently biased towards assigning influence to some features,
even when labels are completely unrelated to the data.

CHARACTERIZING MONOTONE INFLUENCE MEASURES
Influence measures satisfying the Axioms in Section 3 must
follow a simple formula, described in Theorem 4.1; the full
proof of Theorem 4.1 appears in a full version of this work.2
Below, 1(p) is a {1,−1}-valued indicator (i.e. 1 if p is true
and −1 otherwise), and ‖~x‖2 is the Euclidean length of~x; note
that we can admit other distances over Rn, but stick with ‖·‖2
for concreteness.

THEOREM 4.1. Axioms 1 to 6 are satisfied iff φ is of the
form

φ(~x,X ) = ∑
~y∈X \~x

(~y−~x)α(‖~y−~x‖2)1(c(~x) = c(~y)) (1)

where α is any non-negative-valued function.

We refer to measures satisfying Equation (1) as monotone
influence measures (MIM). MIM uniquely satisfy a set of
reasonable axioms; moreover, they maximize the total cosine
similarity objective function. Intuitively, given a vector~x∈X ,
an MIM vector φ(~x,X ) will point in the direction that has the
‘most’ vectors in X sharing a label with ~x. The value ‖φ‖2
can be thought of as one’s confidence in the direction: if ‖φ‖2
is high, this means that one is fairly certain where other vectors
sharing a label with~x are (and, correspondingly, this means
that there are at least some highly influential features identified
by φ ); a small value of ‖φ‖2 implies low explanation strength.
2The main paper is currently under review.

EXISTING MEASURES
In this section, we provide an overview of some existing
methodologies for measuring influence in data domains and
compare them to MIM.

Parzen
The main idea behind the approach followed by [1] is to ap-
proximate the labeled dataset with a potential function and
then use the derivative of this function to locally assign influ-
ence to features. Parzen satisfies Axioms 1 to 4. However, it is
neither monotonic nor can it efficiently detect random labels.

LIME
The measure in [8] is based on the idea of finding a best local
fit for the classifier in a region around~x. At its core, LIME fits
a classifier by minimizing the mean-squared error, whereas
MIM maximizes cosine similarity.

The Counterfactual Influence Measure
[4] initiated the axiomatic treatment of influence in data analy-
sis; they propose a counterfactual aggregate influence measure
for black-box data domains. Unlike other measures in this
section, [4] do not measure local feature influence; rather, they
measures the overall influence of a feature for a given dataset.
The measure proposed by [4] does the following: when mea-
suring the influence of the i-th feature; for every point~x ∈X ,
it counts the number of points in X who differ from~x by only
the i-th feature, and in their classification outcome. Given its
rather restrictive notion of influence, this methodology only
measures non-zero influence in very specific types of datasets:
it assigns zero influence to all features in datasets that do not
contain data points that differ from one another by only one
feature; moreover, it only measures influence when a change in
the state of a single feature changes the classification outcome.

Quantitative Input Influence
[6] propose a general framework for influence measure in
datasets, generalizing counterfactual influence. Instead of
measuring the effect of changing a single feature on point
~x ∈X , they examine the expected effect of changing a set
of features. The resulting measure, named QII (Quantitative
Input Influence) is based on the Shapley value [9], a method
of measuring the importance of individuals in collaborative
environments. QII allows access to counterfactual information;
moreover, it is computationally intensive in practice, and under
its current implementation, will not scale to domains having
more than a few dozen features.

Black-Box Access Vs. Data-Driven Approaches
Some measures above assume black-box access to the clas-
sifier (e.g. QII and LIME); others (e.g. Parzen and MIM)
make no such assumption. Is it valid to assume black-box
access to a classifier? This depends on the implementation
domain one has in mind and the strength of explanations that
one wishes to arrive at. On the one hand, having more access,
measures such as QII and LIME can offer better explanations
in a sparse data domain; however, they are essentially unus-
able when one does not have access to the underlying classifier.
Data-driven approaches such as MIM, the counterfactual mea-
sure, and Parzen are more generic and can be applied on any



given dataset; however, they will naturally not be particularly
informative in sparse regions of the dataset.

DISCUSSION AND FUTURE WORK
In this paper, we argue for the axiomatic treatment of linear
influence measurement. We present a measure uniquely de-
rived from a set of reasonable properties which also optimizes
a natural objective function. Our characterization subsumes
known influence measures proposed in the literature. In partic-
ular, MIM becomes the Banzhaf index in cooperative games
and is also related to formal models of causality. Furthermore,
MIM generalizes the measure proposed by [2] for measuring
influence in a data-dependent cooperative game setting. Tak-
ing a broader perspective, axiomatic influence analysis in data
domains is an important research direction: it allows us to
rigorously discuss the underlying desirable norms we’d like
to see in our explanations. Indeed, an alternative set of axioms
is likely to result in other novel measures, that satisfy other de-
sirable properties. Being able to mathematically justify one’s
choice of influence measures is important from a legal/ethical
perspective as well: when explaining the behavior of classi-
fiers in high-stakes domains, having provably sound measures
offers mathematical backing to those using them.

While MIM offers an interesting perspective on influence mea-
surement, it is but a first step. There are several interesting
directions for future work; first, our analysis is currently lim-
ited to binary classification domains. It is possible to naturally
extend our results to regression domains, e.g. by replacing
the value 1(c(~x) = c(~y)) with c(~x)− c(~y); however, it is not
entirely clear how one might define influence measures for
multiclass domains. It is still possible to retain 1(c(~x) = c(~y))
as the measure of ‘closeness’ between classification outputs
— i.e. all points that share~x’s output offer positive influence,
and all those who do not offer negative influence — but we
believe that this may result in a somewhat coarse influence
analysis. This is especially true in cases where there is a large
number of possible output labels. One possible solution for
the multiclass case would be to define a distance metric over
output labels; however, the choice of metric would greatly
impact the outputs of MIM (or any other influence measure).

Another major issue with MIM (and several other measures)
is that their explanations are limited to the influence of indi-
vidual features; they do not capture joint effect, let alone more
complex synergistic effects of features on outputs (the only
exception to this is LIME, which, at least in theory, allows
fitting non-linear classifiers in the local region of the point of
interest). It would be a major theoretical challenge to axiom-
atize and design ‘good’ methods for measuring the effect of
pairwise (or k-wise) interactions amongst features. This also
allows one to have a natural tradeoff between the accuracy and
interpretability of a given explanation. A linear explanation
(e.g. LIME, QII, or this work) is easy to understand: each
feature is assigned a number that corresponds to their positive
or negative effect on the output of~x; a measure that captures
k-wise interactions would be able to explain much more of the
underlying feature interactions, but would naturally be less
human interpretable. Indeed, a measure that captures all levels
of feature interactions would be equivalent to a local approxi-

mation of the original classifier, which may not be feasible to
achieve, nor easy to interpret. A better understanding of this
behavior would be an important step in the design of influence
measures. Finally, it is important to translate our numerical
measure to an actual human-readable report. [6] propose using
linear explanations as transparency reports; however, more ad-
vanced methods which assume access to the classifier source
code propose mapping back to specific subroutines for ex-
planations [5, 10]. Indeed, while the transition from data to
numerical explanations is an important step, mapping these to
actual human-interpretable explanations is an open problem.
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