CEUR-WS.org/Vol-2070/paper—-05.pdf

Analysis of a Clone-and-Own Industrial Automation
System: An Exploratory Study

Nick Lodewijks
University of Amsterdam,
The Netherlands
nicklodewijks@gmail.com

Abstract

In industry, the development of similar prod-
ucts is often addressed by cloning and modi-
fying existing artifacts. This so-called clone-
and-own approach is often considered to be a
bad practice but is perceived as a favorable
and natural software reuse approach by many
practitioners. Unfortunately, current litera-
ture lacks quantitative information about the
positive and negative effects of clone-and-own.
In this paper, we present the results of our ex-
ploratory analysis of an industry system devel-
oped using the clone-and-own approach. We
found that products from the same product
family can vary significantly in change activ-
ity over time, divergence from their origin and
synchronization activity. We will further in-
vestigate these factors to develop quantitative
measures for the assessment of clone-and-own
benefits and drawbacks.

1 Introduction

Cloning is often considered to be a practice harm-
ful to the quality of source code, and potentially a
cause of maintainability problems (Kapser and God-
frey, 2006; Thummalapenta et al., 2010). Yet, in in-
dustry, the development of similar products is often
addressed by cloning and modifying existing artifacts.
This so-called clone-and-own approach is perceived as
a favorable and natural software reuse approach by

Copyright © by the paper’s authors. Copying permitted for
private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

many practitioners, mainly because of its simplicity
and availability (Dubinsky et al., 2013).

While the general belief is that clone-and-own is
a bad and unsustainable development technique, it
has been used successfully for the development of
the MES-Toolbox; a large (1 million lines of Java
code) proprietary factory automation system. Over
the past 17 years, for each new customer, an exist-
ing system was cloned and modified in any possible
way to add, modify or remove functionality. With
over 70 implementations of the systems running world-
wide, the company now seeks to reduce maintenance
overhead. Unfortunately, the decision on how to move
forward from a successful clone-and-own approach is
not straightforward.

Over the past decade, several tools and techniques
for dealing with cloned product variants have been pro-
posed. Some of them advocate the elimination of all
clones by merging the variants into a single platform,
and others propose to maintain multiple variants as-
is (Rubin, Czarnecki, and Chechik, 2013). What ap-
proach works best for a given situation depends on the
domain and context of that situation. In some cases
eliminating all clones and adopting an integrated plat-
form is neither possible nor beneficial (Antkiewicz et
al., 2014). Eliminating clones will increase coupling,
and changing shared code may require re-testing of all
systems that use it (Dubinsky et al., 2013). If the suc-
cess of the product highly depends on the benefits of
clone-and-own, then its merits should be considered
before moving away to a different approach.

The main objective of our study is to explore the
evolution of MES-Toolbox systems and to gain in-
sight into how clone-and-own may have affected on-
going project development and maintenance. In this
paper, we show how version control system metadata,
source-code differencing, and visualization techniques
can be used to identify clone-and-own related points
of interest in the evolution of a product family.

2 Subject System

The system studied in this work is the MES-Toolbox;
a 17-year-old proprietary Java-based factory automa-
tion system developed by ENGIE. The main purpose
of the systems is for automation of batch and con-
tinuous production processes. It can visualize, con-
trol and register every step of an entire production
process. From the intake of raw material (unloading
from trucks, ships, bags, pallets, containers), prepara-
tion (dosing, weighing, heating), processing (pressing,
grinding, mixing), storage, to the distribution of end
products to customers. Depending on what customers
require for their production process, the system per-
forms article and recipe management, quality regis-
tration, production planning, tracking and tracing of
materials used in production, stock control, shift reg-
istration, production performance analysis and com-
municates with ERP systems. To monitor and con-
trol physical production equipment (e.g., conveyors,
mixers, weigher, buttons, lights), the MES-Toolbox
communicates with Programmable Logic Controller’s
(PLC’s) that perform the actual low-level control of
these physical devices.

Over the past 17 years, the system has grown to
contain more than 6500 Java files, with a total of ap-
proximately 1 million lines of Java code. While the de-
sign of the system has a modular structure and aims to
separate common code from customer implementation
code as much as possible, it’s a monolithic application.
Nearly all source-code is contained in a single project,
which is developed, built and versioned as a whole. In-
ternally, this project is called the Standard project, as
it is used as a basis for all new projects. This project,
which can be considered as the main platform of the
product family, contains a constantly growing set of
reusable core components and ready-to-use standard
solutions.

Within the organization there is a clear distinction
between platform development and application devel-
opment, this distinction is often found in a Software
Ecosystem (SECO) (Lettner, Angerer, Griinbacher, et
al., 2014). A small team of five developers is respon-
sible for the overall design, development, and mainte-
nance of the system. The founder and writer of the
first line of code of this system is also still part of this
team. Work of this team is focused on maintenance of
the core platform, development of complex customer
specific features, standardization of functionality, de-
velopment of product configuration tools, and provide
support to application engineers.

Even though the system is highly configurable,
cloning is used to address the specificity and high de-
gree of variation of customer requirements often found
in the domain of industrial automation (Schrock, Fay,

and Jager, 2015). For every new factory, a clone of
the codebase of the latest platform release is realized
by creating a branch with the Subversion version con-
trol system. The clone is then configured and changed
in any possible way by Application Engineers to add,
modify or remove functionality. FEach clone corre-
sponds to the automation system of a factory some-
where around the world for some specific customer.
FEach clone is a variant of the base platform. We refer
to the collection of all MES-Toolbox variants as the
MES-Toolbox product family.

Between clones there exists a varying degree of com-
monality, and there is often no clear relation between
the clones. Clones developed for the same customer
might have more in common than clones developed
for different customers. For example, if a company
requires all their production facilities to have identi-
cal branding and communication interfaces with third-
party systems. However, even clones that appear to be
unrelated in terms of end-user requirements may still
have some forms of commonality, such as the graphical
user interface components or the configuration frame-
work that is used.

3 Research Questions

Dubinsky et al. (2013) observed that independence
provided by clone-and-own is one of the major reasons
for considering cloning as an efficient reuse mechanism.
Developers can make any change required to satisfy
customer requirements, without affecting other clones.
They do not have to collaborate with teams working
on other systems, that may have different priorities or
scheduling constraints. These characteristics of clone-
and-own have to be considered when new change mech-
anisms are introduced, since different techniques may
not provide the same degree of independence. But how
much independence is needed, and how can it be mea-
sured? In this section, we describe three research ques-
tions that we will use to explore independence-related
characteristics of the MES-Toolbox product family.

RQ1: Do MES-Toolbox systems change in parallel?
When cloning is used to develop systems independent
of each other, developers can decide when to change
the codebase of each individual system. The develop-
ment of each system can follow its own release and de-
velopment schedule that is based on available resources
and requirements for the system. The development of
complex systems with many customer-specific modifi-
cations may require and allow for months of continu-
ous, frequent change, while relatively straightforward
and simple systems might have strict deadlines and
require only a few changes within the first weeks.

To explore whether MES-Toolbox systems may
have benefited from this time aspect of independence,

we want to gain a rough understanding of the degree
of parallel change in the MES-Toolbox product family.
We hypothesize that a schedule-driven need for inde-
pendence may lead to a lack of parallel development,
whereas some relation between systems (e.g.: sys-
tems developed the same customer) or a collaboration-
overhead driven need for independence may lead to
parallel change. For the purpose of this exploratory
study, we do not yet use a strict definition of paral-
lel change. Instead, we are interested in any form of
seemingly parallel change. Do systems change in par-
allel every week, month or year? Do many systems
change at roughly the same time, or is this only the
case for specific systems?

RQ2: How much do MES-Toolbox systems diverge
from their origin? Clone-and-own allows developers
to add, remove or modify files without affecting their
origin. These changes will inherently cause systems to
diverge from their origins; they are no longer identical.
As the product family grows it often becomes increas-
ingly hard to keep an overview of the available func-
tionality (Stanciulescu, Schulze, and Wasowski, 2015;
Berger et al., 2014; Duc et al., 2014). We hypothesize
that the degree of divergence can be used to quan-
tify the complexity caused by cloning. Therefore, we
are interested to see how this property of the MES-
Toolbox product family has evolved over time.

A developer of the MES-Toolbox platform stated
that diverged Java files often make it difficult to prop-
agate changes, but expected that the Java codebase
would not significantly diverge for most of the 7.2 and
7.2.1 systems. Many of these systems are considered
relatively simple, and hardly require any customer-
specific modification of the codebase.

RQ3: Have all MES-Toolbox systems been synchro-
nized with their origin? Cloning is said to increase
maintenance overhead because changes to one clone
may have to be propagated to all clones. Studies
have shown however that change propagation is not al-
ways performed (Stanciulescu, Schulze, and Wasowski,
2015), which suggests that cloning does not necessarily
increase maintenance overhead due to change propa-
gation.

In the organization we study, changes are manu-
ally propagated at the discretion of teams developing
the systems. Application engineers stated that they
periodically merge changes from the platform release
to customer systems, but only while they are still un-
der active development. Because some systems are
developed relatively fast, we expect that some sys-
tems retrieve only very few changes from their origin,
thus arguably not causing much maintenance over-
head. Consequently, techniques that purely reduce
repetitive task would have limited effect on mainte-

21(35%)

15(25%)

11(18.3%)

8(13.3%)

Number of Systems

5(8.3%)

71

)
72 724 73
Platform Version

Figure 1: Distribution of System Versions

nance overhead caused synchronization for these sys-
tems. In the MES-Toolbox product family, synchro-
nization with products and their origin can occur in
both ways. Bugs are often found and fixed on a prod-
uct, after which the change is propagated to the plat-
form project. From there, the change can be propa-
gated to all the other products derived from that plat-
form version.

4 Research Methodology

To explore the evolution of MES-Toolbox systems, we
built a tool that retrieves changes to each system from
the subversion (SVN) repository, performs source-code
differencing and exports the relevant information to a
CSYV file for further analysis in R. Our tool is embed-
ded in a modified version of JMeld!, an open source
differencing tool written in Java.

First, we make a local copy of the SVN repository
with the command svnadmin hotcopy, and verify its
integrity with svnadmin verify in the analysis envi-
ronment. This local repository is used for all data col-
lection to ensure that the data source does not change
during subsequent analysis.

4.1 Selecting MES-Toolbox Systems

We extract all systems present in the local copy of the
repository by scanning the output of svn 1s? for paths
in the form of projecten/.*/trunk/$. We then man-
ually validate these paths and documented for each
system the platform version it was branched from, the
name of the project, an anonymised name, the repos-
itory path, and any unusual properties of the system
that we have to consider during analysis. For example,
development of some systems was discontinued and the
systems were never put into production. We excluded
these systems from the analysis. Finally, we noted

Ihttps://sourceforge.net/projects/jmeld/
2svn Is -R {svnRepo} | egrep "projecten/.* /trunk/$"

whether the system was directly branched from the
platform, or from another branch (its nesting depth).

There are currently four platform versions: 7.1, 7.2,
7.2.1 and 7.3. The first version of the platform (7.1)
was released on 7 March 2012 and was followed rela-
tively fast by the next release (7.2) on 18 December
2012. Version 7.2.1 of the platform was released on 7
October 2014, and version 7.3 on 14 December 2016.
Figure 1 shows the distribution of versions among sys-
tems in the version repository. Twenty-one systems
pre-date the first platform release. There are five 7.1
systems, fifteen 7.2 systems, eleven 7.2.1 systems and
eight 7.3 systems. For this study, we mainly focus on
7.2 and 7.2.1 systems, as these have all been put into
production, and are derived from a comparable base
platform within the last five years. The main difference
between these versions is the internationalization of all
text visible to the end-user. There are no significant
differences in terms of architecture or functionality.

We refer to the codebase of a specific platform ver-
sion in the form of PL-VERSION, for example, we use
PL; 5 to refer to version 7.2 of the platform. The in-
ternal name of the system can contain the name of the
customer, and the location of the production facility.
Since this information is subject to confidentiality, we
manually defined an anonymised name for each system
in the form of P-NUMBER. In this paper, we often refer
to this name as P,, which can be read as project n or
product n.

4.2 Mining Commit Metadata

For each system we selected, we extract the version
history using a bash script. This bash script uses
the svn log ® command to export the version history
in xml format. For each system we collect all revi-
sions from its change history, and extract the relevant
change metrics. We used the definition and format of
the change metrics dataset published by Yamashita et
al. (2017) as a basis for our data set.

We extract the revision number, author and date of
each revision. Next, from the output of svn diff?, we
determine the full path of the files that were changed,
the type of change (added, deleted or modified), and
calculate for each file how many lines were changed,
added or deleted. From the full path of the files, we
extract the file name and file extension. Note that we
use svn diff to determine which files were changed,
and not svn log. The reason for this is that when a
directory is deleted, the output of svn log only con-
tains the name of the directory, and does not contain
the names of the files contained in the directory.

3svn log --xml --stop-on-copy -v <variant.repositoryPath> >

<variant>-log.xml
4svn diff -x -UO -c {revisionNumber} {repositoryPath}

Change Activity Over Time
System 1+ o
Commits
.o 1
System 2+ e
5 [
2 ®:
D system 3+ ' ® 14 o
[B
System 4 - . o .
o1 02 03 04 05
Date (week)

Figure 2: Example visualization for change activity. All
systems exhibit different change activities, with a varying
degree of parallel change.

4.3 Detecting Parallel Change

To determine whether systems change in parallel, we
are interested in the time aspect of change at system-
level granularity. We decided to use a visualization
which allows us to gain insight into whether (a) sys-
tems change in parallel, (b) systems change continu-
ously, periodically or at arbitrary moments in time,
and (c) to identify variance between systems.

For this visualization we chose systems as the first
dimension and time as the second dimension. To pre-
vent overplotting, we group data-points by week or
month. By grouping data, we will not be able to dis-
tinguish between systems that changed many times a
week, or only once a month. To mitigate this effect we
introduce an additional dimension which is number of
commits (proportional to the radius of the dot). This
leads us to the view shown in Figure 2.

The vertical axis represents the systems, and the
horizontal axis the time of the changes. Each dot rep-
resents a point in time when a system was changed.
The radius of the dot is proportional to the number
of commits that occurred. In this example, we group
the data-points by week. Continuous change activity
will give rise to a sequence of horizontally aligned dots.
Changing a system twenty times a week will result in
a thicker horizontal dot pattern compared to changing
a system only once a week. In Figure 2 we observe
that system 1 was under continuous maintenance, as
it was changed every week. System 2 was changed
every other week, which appears to be more periodi-
cal but due to the week-based granularity may still be
considered as continuous to some extent. The change
activity for systems 3 and 4 is continuous for the first
three weeks, but declining for system 3 and increasing
for system 4. Finally, we see that systems 1, 2 and 3
all changed in the first week, but system 3 has been
modified more frequent.

4.4 Measuring Divergence

To measure how much systems have diverged from
their origin, we developed a tool that calculates how
much the difference between each system and its ori-
gin has changed over time. We do so by calculating
the differences for each system, for each file, at every
revision that changed either the system or its origin.
We perform these measurements on a local copy of the
actual codebase of the systems. For the platforms and
each system, we locally replay their change history by
sequentially updating the local working copy with svn
update. After each update of a platform codebase,
we re-calculate the differences with code-differencing
on all systems that have been derived from the plat-
form. Similarly, after each update of the codebase of
a system, we re-calculate the differences between the
system and its origin. This technique is computation-
ally intensive but does allow us to explore how much
each revision has affected divergence.

We measure differences at line-level granularity
(number of lines different) with the Java implemen-
tation of GNU diff >. Using the file-level granular-
ity measurement, we aggregate to file-level granularity.
By using a line-level granularity instead of a file-level
granularity (number of files different), we will be able
to aggregate to file-level granularity and report on both
levels. We define the difference in number of lines as
diff. During analysis, we keep track of how much the
difference has increased or decreased compare to the
previous revision, the diffDelta.

We illustrate the divergence calculation on an arti-
ficial example in Table 1. In this example, PL; o1 is
the origin of system Pj;. First, we update the local
copy of the codebase of PL7 5.1 to revision 1 and cal-
culate the differences between PL7 5.1 and Pi7. We see
that in revision 1, Main. java was modified on PL7 5 1,
causing a difference of five lines. Next, we update P;7
to revision 2 and re-calculate the differences. We see
that Main.java was changed, reducing the difference
by five lines. This pattern of increasing and decreasing
divergence is typically caused by change propagation
when revision 1 is merged to system P;7 in revision 2.
As the measurements continue, we see that Main. java
was modified two more times on Pj7, increasing the
difference by ten lines in revision 3 and five lines in
revision 4. Finally, in revision 5 the difference was
reduced by fifteen lines by a change on PL7 5 1.

4.5 Detecting Synchronization

Systems retrieving changes from their origin, or con-
tributing changes to their origin is often done by merg-
ing the revision from the system to its origin or vice

Shttp://www.bmsi.com/java/#diff

revision system file diffDelta diff
1 PL7_2_1 Main.java 5 5

2 Py Main.java -5 0

3 Py Main.java 10 10
4 Pir Main.java 5 15
5 PL;51 Main.java -15 0

Table 1: Example data of divergence over time calculation.

versa. Subversion automatically registers the merged
revision(s) and the origin of the merge in a so-called
svn:mergeinfo property attached to files and direc-
tories®. We classify each revision commit as MERGE or
NON_MERGE by scanning the output of svn diff for an
occurrence of svn:mergeinfo.

Unfortunately, we cannot blindly trust the validity
of Subversion properties. Subversion properties can be
changed by hand, developers might forget to commit
the changes to properties, or they could manually copy
changes between systems without using the merging
system. We aim to mitigate these issues by taking into
account whether revisions have caused convergence or
divergence. We expect that most changes to systems
will cause them to diverge from their origin and that
merging these changes to their origin will cause them
to converge. Similarly, we expect that changes to the
origin of systems will cause them to diverge, and merg-
ing the change to the systems will cause them to con-
verge. We manually validate a large sample of data to
ensure this is a reliable technique to detect synchro-
nization.

5 Results and Analysis

In this section, we present the results of our ex-
ploratory analysis.

5.1 Parallel Change

RQ1. Do MES-Toolbox systems change in parallel?
Figure 3 shows the change activity of the PL; 5 and
PL; 51 platforms, and all systems derived from these
platforms that were included in our study. We see
that many systems appear to be modified almost con-
tinuously, even years after the first change was made.
For example, systems P; and P;. Systems Py, Py and
Pyg also appear to be changed continuously, but to a
lesser extent than the first group. The change activity
for these systems appears less dense and contains more
periods of inactivity. The longest period of inactivity
for these systems is approximately four months? for
system Pj.

Shttp://svnbook.red-bean.com/en/1.7/svn.branchmerge.
basicmerging.html
7124 days, 14 March 2014 to 16 July 2014

Change Activity Over Time

PL-7.2 . “00s0e0e 100ree ver Bovsice siase 6.

System

7.2

B §990.00-0-00000000%0- -ore

2013 2014 2015

2016 2017

Date

Commits ® 20 ® 40 @ 60 @ 80

Figure 3: The change activity of PL72 and PL7 2.1 systems.

The majority of the systems show an initial burst
of activity at the beginning of the project, followed by
a varying amount of activity afterward. This seems
similar to the change frequency of Keba, an industrial
automation ecosystem studied by Lettner, Angerer,
Griinbacher, et al. (2014). In the Keba ecosystem,
the change frequency reportedly largely depends on
customer requirements, and most changes happen
within the first three to four weeks in a customer
project. In our case, for many systems, most change
activity does appear to occur in the first period of the
project, but this period is much longer (2-4 months).
Manual examination of some of the changes that oc-
curred after this initial period, suggests that they are
often (critical) bug-fixes or minor changes requested
by the customer. For example, P; was changed
on 31 July 2015 after being inactive for almost
a year (311 days). Manual analysis of this change
shows that this change was triggered by a customer re-
quest after the physical production line was modified.

The change activity of MES-Toolbox systems seems
consistent with observations by Lettner, Angerer,
Griinbacher, et al. (2014), who stressed the impor-
tance of platform quality characteristics like stability
and backward compatibility, and long-term platform
evolution in the domain of industrial automation. The
oldest system we analyzed was 11 years old, and still
continuously changed. Some systems were inactive for
years before becoming active again due to new cus-
tomer demands. This is not necessarily the case for
other systems developed with clone-and-own. Stanci-
ulescu, Schulze, and Wasowski (2015) found forks in
the Marlin ecosystem, an open source firmware for 3D
printers, to be characterized by a short maintenance
lifetime (101 days on average).

With regard to whether and to what extent MES-
Toolbox systems have been changed in parallel, we
clearly see that multiple MES-Toolbox systems are
changed roughly at the same time. However, the de-
gree of parallel change is not the same for all systems,
nor is it constant over time. Many systems appear to

% of Java Files Diverged

AR
kDR
Th

0t v v v v v
2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017
Date

Number of Lines Diverged (.java files)

150000

100000

50000

0

P-3
P-6

P-4

150000

100000

50000

|

0

P-7 P-9

150000

100000

50000 /
0
P-10

150000

100000

50000

e
0l . 5 5 . . v v 5 + v
2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017
Date

Figure 4: Divergence over time for a subset of PL; > and PL7.2.1 systems in percentage of files and number of lines.

be changed in parallel initially until the development
of one system is done and they no longer change in
parallel. For example, if we look at systems P, and
Ps5, we see a major reduction in change activity of sys-
tem Pj after June 2013, but the development of system
P4 continues. This type of pattern is what we would
expect to see due to a schedule-driven need for inde-
pendence.

Furthermore, we observe at least two vertically
aligned dot patterns. These patterns occur if multiple
systems are changed at roughly the same time, while
many of those systems did not change before or after
that time. Manual inspection of these patterns shows
that both instances were critical bug fixes, manually
merged to most systems on the same day, regardless
of the development schedule of the systems. The fact
that we do not see many of these vertical line patterns
suggests that mass-synchronization of many systems
at once does not happen often in the MES-Toolbox
product family.

5.2 Divergence

RQ2. How much do MES-Toolbox systems diverge
from their origin? In this research question, we cal-
culate how much MES-Toolbox systems are different
from their origin, and explore how this property has
changed over time. Figure 4 shows the divergence mea-
surements over time, in terms of percentage of files and
number of lines.

It may be seen clearly that while divergence tends
to increase over time, there is a variance both in the
degree of divergence and rate of divergence. In the first
year of the history of systems P;, P5, P3, and Py, the
proportion of diverged Java files appears to be highly
volatile compared to the other systems. This can also
be seen in divergence in number of lines, but is less
clear.

In terms of percentage of Java files, all systems at
some point in time diverged between 7% and 22.5%
from their origin. This suggests that all systems, even
those that do not frequently change, can diverge sig-
nificantly. In terms of diverged number lines, most
systems did not exceed 50.000 lines (<5%), and only
two systems diverged more than 75.000 lines.

Overall, we see that divergence measured in per-
centage of Java files can be significantly different from
divergence measured in terms of number of lines. In
2014 the diverged number of lines for system Py rapidly
increased from less than 25.000 lines to more than
140.000 lines. We do not see this growth in the file-
based measurement. Manual analysis of this anomaly
shows that a developer deleted a module from the
codebase which was not required for the project but
was causing merge-conflicts.

Even though the codebase of many systems report-
edly hardly required any customer-specific modifica-
tions, they still diverged significantly. For these sys-
tems, this divergence was not caused by changes to the
systems, but by the lack of synchronization of changes

Synchronization Change Activity

Contributed to Origin Retrieved from Origin
P-1 (BDe00000e0000: c ¢ 0o . e o L TTTIRET S TTT R ececs 00 o - .
P-21 |@c® |@e @« o000 .
P-3 |ees o0 ¢ o o @0 00 0000000000 @ ¢+0¢ @ coc o
P-4 | °90c0. |eo ocoe
P-5 | co
P-6 le o P 'Y 'Y} .o .
P-7 | . . . o . |oe 00 @ o eo0. YY) ° 72
P-8 |e0e o ‘e o oo
P-9 | I .
Commits
P-10 | ¢ o0 . o 1

£ ° 2

o P-11 | o . . | o o o0 .

& o5
P-13 | ¢ M ® 10
P-15 | eec@ o e 00 . @® 20
P-16 | | odpe o o o .

P-17 | ¢ @ e o oo
P-18) . . | ® oo L]
P-20 ¢ ‘o .o .
7.21

p-21 le .) o o co
P-23 | o @0
P-25 | | o
P26 | [

2013 2014 2015 2016 2017 2013 2014 2015 2016 2017

Date

Figure 5: Synchronizing Changes of PL7.2 and PL7 2.1 systems.

from their origin to the system. This is a form of inde-
pendent evolution, a pattern of commits where clones
diverge throughout the studied time-interval. How-
ever, some clones were eventually synchronized which
is a form of late propagation, a pattern of commits
where clones diverge, and later in time converge again
after changes are propagated (Schmorleiz and Lammel,
2016).

Thummalapenta et al. (2010) studied clone evolu-
tion patterns for cloning in-the-small, and confirmed
the possibility of late propagation being misclassified
as independent evolution. However, they found that
late propagation patterns always took place in much
less time than their total time interval of observations,
thus concluded that such misclassification would occur
only rarely. Our data suggest that cloning in-the-large
may be much more susceptible to misclassification, as
in our case the systems are often synchronized at ar-
bitrary points in time. System Py did not retrieve any
new changes from its origin for almost a year, after
which a bulk of changes were propagated at once, re-
ducing the proportion of diverged Java files from 7.5%
to less than 4%.

The maintenance overhead caused by divergence
due to late propagation is arguably different from di-
vergence due to customer-specific modifications. This

raises the question; how do we distinguish between
these types of divergence, and how do they affect anal-
ysis tools and techniques? Analyzing differences be-
tween variants is the primary activity performed when
migrated to a more structured software product line
approach. Based on these differences, variants can be
merged into a single variant or points where variation
is needed can be identified. In the context of varia-
tion analysis, differences caused by late propagation
are not necessarily relevant.

5.3 Synchronization

RQ3. Have all MES-Toolbox systems been synchro-
nized with their origin?

To detect whether a change to either PL; 51 or PL7 o
was contributed by one of the systems, we identify
revisions that caused at least one system to converge
one line. In the combined history of PL; 51 and PL7 o,
there were 501 revisions for which this was the case.
We manually inspected these revisions and found that
372 revisions (74%) were correctly classified as changes
contributed by the converging system(s). Out of these
372 revisions, 17 revisions did not have merge-info.
A detection strategy solely based on the presence of
merge-info would have missed these revisions.

To detect whether systems retrieved changes from
their origin, we identify for each system, all revisions
that have merge-info, and caused at least one Java
file to converge with the origin of the system. The
change history of system P, contained 18 revisions
with merge-info, of which 14 caused convergence. Out
of these 14 revisions, 12 (85%) were correctly classified
as changes retrieved from its origin.

Figure 5 shows the synchronizing changes over time.
We see that all systems retrieved changes from their
origin at least once, and most but not all systems con-
tributed changes to their origin. This is different from
Marlin forks, as Stanciulescu, Schulze, and Wasowski
(2015) found that 15% of all forks, and 34% of all ac-
tive forks synchronized at least once with the main
Marlin repository.

While all systems retrieve changes from their origin,
some do so significantly more frequent than others.
Systems P; and Ps retrieved changes from their origin
respectively 202 and 89 times. Furthermore, we see
that the period of time between subsequent synchro-
nizations can be relatively long. For example, system
Ps retrieved changes from its origin on 22 July 2013,
and 8 months later on 24 March 2014. This is con-
sistent with the results in the previous section, where
we identified long time-interval late propagation in the
visualization of divergence over time.

Finally, we observe at least two instances of verti-
cally aligned dots. These patterns can be caused by
multiple systems retrieving changes from their origin
roughly at the same time. Manual inspection of these
patterns shows that both instances were critical bug
fixes, manually merged to most systems on the same
day. The fact that we do not see many of these ver-
tical line patterns suggests that mass-synchronization
of many systems at once does not happen often in the
MES-Toolbox product family.

6 Threats to Validity

Internal Validity During our study, the MES-
Toolbox product family continued to change. To pre-
vent this change from affecting our results, we obtained
a local copy of the repository. This local copy of the
repository was used throughout the study.

We used the merge-info property to determine
whether a commit was a merge. Since this prop-
erty can be incorrect, we additionally checked whether
commits caused systems to converge. We cross-
checked the precision of this technique by manually
inspecting revisions, and achieved a good precision.

While the experience of the author as a developer
of the system may provide a detailed interpretation
of fine-grained changes, this can cause some bias. We
aimed to reduce this threat as much as possible by pro-

viding quantitative data to support our findings and
collaboration with an external supervisor.

External Validity Development practices in other
organizations that use clone-and-own might have dif-
ferent effects on the evolution of the system, which
may lead to different observations. However, some of
our findings are consistent with those of other, inde-
pendent studies.

In our analysis of synchronizing changes, we looked
at the number of synchronizing commits. The number
of commits can be affected by the behavior of individ-
ual developers. Developers can choose to merge each
individual revision, or merge a large number revisions
at once. The first style clearly results in a higher num-
ber of commits compared to the latter, but arguably
requires more effort too.

7 Related Work
Clone Evolution Patterns

Thummalapenta et al. (2010) proposed an approach
for the identification of the evolution of cloned code
fragments over time and categorized the evolution pat-
terns as (a) Consistent Evolution, (b) Late Propaga-
tion, (c) Delayed Propagation, and (d) Independent
Evolution. In our study, we used these patterns to
characterize some of the change patterns we observed
in the evolution of the product family. For example,
Delayed Propagation was used as a strategy to vali-
date the correctness of changes on some variants, be-
fore propagating them to all variants. Independent
Evolution was used to keep the variant as-is after the
project had been commissioned and the testing phase
had already finished.

Similar characteristics were found by Stanciulescu,
Schulze, and Wasowski (2015) in a study on the ad-
vantages and disadvantages of forking using the case
of Marlin, an open source firmware for 3D printers.
They found that important bug-fixes were not propa-
gated and functionality was sometimes developed more
than once. Intuitively you may consider these findings
to be bad practices and drawbacks of clone-and-own.
However, there are situations where this may be de-
sirable, as the authors found that “Once the firmware
is configured and running on the printer, new changes
are not desired”.

In an environment where the potential cost of an
error can be significant, systems are changed as lit-
tle as possible when maintained (Cordy, 2003). In
a clone-an-own based system, this characteristic can
be detected by looking for patterns like Independent
Evolution, the lack of synchronization with the ori-
gin, or redundant code. This is in line with some of
the cloning patterns described by Kapser and Godfrey
(2006). They argued that code duplication can also

have benefits, and described the pros and cons in a
catalog of cloning patterns used in real-world systems.

Software Ecosystem Characteristics

Lettner, Angerer, Griinbacher, et al. (2014) studied
the relevance of characteristics of Software Ecosystems
in the domain of industrial automation and found some
additional characteristics that according to them are
of particular importance in the industrial automation
domain. For example, platform quality characteristics
like stability and backward compatibility, and long-
term platform evolution seemed to be essential to the
success of the studied system. One of the reasons for
this conclusion was that “application engineer B re-
ported that he had to update a ten-year-old version of
the platform software because an important customer
had decided to leave out several platform releases and
then requested a new feature. This led to significant
difficulties in merging the old software version with the
new functionality.”. Developers of the system we study
have reported similar issues with upgrading customer
systems to a new release.

In a later study by Lettner, Angerer, Prahofer, et al.
(2014), the change characteristics and software evo-
lution challenges of the same ecosystem were inves-
tigated. The software change taxonomy of Buckley
et al. (2005) was used to describe qualitatively when,
where, and how changes were made in different parts
of the system and what was affected by changes. The
authors found that the ecosystem is subject to both
continuous and periodic evolution. The core platform
is continuously changed to include new features and
bug-fixes, while those changes are only periodically
released to platform users. The granularity of these
changes is reportedly primarily coarse for customer
requirements, and fine for bug fixes. Propagation of
changes is done by hand, and change impact analysis
is performed manually, based on expert knowledge.

The system we study is in the same domain and
seems to be developed similarly. Our study is different
in a sense that we support our findings with visual
representations of the evolution of the system. For
example, we know that in this case changes are also
propagated by hand, so we developed a technique to
show how frequent this is actually done in the MES-
Toolbox product family.

Crosscutting Concerns

A possible area of interest in the analysis of clone-
and-own evolution is the presence and development of
crosscutting concerns in the system. A crosscutting
concern is a feature whose implementation is spread
across many modules (Marin, Deursen, and Moonen,
2007). If product variants, or clones, exhibit a high

10

degree of variation in the implementation of crosscut-
ting concerns, we expect that this may also affect the
extent to which changes are propagated, and how the
code-bases diverge.

Marin, Moonen, and Deursen (2005) propose a clas-
sification system for crosscutting concerns in terms of
sorts, where a sort is a description based on a num-
ber of distinctive properties. A sort we expect to find
often in this case study is Fntangled Roles. In Object
Oriented terminology this sort is defined as Implement
a method with (entangled) functionality that belongs
to a different concern than the main concern of that
method. A characteristic of clone-and-own is that it
allows application engineers to make these kinds of
fine-grained changes quickly. For example, a customer
wants to be notified when stock levels exceed a certain
value. If there is no such monitoring system in place,
then the fastest solution can be to add this function-
ality to a method that deals in some way with stock-
control. Implementation of a generic solution may ex-
ceed the level of expertise of the application engineer,
and waiting for a platform engineer to develop the so-
lution may take too much time.

Figueiredo et al. (2009) describe 13 patterns of
crosscutting concerns identified in three case studies,
one of which was a software product line. The authors
found that some patterns consistently emerged in sit-
uations with the frequent use of inheritance. They
found that this was often the case in product lines
because “ Program families rely extensively on the use
of abstract classes and interfaces in order to imple-
ment variabilities. The inappropriate modularization
of such crosscutting concerns might lead to future in-
stabilities in the design of the varying modules”

Detection of crosscutting concerns is called aspect
mining. Various aspect mining techniques have been
proposed (Kellens, Mens, and Tonella, 2007; Tourwé
and Mens, 2004; Ceccato et al., 2006). For exam-
ple, fan-in analysis looks for crosscutting functional-
ity by detecting methods that are explicitly invoked
from many methods scattered throughout the code
(Marin, Deursen, and Moonen, 2007). History-based
concern mining techniques analyze change-history to
detect which program entities change together fre-
quently (Breu and Zimmermann, 2006; Adams, Jiang,
and Hassan, 2010). Hashimoto and Mori (2012) devel-
oped a tool that improves history-based concern min-
ing by combining it with fine-grained change analysis
based on abstract syntax tree differencing.

In future work, we intend to use these tools and
techniques to gain a deeper understanding of the
change and divergence patterns we found.

Clone-and-Own in Product Line Engineering

Dubinsky et al. (2013) studied the processes and per-
ceived advantages and disadvantages of the clone-and-
own approach of six industrial software product lines.
They show that cloning is perceived as a favorable and
natural reuse approach by the majority of practition-
ers in the studied companies, mainly because of its
simplicity and availability. They found that practi-
tioners lack the awareness and knowledge about forms
of reuse, and many alternative approaches fail to con-
vince them that they yield better results.

Rubin, Czarnecki, and Chechik (2013) proposed a
framework to organize knowledge related to the devel-
opment, maintenance and merge-refactoring of prod-
uct lines realized via cloning. This framework is a step
towards a recommender system that can assist users in
selecting tools and techniques that are useful in their
situation.

Hetrick, Krueger, and Moore (2006) report on the
experience of a structured, incremental transition from
a clone-and-own approach to software product line
practices. They show that it is possible to make this
transition without a significant upfront investment and
disruption of the ongoing production schedules. The
authors indicate that the file branch factor gradually
reduced during the transition, to a point where all
branches from product line core assets were completely
eliminated. This metric is defined as the average num-
ber of branched files per product, normalized by the
number of products. Our study shows that the num-
ber of branched files per product can vary significantly
between systems and over time. Hence, care has to
be taken when using the average. Furthermore, we
found that products with a similar percentage of files
diverged can vary significantly in terms of total num-
ber of lines diverged.

Antkiewicz et al. (2014) propose an incremental and
minimally invasive strategy for adoption of product-
line engineering. The strategy is called virtual plat-
form, and should allow organizations to obtain incre-
mental benefits from incremental changes to the de-
velopment approach. By studying the development
practices of our industry case, we gain insight into an
industry context and the needs of practitioners. This
may serve as input for recommender systems, require-
ments for the virtual platform, and can be helpful to
practitioners, researchers and tool developers.

8 Conclusion

In this work, we presented the results of our ex-
ploratory analysis of an industry product family de-
veloped using a clone-and-own approach. The goal of
this analysis was to gain insight into how the prod-
uct family has evolved, and to identify clone-and-own

11

related points of interest. First, we explored whether
MES-Toolbox systems have changed in parallel. Next,
we investigated how much the codebase of the systems
diverged from their origin, and to what extent this
changed over time. Finally, we studied the synchro-
nization activity between systems and their origins.

We observed that many MES-Toolbox systems are
changed roughly at the same time, but that the degree
of parallel change is not the same for all systems, nor
is it constant over time. Many systems appear to be
changed in parallel initially until the development of
one system is done and they no longer change in par-
allel. This is consistent with a schedule-driven need
for independence. We further observed a schedule-
independent cause for parallel change, which was the
need to propagate critical bug fixes to many systems
on the same day. This form of mass-synchronization
appeared to have occurred only twice in the history of
the systems we analyzed.

With regard to divergence, we found that all MES-
Toolbox systems we analyzed, including those which
reportedly hardly required any customer-specific mod-
ifications, diverged significantly from their origin. In
terms of the proportion of Java files, all systems di-
verged between 7% and 22.5% from their origin. In
terms of diverged number lines, most systems did not
exceed 50.000 lines (<5%), and only two systems di-
verged more than 75.000 lines. We identified one case
where the divergence measured in percentage of Java
files was significantly different from divergence mea-
sured in terms of number of lines.

During our analysis of divergence over time, we were
able to identify points in time when systems were syn-
chronized with their origin. Our analysis of synchro-
nizing changes confirms these findings, and we found
that all systems we analyzed retrieved changes from
their origin at least once, but not all systems con-
tributed changes back to their origin.

Overall, these results show that products from the
same product family can vary significantly in terms of
change activity over time, divergence from their ori-
gin and synchronization activity. It is important to
keep this in mind when studying product families re-
alized via clone-and-own, as these variations may play
an important role in reducing maintenance overhead.
In future work, we will further investigate these factors
to develop quantitative measures for the assessment of
clone-and-own benefits and drawbacks.

Acknowledgements

We thank prof. dr. J.J. Vinju, the reviewers and other
participants of the SATToSE 2017 seminar for their
helpful input on related literature and the direction of
this study.

References

Adams, B., Z. M. Jiang, and A. E. Hassan (2010). “Iden-
tifying Crosscutting Concerns Using Historical Code
Changes”. In: Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering - ICSE
’10. Vol. 1. ACM, pp. 305-314.

Antkiewicz, M. et al. (2014). “Flexible Product Line En-
gineering with a Virtual Platform”. In: Companion
Proceedings of the 36th International Conference on
Software Engineering - ICSE Companion 2014. ACM,
pp. 532-535.

Berger, T. et al. (2014). “Three Cases of Feature-Based
Variability Modeling in Industry”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Vol. 8767. Springer, pp. 302-319.

Breu, S. and T. Zimmermann (2006). “Mining Aspects
from Version History”. In: Automated Software FEngi-
neering, 2006. ASE’06. 21st IEEE/ACM International
Conference on. IEEE, pp. 221-230.

Buckley, J. et al. (2005). “Towards a Taxonomy of Software
Change”. In: Journal of Software Maintenance and Evo-
lution: Research and Practice 17.5, pp. 309-332.

Ceccato, M. et al. (2006). “Applying and Combining Three
Different Aspect Mining Techniques”. In: Software Qual-
ity Journal 14.3, pp. 209-231.

Cordy, J. R. (2003). “Comprehending Reality - Practi-
cal Barriers to Industrial Adoption of Software Mainte-
nance Automation”. In: Program Comprehension, 2003.
11th IEEFE International Workshop on. IEEE, pp. 196—
205.

Dubinsky, Y. et al. (2013). “An Exploratory Study of
Cloning in Industrial Software Product Lines”. In: Pro-
ceedings of the European Conference on Software Main-
tenance and Reengineering, CSMR, pp. 25-34.

Duc, A. N. et al. (2014). “Forking and coordination in
multi-platform development: a case study”. In: Proceed-
ings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement -
ESEM ’14. New York, New York, USA: ACM Press,
pp. 1-10.

Figueiredo, E. et al. (2009). “Crosscutting Patterns and
Design Stability: An Exploratory Analysis”. In: IEEE
International Conference on Program Comprehension,
pp. 138-147.

Hashimoto, M. and A. Mori (2012). “Enhancing History-
Based Concern Mining with Fine-Grained Change Anal-
ysis”. In: 2012 16th European Conference on Software
Maintenance and Reengineering. IEEE, pp. 75-84.

Hetrick, W. A., C. W. Krueger, and J. G. Moore (2006).
“Incremental Return on Incremental Investment: En-
genio’s Transition to Software Product Line Practice”.
In: International Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications. ACM,
pp- 798-804.

Kapser, C. and M. Godfrey (2006). “"Cloning Considered
Harmful" Considered Harmful”. In: 2006 13th Working
Conference on Reverse Engineering. IEEE, pp. 19-28.

12

Kellens, A., K. Mens, and P. Tonella (2007). “A Survey
of Automated Code-Level Aspect Mining Techniques”.
In: Transactions on Aspect-Oriented Software Develop-
ment IV. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 143-162.

Lettner, D., F. Angerer, P. Griinbacher, et al. (2014). “Soft-
ware Evolution in an Industrial Automation Ecosystem:
An Exploratory Study”. In: Software Engineering and
Advanced Applications (SEAA), 2014 40th EUROMI-
CRO Conference on. IEEE, pp. 336-343.

Lettner, D., F. Angerer, H. Prihofer, et al. (2014). “A Case
Study on Software Ecosystem Characteristics in Indus-
trial Automation Software”. In: Proceedings of the 2014
International Conference on Software and System Pro-
cess - ICSSP 2014. ACM, pp. 40-49.

Marin, M., A. van Deursen, and L. Moonen (2007). “Iden-
tifying Crosscutting Concerns Using Fan-In Analysis”.
In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 17.1, pp. 1-37.

Marin, M., L. Moonen, and A. van Deursen (2005).
“A Classification of Crosscutting Concerns”. In: 21st
IEEE International Conference on Software Mainte-
nance (ICSM’05). IEEE, pp. 673-676.

Rubin, J., K. Czarnecki, and M. Chechik (2013). “Manag-
ing Cloned Variants: A Framework and Experience”. In:
Proceedings of the 17th International Software Product
Line Conference - SPLC ’13. ACM, p. 101.

Schmorleiz, T. and R. Lammel (2016). “Similarity manage-
ment of 'cloned and owned’ variants”. In: Proceedings of
the 81st Annual ACM Symposium on Applied Comput-
ing - SAC ’16. New York, New York, USA: ACM Press,
pp. 1466-1471.

Schrock, S., A. Fay, and T. Jager (2015). “Systematic inter-
disciplinary reuse within the engineering of automated
plants”. In: Systems Conference (SysCon), 2015 9th An-
nual IEEE International, pp. 508-515.

Stanciulescu, S., S. Schulze, and A. Wasowski (2015).
“Forked and Integrated Variants in an Open-Source
Firmware Project”. In: 2015 IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME). IEEE, pp. 151-160.

Thummalapenta, S. et al. (2010). “An Empirical Study on
the Maintenance of Source Code Clones”. In: Empirical
Software Engineering 15.1, pp. 1-34.

Tourwé, T. and K. Mens (2004). “Mining Aspectual Views
using Formal Concept Analysis”. In: Source Code Analy-
sis and Manipulation, Fourth IEEE International Work-
shop on. IEEE Comput. Soc, pp. 97-106.

Yamashita, A. et al. (2017). “Software Evolution and
Quality Data from Controlled, Multiple, Industrial
Case Studies”. In: Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE,
pp. 507-510.

