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Abstract

Research on software testing generally fo-
cusses on the e↵ectiveness of test suites to de-
tect bugs. The quality of the test code in
terms of maintainability remains mostly ig-
nored. However, just like production code,
test code can su↵er from code smells that im-
ply refactoring opportunities. In this paper,
we will summerize the state-of-the-art in the
field of test refactoring. We will show that
there is a gap in the tool support, and pro-
pose future work which will aim to fill this
gap.

1 Introduction

Refactoring is “the process of changing a software sys-
tem in such a way that it does not alter the exter-
nal behaviour of the code yet improves its internal
structure” [Fow09]. If applied correctly, refactoring
improves the design of software, makes software eas-
ier to understand, helps to find faults, and helps to
develop a program faster [Fow09].

In most organizations, the test code is the final
“quality gate” for an application, allowing or deny-
ing the move from development to release. With this
role comes a large responsibility: the success of an ap-
plication, and possibly the organization, rests on the
quality of the software product [Dus02]. Therefore,
it is critical that the test code itself is of high quality.
Methods, such as code coverage analysis and mutation
testing, help developers assess the e↵ectiveness of the
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tests suite. Yet, there is no metric or method to mea-
sure the quality of the test code in terms of readability
and maintainability.

One indication of the quality of test code could
be the presence of test smells. Similar to how pro-
duction code can su↵er from code smells, these test
specific smells can indicate problems with the test
code in terms of maintainability [VDMvdBK01]. How-
ever, refactoring test smells can be tricky, as there
is no reliable method to verify if a refactored test
suite preserves its external behaviour. Several stud-
ies point out the peculiarities of test code refactor-
ing [VDMvdBK01, VDM02, Pip02, Fow09]. However,
none of them provided an operative method to guaran-
tee that such refactoring was preserving the behaviour
of the test.

The rest of the paper is organized as follows. In
section 2 we will summerize the related work on test
smells and test refactoring, which shows test smells to
be an important issue. Section 3 we will go over the
existing test refactoring tools, showing there is a gap
in the current tool support. We will propose our future
work which aims to fill the gap in existing tool support
in section 4. In section 5 we define a theoretical model
for defining test behaviour, which will form the basis
of our proposed future work. We conlude in section 6.

2 Related Work

The term test smell was first introduced by van
Deursen et al. in 2001 as a name for any symptom
in the test code of a program that possibly indicates
a deeper problem. In their paper, they defined a first
set of eleven common test smells and a set of specific
refactorings which solve those smells [VDMvdBK01].
Meszaros expanded the list of test smells in 2007, mak-
ing a further distinction between test smells, behaviour
smells, and project smells [Mes07]. Greiler et al. de-
fined five new test smells specifically related to test
fixtures in 2013 [GvDS13].
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Several studies have investigated the impact test
smells have on the quality of the code. Van Rompaey
et al. performed a case study in 2006 in which they
investigated two test smells (General Fixture and Ea-
ger Test). They concluded that all tests which suf-
fer from these smells have a negative e↵ect on the
maintainability of the system [VRDBD06]. In 2012,
Bavota et al. performed an experiment with master
students in which they studied eight test smells (Mys-
tery Guest, General Fixture, Eager Test, Lazy Test,
Assertion Roulette, Indirect Testing, Sensitive Equal-
ity, and Test Code Duplication). This study pro-
vided the first empirical evidence of the negative im-
pact test smells have on maintainability [BQO+12].
In 2015, they continued their research and performed
the experiment with a larger group, containing more
students as well as developers from industry. They
conclude that test smells represent a potential dan-
ger to the maintainability of production code and test
suites [BQO+15].

In 2016, Tufano et al. investigated the nature of test
smells. They conducted a large-scale empirical study
over the commit history of 152 open source projects.
They found that test smells a↵ect the project since
their creation and that they have a very high surviv-
ability. This shows the importance of identifying test
smells early, preferably in the IDE before the commit.
They also performed a survey with 19 developers which
looked into their perception of test smells and design
issues. They showed that developers are not able to
identify the presence of test smells in their code, nor do
developers perceive them as actual design problems.
This highlights the importance of investing e↵ort in
the development of tools to identify and refactor test
smells [TPB+16].

3 Tool Support

Test Smell Detection

There are many tools that can automatically detect
code smells, for example the JDeodorant Eclipse plu-
gin and the inFusion tool [FMM+11]. Test smells,
however, are very di↵erent from code smells and these
tools are not able to detect them. Tool support for
handling test smells and refactoring test code is lim-
ited.

In 2008, Breugelmans et al. presented TestQ, a
tool which can statically detect and visualize 12 test
smells [BVR08]. TestQ enables developers to quickly
identify test smell hot spots, indicating which tests
need refactoring. However, the lack of integration in
development environments and the overall slow per-
formance make TestQ unlikely to be useful in rapid
code-test-refactor cycles [BVR08].

In 2013, Greiler et al. presented a tool which can
automatically detect test smells in fixtures [GvDS13].
Their tool, called TestHound, provides reports on test
smells and recommendations for refactoring the smelly
test code. They performed a case study where develop-
ers are asked to use the tool and afterwards are inter-
viewed. They show that developers find that the tool
helps them to understand, reflect on and adjust test
code. However, their tool is limited to smells related
to test fixtures. Furthermore, they only report the
occurences of the di↵erent fixture-related test smells
in the code. They do not give one single metric that
represents the overall quality of the test code. During
the interviews, one developer said that the di↵erent
smells should be integrated in one high-level metric:
“This would give us an overall assessment, so that if
you make some improvements you should see it in the
metric.” [GvDS13].

Defining Test Behaviour

Refactoring of the production code can be done with
little risk using the test suite as a safeguard. Since
there is no safeguard when refactoring test code, there
is a need for tool support that can verify if a refac-
tored test suite preserves its behaviour pre- and post-
refactoring. Previous research on this topic has been
performed by Parsai et al. in 2015 [PMSD15]. They
propose the use of mutation testing to verify the test
behaviour. However, mutation testing requires the test
suite to be ran for each mutant, which can be hundreds
of times, making it unlikely to be useful in practice.
Furthermore, while mutation testing gives an indica-
tion of the test behaviour, it cannot fully guarantee
that the behaviour is preserved.

4 Research Plan

As we have shown, there is a lack of tool support when
it comes to test refactoring. We plan on creating a
tool that will help developers during this process. We
present our future work in terms of a research agenda:

Test Smell Detection

• Objective - Create a tool that is able to detect
test smells. More specifically, the tool should
be able to detect all test smells defined by van
Deursen, Meszaros, and Greiler [VDMvdBK01,
Mes07, GvDS13]. This tool should also be able to
create a metric that represents the overall quality
of the test code in terms of maintainability.

• Approach - Breugelmans et al. proposed methods
for detecting all the original test smells (defined
by van Deursen et al.) [BVR08]. We will use these
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methods in our tool. For the other test smells (de-
fined by Meszaros and Greiler et al.), we will use
a similar approach in order to define detection
methods ourselves. The metric that represents
the overall quality of the test code can be calcu-
lated based on the amount of test smells present
in the test code.

• Validation - Verification of correctness will be
made using a dataset consisting of a set of real
open-source software projects. We can compare
the tool with TestHound for fixture related test
smells and with TestQ for the other test smells.
Smells not covered by either TestHound or TestQ
will require manual verification.

Defining Test Behaviour

• Objective - Define test behaviour such that de-
velopers can verify if the test code is behaviour
preserving between pre- and post- refactoring.

• Approach - The production code should be deter-
ministic, and thus the same set of inputs should
always result in the same set of outputs. We will
analyse the code in order to map all entry and
exit points from test code to production code and
link them with the corresponding assertions. This
will result in the construction of a Test Behaviour
Tree (TBT), which defines the behaviour of the
test. Comparison of TBTs will allow for validat-
ing behavior preservation between pre- and post-
refactoring. Section 5 will explain this concept in
more detail.

• Validation - We will run the algorithm on the
dataset of commits used for verifying the test
quality metric. We can do an initial check us-
ing coverage metrics and mutation testing. When
these metrics change pre- and post-refactoring, we
know for certain that the test behaviour changed.
When these metrics remain constant, we will have
to manually verify wether the refactoring is be-
haviour preserving.

5 Theoretical Model for Defining Test

Behaviour

In order to determine test behaviour, a Test Behaviour
Tree (TBT) can be constructed from the Abstract Syn-
tax Tree (AST). This can be done by simply traversing
the AST once. During this pass of the AST, all vari-
ables and objects need to be stored with their value.
All subsequent operations on variables are then per-
formed on the stored value. If a variable is initialized
with a functioncall to production code, it can be stored
as that call. Operations on that variable will then be

stored as a sequence of operations. When encount-
ing an assert, a node which represents the assert is
added to the TBT. All child nodes of the assert are
also added, replacing variables with their stored value.

Running Example

As an example to illustrates the approach, we use the
following simple production code:

1 c l a s s Rectangle {
2 pub l i c :
3 Rectangle ( ) ;
4 i n t getHeigth ( ) ;
5 i n t getWidth ( ) ;
6 void se tHe ig th ( i n t h) ;
7 void setWidth ( i n t w) ;
8 pr i va t e :
9 i n t he ig th ;

10 i n t width ;
11 } ;
12

13 Rectangle : : Rectangle ( ) {}
14 i n t Rectangle : : getHeigth ( ) { r e turn he ig th ; } ;
15 i n t Rectangle : : getWidth ( ) { r e turn width ; } ;
16 void Rectangle : : s e tHe ig th ( i n t h) { he ig th = h ;}
17 void Rectangle : : setWidth ( i n t w) {width = w;}

It defines a class Rectangle which has two private data
members heigth and width, as well as getters and
setters for these data members. Note that even though
this is a toy example, there is no technical di↵erence
between simple getters and setters and large algoritmic
functions as the production code is considered a ’black
box’. There would be no di↵erence if the getters did
some advanced mathematical calculations, read from
a file, or contacted a networked database.

We will start with a simple test for this production
code:

1 Rectangle r = Rectangle ( ) ;
2 r . setWidth (5 ) ;
3 r . s e tHe ig th (10) ;
4 a s s e r t (5 == r . getWidth ( ) ) ;
5 a s s e r t (10 == r . getHeigth ( ) ) ;

This test will result in the Test Behaviour Tree shown
in figure 1. As shown, the TBT has one root node
which has a child for every assert. Each assert node
has the full comparison as a child, where variables are
replaced with their value. Since the call on the rectan-
gle object is considered a call to production code, the
sequence of operations is appended as a child rather
than a single value, because we consider production
code as a ’black box’. We can safely assume this, since
the production code should be deterministic (other-
wise you could not write tests for it) and should not
change when refactoring test code.
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Figure 1: The Test Behaviour Tree from the example tests.

Variable Refactorings

One way to refactor this test would be to replace the
’magic numbers’ in the with variables. This would
greatly increase maintainability, as consistency be-
tween input and expected output would be guaran-
teed. Because variables are replaced with their value
in our approach, the following refactored test code will
result in the exact same TBT:

1 i n t x = 5 ;
2 i n t y = 10 ;
3 Rectangle r = Rectangle ( ) ;
4 r . setWidth (x ) ;
5 r . s e tHe ig th (y ) ;
6 a s s e r t ( x == r . getWidth ( ) ) ;
7 a s s e r t ( y == r . getHeigth ( ) ) ;

Similarly, the common refactoring where a vari-
able is renamed can be performed without changing
the TBT. The following code also generates the same
TBT:

1 i n t testWidth = 5 ;
2 i n t t e s tHe ig th = 10 ;
3 Rectangle t e s tRec tang l e = Rectangle ( ) ;
4 t e s tRec tang l e . setWidth ( testWidth ) ;
5 t e s tRec tang l e . s e tHe ig th ( t e s tHe ig th ) ;
6 a s s e r t ( testWidth == te s tRec tang l e . getWidth ( ) ) ;
7 a s s e r t ( t e s tHe ig th == te s tRec tang l e . getHeigth ( )

) ;

These refactorings did not change behaviour, which
is why we get the same resulting TBT. If you would
change the value of testWidth or testHeigth, the be-
haviour of the test would change as you would be test-
ing di↵erent input - output pairs. This change in be-
haviour would be detected easily detected by our ap-
proach, as the values in the TBT would change accord-
ingly, resulting in a di↵erent TBT.

Expression Refactorings

Detecting a change in input - output pairs is more im-
portant when the test code contains some arithmetic
operations. Sometimes it is necessary to make a cal-
culation in the test code to use as an oracle. When it
comes to these kind of expressions in the AST, it is pos-
sible to simply evaluate them during traversal of the
AST. The values of all variables are stored upto that
point in the program, and the result can be stored as
the new value for the corresponding variable. There-
fore, the following code still generates the same TBT,
as the behaviour did not change since the values for
testWidth and testHeigth still evaluate to 5 and 10
respectively 1):

1Note that it would be bad practice to write this test, but
we use it here simply to showcase the approach.
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1 i n t testWidth = 1 ;
2 i n t t e s tHe ig th = ((++testWidth ) ⇤ 2) + ( (

testWidth++) ⇤ 3) + 2 ;
3 testWidth = testWidth++;
4 Rectangle t e s tRec tang l e = Rectangle ( ) ;
5 t e s tRec tang l e . setWidth ( testWidth ) ;
6 t e s tRec tang l e . s e tHe ig th ( t e s tHe ig th ) ;
7 a s s e r t ( testWidth == te s tRec tang l e . getWidth ( ) ) ;
8 a s s e r t ( t e s tHe ig th == te s tRec tang l e . getHeigth ( )

) ;

Function Refactorings

Another common refactoring is to extract part of the
test code to a function. As an example, we could define
the following functions:

1 i n t setupWidth ( i n t x ) {
2 r e turn x /2 ;
3 }
4

5 i n t setupHeigth ( i n t y ) {
6 r e turn y ⇤2 ;
7 }

and rewrite our test to:

1 i n t testWidth = setupWidth (10) ;
2 i n t t e s tHe ig th = setupHeigth (5 ) ;
3 Rectangle t e s tRec tang l e = Rectangle ( ) ;
4 t e s tRec tang l e . setWidth ( testWidth ) ;
5 t e s tRec tang l e . s e tHe ig th ( t e s tHe ig th ) ;
6 a s s e r t ( testWidth == te s tRec tang l e . getWidth ( ) ) ;
7 a s s e r t ( t e s tHe ig th == te s tRec tang l e . getHeigth ( )

) ;

If these functions are marked as part of the pro-
duction code, they will be treated as ’black box’ func-
tions. This is not desirable, since then the TBT will
change while behaviour is preserved. Therefore, these
functions need to be evaluated similarly to expressions.
Again this is perfectly possible since we have the val-
ues of all variables at each point in the program. Upon
evaluation, the values for testWidth and testHeigth
still result in 5 and 10 respectively, and thus the TBT
would be unchanged.

Conditionals and Loops

Upto now, our examples did not contain any condi-
tionals or loops, since they are not desirable in test
code. However, sometimes they could appear in test
code, in which case they can be evaluated similarly to
expressions and function calls. For example, we could
define the following function:

1 i n t setupData ( i n t i ) {
2 i f ( i == 1) {
3 r e turn 5 ;
4 } e l s e {
5 i f ( i == 2) {
6 r e turn 5 + 5 ;
7 }
8 }
9 r e turn 0 ;

10 }

and rewrite our test to:

1 i n t testWidth = setupData (1 ) ;
2 i n t t e s tHe ig th = setupData (2 ) ;
3 Rectangle t e s tRec tang l e = Rectangle ( ) ;
4 t e s tRec tang l e . setWidth ( testWidth ) ;
5 t e s tRec tang l e . s e tHe ig th ( t e s tHe ig th ) ;
6 a s s e r t ( testWidth == te s tRec tang l e . getWidth ( ) ) ;
7 a s s e r t ( t e s tHe i g th == te s tRec tang l e . getHeigth ( )

) ;

Again, the values for testWidth and testHeigth still
evaluate to 5 and 10 respectively, resulting in the same
TBT. When conditionals or loops are used in combina-
tion with calls to production code, it would be handled
similarly to how the testRectangle object is handled.
The sequence of operations would be kept, including
the conditional or loop, similarly to how they would
be represented in AST form.

6 Conclusion

We have presented an overview of the research done in
the field of test smells and test refactoring. Research
has indicated that test smells have a negative impact
on maintainability and therefore need to be refactored.
We have shown that there is a lack of tool support to
aid developers with test refactoring. We also provided
a theoretical model that defines test behaviour, in the
form of Test Behaviour Trees, which can be used to
compare test behaviour pre- and post-refactoring. We
plan to create a tool for test refactoring which can de-
tect test code smells, evaluate the test quality, and as-
sure behaviour is preserved after test refactoring using
our theoretical model. We currently have a working
prototype for the latter. Our final tool will help devel-
opers decide when and where to refactor the test code,
as well as help them perform the refactorings correctly,
allowing developers to improve their test suite quickly
and with confidence.
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