
On Studying Bad Practices in Configuration UIs

Tony Leclercq, Maxime Cordy, Bruno Dumas, Patrick Heymans
University of Namur, Belgium

first.last@unamur.be

ABSTRACT
In today’s businesses, configurators are essential tools that al-
low customers to personalise a product to their specific needs.
Being often the first contact between the retailer and the cus-
tomer, it is important for a configurator to provide a smooth
user experience. However, these software have been studied
mostly from the reasoning point of view, that is, how to rep-
resent the logical relations between the configuration options
and how to automatically ensure that the user makes no con-
figuration error. In this paper, we focus instead on HCI and
analyse the occurrence of 11 design flaws that occur in 28 car
configurators. These flaws includes violations of general HCI
principles as well as lacks of essential, configurator-specific
functionalities. Our results indicate that most of the studied
configurators contain defects in their UIs including, surpris-
ingly, violations of some basic principles of HCIs. Still, the
most frequent problems are inappropriate implementations of
configurator-specific functionalities.

ACM Classification Keywords
H.5.2. User Interfaces: Graphical user interfaces (GUI), Con-
figurator, Evaluation, Intelligent system

INTRODUCTION
The avenue of mass customisation – an established marketing
and engineering paradigm that unifies mass production and
customisation [11] – has yielded new habits in customers’
behaviour. In constant search of the ideal product (i.e. good or
service) that satisfies their particular needs, they hunger for the
freedom of tailoring sellers’ catalog into a personalised offer.
It is therefore not surprising that personalisation is considered
as one of the hottest topics in the retail industry [13]. Still, to
be successful personnalisation must be supported by a smooth
user experience (UX) that offers the highest customisation
capability while hiding the inherent complexity [12].

Configurator is the typical software support for mass customi-
sation. It consists in an interactive application where the user
specifies its requirements by selecting options and setting pa-
rameter values. As a result she obtains the relevant products
that can address these needs. For example, Figure 1 shows a

©2018. Copyright for the individual papers remains with the authors.
Copying permitted for private and academic purposes.
WII’18, March 11, 2018, Tokyo, Japan

Figure 1. Some car configurator

car configurator where customers can choose between various
options like trim, motor, colour, accessories, etc. Beneath the
user interface lies an intelligent system that provides effec-
tive guidance by preventing errors and providing automated
support for the configuration task [5, 8]. An error is typically
an attempt to include incompatible options or parameter val-
ues in the configuration. When the user makes an error, the
configurator should alert her and explain why the configu-
ration is invalid. On the other side, when previous choices
make mandatory to select or to exclude an option, or when
a parameter accepts only one value, the configurator should
propagate (i.e., force) this choice so as to simplify the task of
the user. For instance, selecting a comfort trim automatically
includes a cruise control system; see Figure 2). It is again
recommended to explain the cause of the propagation, in case
the user disagrees with this choice. When errors or undesired
propagations occur, the configurator should help repair the
configuration [19, 20], that is, automatically compute what
must be changed to fix the error or undo the propagation, re-
spectively. An example of repair system is shown in Figure 3.
We see that the selected wheels require a particular suspension
system and specific tires, as well as removing the off-road
accessory pack.

Configuration knowledge refers to the set of rules that deter-
mine what is a valid configuration. It originates from rational
(technical, legal, mathematical) and subjective (marketing, aes-
thetics) knowledge. The acquisition of this knowledge is a
critical analysis activity for a successful configurator [2, 6], as
erroneous or incomplete knowledge can have drastic conse-
quences on the products that will be built afterward. Once the
configuration knowledge is defined, one can develop the back-
end part of the configurator responsible for checking errors, as
well as computing propagations and repairs. A standard way



Figure 2. Propagation of mandatory option

Figure 3. An instance of repair where some options must be added and
others removed

to do that is to implement it from scratch in an established
programming language like Java or PHP. However, this results
in scattering the knowledge across the code base, which leads
to increased risks of bugs and poor maintainability [1]. An
alternative solution is to encode it as logical rules in a configu-
ration engine [14, 7, 3], i.e., a dedicated software component
that implements generic algorithms to reason on configura-
tion knowledge. Such engines thus provide the configuration
functionality at no cost and regardless of the actual application
domain.

While efficient configuration engines exist, they are only a part
of the challenges in configurator engineering. Indeed, configu-
rators belong to a class of interactive applications where UX
is of paramount importance [16] and relies on specific func-
tionalities of these intelligent systems [12]. However, there
exist neither established nor de-facto HMI standards for con-
figurators [17, 9]. Even worse, recent studies [1] showed that
many public configurators do not follow general HMI guide-
lines, resulting in weak usability. This reveals that designing
HMI guidelines for configurators is a essential element of the
envisioned “body of knowledge dedicated to the engineering
of configurators” [1, 3].

A prerequisite to creating these guidelines is to understand
what existing configurators do wrong. Therefore, pursuing
previous research [12, 1], in this paper we analyse to what
extent existing configurators contain HCI design flaws. We
focus more particularly on car configurators, the most popu-
lar kind of configurators according to the Cyledge’s database
statistics [4]. Car configurators are excellent candidates: they

Figure 4. Violations of basic ergonomic guidelines: empty controls,
empty boxes and wrong control placements

commonly provide a high number of options (which makes
both presentation and reasoning challenging), they are directly
aimed at customers (which makes UX a primary concern), and
we can find very different UI design choices across different
brands and countries. More precisely, we check whether 11
UX design flaws occur in 28 configurators we selected across
different brands and countries. These 11 flaws comprise 4
general HMI anti-patterns, 4 specific to navigation-based in-
terfaces, and 3 related to configurator-specific functionalities.
Our results reveal that 75% of the configurators show more
than three types of UX flaws, half of them more than six. This
is mostly due to missing or badly implemented configuration-
specific functionalities, although we also observe the violation
of general HCI principles. This corroborates the need for HCI
guidelines specific to configurator engineering.

AN OVERVIEW OF UX ISSUES IN CONFIGURATORS
To carry out our study, we select a set of car configurators
amongst the ten top-selling car manufacturers. For each man-
ufacturer we choose the best selling car model, and for every
model we consider the configurator of the US, UK and Bel-
gium websites. This leads us to 28 configurators to evaluate
(as two of the 30 candidates do not allow one to select any
option).

Looking at these configurators, we rapidly note that basic er-
gonomic guidelines [18, 15, 16, 10] are not satisfied. Indeed,
we observe occurrences of empty controls, empty boxes or
wrong control placements; see Figure 4. Inappropriate choice
of controls, inconsistent semantics grouping, and lack of em-
phasis were also very common. This is relatively surprising,
as car configurators are popular and powerful marketing tools.
This makes us consider general HCI principles as our first
evaluation criteria. Our objective being more focused than a
general-purpose HCI evaluation, we settle for only four viola-
tions we observed the most: absence of feedback, information
overload, too many controls and bad ergonomics (see more in
the next section).

In addition to these general considerations, we also observe
issues related to the management of navigation within the
UI. Figure 5 is a striking example that highlights multiple
problems. First, we see that the interface does not display the
step currently completed. Also it provides no visible way to



Figure 5. All signs of navigation have disappeared

go to the previous or the next step. The user has no idea of
the progress she has already accomplished, and can neither
consult nor preview the current state of her configuration. All
these navigation-related issues constitute our second group of
criteria.

Finally, we observe the lack of configuration-specific func-
tionalities that are, however, deemed essential. For instance,
Figure 6 depicts a configuration where three different sizes of
wheels are selected. Errors are thus unchecked in this configu-
rator. Configuration being a long and error-prone process, it
is unrealistic not to help users complete their task. Explana-
tion of errors, propagations and repairs – as presented in the
previous section – are other facilitating functionalities. We
argue that all configurators should implement them. Together
with error checking, they are thus part of our third type of
evaluation criteria. All our criteria are properly defined in the
next section.

UX FLAWS: DEFINITIONS AND CRITERIA
Based on our observations, we elaborated a list of common
design flaws typically found in configurators. We catego-
rize them into three degrees of specifity. The first degree
comprises violations of general HCI principles that any ap-
plication should satisfy. The second concerns issues related
to navigation and are thus commonly found in interactive
applications that represent a process. The last degree is re-
lated to the specific functionalities found in configurators, like
propagations and repairs.

General HCI. We selected four types of violations that we
deem critical in configurators. We settle for those, as our aim
is not to perform a thorough analysis but rather to study how
often such criteria are unsatisfied in practice. These are:

• Absence of feedback. No feedback is given to the user.
There is no apparent result to her action.

• Information overload. The quantity of displayed informa-
tion is too high, or there is too much noise.

• Too many controls. The UI displays too many controls on
a single screen, or the number of controls needed to perform
a single action is too high.

Figure 6. Invalid configuration: multiple wheel sizes are selected

• Bad ergonomics. The configurator does not follow estab-
lished ergonomics guidelines. These include, e.g., mis-
placed controls and inappropriate colour or font size.

Navigation. Configuration being an interactive process, its
navigation must be absolutely clear. We can see navigation
from three points of view, i.e. in the UI, in the progress in the
process, and in the configuration state. This leads us to four
types of violations:

• Unknown UI location. The user is lost within the UI and
has no idea what step she is currently completing.

• Irregular navigation control. In the UI, the user cannot
see the control allowing her to move to the next step, be-
cause their position or shape change.

• Unknown progress. The progress in the process, i.e. what
percentage of effort the user has already put in or remains
to be done, is not displayed.

• Unknown configuration state. The current state of the
configuration (e.g. what options were selected, how the
final product looks like) is not displayed.

Configuration. Finally, the lack of essential configurator-
specific functionalities can lead to bad UX, as reported by [12].
More precisely, we consider the following flaws:

• Unchecked errors. The configurator allows the user to
make incompatible choices, which lead to invalid configu-
rations and ultimately to infeasible products.

• No explanation. The configurator does not explain why
errors are raised or why some options became mandatory
or unavailable.

• No repair. The configurator does not provide any repair
functionality that helps the user fixing an error or changing
her configuration, e.g., to make available forbidden options.

RESULTS
For each of the 28 configurators, we check whether its UI
exhibits the 11 aforementioned design flaw. We first observe
the occurrence of each design flaws. Accordingly, Figure 7
presents for each flaw how many configurators exhibit it.



Figure 7. Number of configurators that exhibit each flaw

For general HCI principles, we observe that the lack of er-
gonomics is the most common pitfall, with as many as 21
configurators concerned with such issues. This is not totally
surprising, as the ergonomics guidelines we consider are rather
large, although we could expect better ergonomics in such
customer-oriented applications. Information overload follows
next, with half of the configurators being problematic. It is
indeed common that car configurators have to deal with large
amounts of options, hence the difficulty of presenting all these
options while avoiding cognitive overload. 11 configurators
contain too many controls. According to our observations, this
is the result of overusing categorization to limit the number
of options displayed to the user at once. Finally, only six
configurators do not provide feedback. Overall, we notice
that six configurators out of the 28 do not violate our general
HCI principles, which may reveal an inherent difficulty to
satisfying all these principles in this kind of application.

Regarding navigation issues, seven configurator UIs do not
present clearly the navigation steps that the user has to follow.
Furthermore, the navigation controls are irregular in 14 cases,
while ten configurators do not display any progress. More
importantly, most of the configurators (23 cases) do not show
the current status of the configuration, which is increasingly
important as the number of options gets higher. These nav-
igation problems likely interfere with the user’s experience;
systematic solutions should thus be provided.

The most recurring problems, however, originate from
configuration-specific functionalities. 23 out of 28 configura-
tors do not systematically check the absence of errors, thereby
authorising invalid configurations. We also identified 13 cases
where explanations are not always given following an error
or a propagation. Finally, 18 configurators do not provide
automated repair each time they should.

Figure 8 gives us insights into the number of flaw types that
occur in the configurators. We observe that half of the con-
figurators violate more than six of our principles. This can
be explained by the fact that the three configuration-specific
functionalities are often missing altogether, while unknown
configuration state and ergonomic problems are also pretty
common. More surprisingly, only a quarter of the configura-
tors comprise three violations or less. In the end, only one
configurator does not contain any flaw. These observations
tend to show the necessity of establishing guidelines to be
followed by every configurator.

Figure 8. Number of flaw types occurring in configurators

These results clearly show that even though configurators are
often infected by common UX flaws, the most important issues
are specific to the configuration problem. These include not
displaying the current configurator state and not providing
essential configuration functionalities. Moreover, even if these
functionalities were provided, there would remain the question
of how to integrate them properly in a configuration UI.

CONCLUSION
Configurators are intelligent and highly-interactive systems
that play a major role in today’s businesses. Despite their
importance, our study reveals major issues in regard to their
UX. On the other side, no HCI standards exist for these ap-
plications, and only few research work were interested in
configurator UX. This motivates our long-term objective to
design HCI guidelines specific to configurators, taking into
account all their functionalities and particularities. In the fu-
ture, we plan to expand our study across multiple industries in
order to generalise our conclusions. This way, we also hope
to identify the sources of the different UX problems, thereby
paving the way to our envisioned elaboration of guidelines.
Acknowledgement This work was partly supported by the Eu-
ropean Commission (FEDER IDEES/CO-INNOVATION) and
the Wallonia-Brussels Federation under the ARC programme.



REFERENCES
1. Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher,

Quentin Boucher, and Patrick Heymans. 2013. The
Anatomy of a Sales Configurator: An Empirical Study of
111 Cases. In CAiSE’13. Springer-Verlag, Berlin,
Heidelberg, 162–177.

2. Liliana Ardissono, Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, Ralph Schäfer, and Markus
Zanker. 2002. A Framework for Rapid Development of
Advanced Web-based Configurator Applications. In
ECAI’02. IOS Press, Amsterdam, The Netherlands, The
Netherlands, 618–622.

3. Maxime Cordy and Patrick Heymans. 2018. Engineering
Configurators for the Retail Industry: Experience Report
and Challenges Ahead (to appear). In SAC ’18. ACM.

4. Cyledge. 2017. Configurator Database. (2017). Retrieved
July 24, 2017 from
http://www.configurator-database.com

5. Alexander Felfernig, Lothar Hotz, Claire Bagley, and
Juha Tiihonen. 2014. Knowledge-based Configuration:
From Research to Business Cases (1 ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

6. Gerhard Fleischanderl, Gerhard E. Friedrich, Alois
Haselböck, Herwig Schreiner, and Markus Stumptner.
1998. Configuring Large Systems Using Generative
Constraint Satisfaction. IEEE Intelligent Systems 13, 4
(July 1998), 59–68.

7. Lothar Hotz, Alexander Felfernig, Andreas Günter, and
Juha Tiihonen. 2014. A short history of configuration
technologies. Knowledge-based Configuration–From
Research to Business Cases (2014), 9–19.

8. Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki.
2012. A User Survey of Configuration Challenges in
Linux and eCos. In VaMoS ’12. ACM, 149–155.

9. Tony Leclercq, Jean-Marc Davril, Maxime Cordy, and
Patrick Heymans. 2016. Beyond De-Facto Standards for
Designing Human-Computer Interactions in
Configurators. In EnCHIReS@EICS 2016, Bruxelles,
Belgium. 40–43.

10. Jakob Nielsen. 2005. Ten usability heuristics. (2005).

11. B.J. Pine and S. Davis. 1999. Mass Customization: The
New Frontier in Business Competition. Harvard Business
School Press.

12. Rick Rabiser, Paul Grünbacher, and Martin Lehofer.
2012. A Qualitative Study on User Guidance Capabilities
in Product Configuration Tools. In Proceedings of the
27th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2012). ACM, New York, NY,
USA, 110–119. DOI:
http://dx.doi.org/10.1145/2351676.2351693

13. RetailWeek. 2017. Personalisation. (2017). Retrieved July
24, 2017 from https://www.retail-week.com/topics/
technology/personalisation

14. D. Sabin and R. Weigel. 1998. Product configuration
frameworks-a survey. IEEE Intelligent Systems and their
Applications 13, 4 (Jul 1998), 42–49. DOI:
http://dx.doi.org/10.1109/5254.708432

15. Dominique L Scapin and JM Christian Bastien. 1997.
Ergonomic criteria for evaluating the ergonomic quality
of interactive systems. Behaviour & information
technology 16, 4-5 (1997), 220–231.

16. Ben Shneiderman. 1997. Designing the User Interface:
Strategies for Effective Human-Computer Interaction
(3rd ed.). Addison-Wesley, Boston, MA, USA.

17. C. Streichbier, P. Blazek, and F. Faltin. 2009. Are
De-Facto Standards a Useful Guide for Designing
Human-Computer Interaction Processes? The Case of
User Interface Design for Web Based B2C Product
Configurators. In HICSS ’09. IEEE Computer Society,
Washington, DC, USA, 1–7.

18. Jean Vanderdonckt. 1994. Guide ergonomique des
interfaces homme-machine. Presses Universitaires de
Namur (1994).

19. J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and
A. Ruiz-Cortés. 2008. Automated Diagnosis of
Product-Line Configuration Errors in Feature Models. In
SPLC ’08. IEEE Computer Society, Washington, DC,
USA, 225–234.

20. Yingfei Xiong, Arnaud Hubaux, Steven She, and
Krzysztof Czarnecki. 2012. Generating Range Fixes for
Software Configuration. In ICSE ’12. IEEE Press,
Piscataway, NJ, USA, 58–68.

http://www.configurator-database.com
http://dx.doi.org/10.1145/2351676.2351693
https://www.retail-week.com/topics/technology/personalisation
https://www.retail-week.com/topics/technology/personalisation
http://dx.doi.org/10.1109/5254.708432

	Introduction
	An Overview of UX Issues in Configurators
	UX Flaws: Definitions and Criteria
	Results
	Conclusion
	References 

