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ABSTRACT
A document may include mentions of people, locations, organi-

zations, films, product brands and other kinds of entities. Such

mentions are often ambiguous, with no obvious way for a machine

to map them to real world entities, due to reasons like homonymy

and polysemy. The process of recognizing suchmentions in unstruc-

tured texts and disambiguating them by mapping them to entities

stored in a knowledge base is known as Named Entity Recognition

and Disambiguation (NERD) or Entity Linking.

In this paper, we introduce GEEK (Graphical Entity Extraction

Kit), a NERD system that extracts named entities in text and links

them to a knowledge base using a graph-based method, taking

into account measures of entity commonness, relatedness, and

contextual similarity. All relevant data is retrieved at runtime using

public RESTful APIs. GEEK tries to push the performance limits

of a straightforward disambiguation method, that doesn’t require

arduous training or a complex mathematical foundation.

CCS CONCEPTS
• Information systems→ Entity resolution; Information ex-
traction; • Computing methodologies → Natural language
processing; • Mathematics of computing → Approximation al-
gorithms;

KEYWORDS
Named Entity Recognition, NER, Named Entity Disambiguation,

NED, NERD, Google Knowledge Graph, Wikipedia, k-partite graph,
max weight k-clique, worst out heuristic

1 INTRODUCTION
Most pieces of text one can find online are to a large extent unstruc-

tured and unlabeled. Extracting the mapping between named enti-

ties appearing in text and real world objects stored in a knowledge

base contributes a great deal towards understanding unprocessed

written word. As an example, consider the sentence: “Arizona and

Oklahoma are two of the ships that sank in Pearl Harbor during
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the events of World War II.” A human reader, even one that is not

familiar with 20th century history, can easily deduce the mapping

of Figure 1. However, if we try to reproduce the same results using

automated methods, then considerable effort is required in order to

overcome the inherent ambiguity of natural language.

Even though NERD is a challenging NLP task, it has been exten-

sively addressed in past research [22], as it is a crucial component

for any system hoping to grasp the essence of natural language.

The fact that NERD moderates (or ideally eliminates) the equivocal

nature of natural language becomes evident even from our simple

example of Figure 1. Knowing that a document contains references

to two battleships, a military strike, and a war makes it easy to ex-

tract its topics and determine its position in an extended document

collection, with minimal further processing.

This paper introduces GEEK (Graphical Entity Extraction Kit), a

pipeline of tools and methods to perform NERD. It relies on Stan-

ford CoreNLP for the named entity mention extraction task, and on

Google’s Knowledge Graph andWikipedia APIs for collecting infor-

mation on the extracted entities. The collected information is then

mapped onto a graph, thus transforming the task of entity linking

into a graph problem, which is easier to handle. The resulting graph

problem is solved using a heuristic method, which incrementally re-

fines the candidate entities. The entire pipeline is evaluated against

established NERD systems on the GERBIL framework. GEEK is

found to be competitive when compared against these systems in

the NERD task, suggesting that it is a potent alternative to methods

having a more complex analytical foundation.

The rest of the paper is structured as follows: Section 2 models

the NERD process in general terms. In Section 3 we start the pre-

sentation of the proposed system by discussing how it performs

the named entity recognition step, and in Section 4 we discuss the

core of GEEK, the disambiguation step. Section 5 presents an ex-

tensive evaluation of the proposed system by comparing it to other

state-of-the-art systems. Finally, Section 6 discusses related work,

and Section 7 concludes the paper.

2 NERD MODELING
In this section we model NERD in a simple way that may serve

as a general framework for NERD algorithms. We assume that we

have a knowledge base KB, which contains a mapping between

entities of the world and Unique Resource Identifiers (URIs), which

are concise and unambiguous. We also assume that there exists

a set N of all names that can be used in natural language texts
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Arizona and Oklahoma are two of the ships that sank

in Pearl Harbor during the events of World War II.

Figure 1: Named entity disambiguation in a short text.

to denote said entities in KB. According to our natural language

conventions, there is a mapping f between the entities in KB and

those subsets of N that can be used to refer to them:

f : KB → 2
N

This means that every entity inKB can be referred to in texts using

only a specific set of names. If we model a text T as a simple string

consisting of characters, then the appearance of a name n ∈ N in

T means that there is a possible mention of the corresponding KB

entity. The process of finding named entities in unstructured texts

is called named entity recognition (NER), and can be described as

finding substrings of T that map to any name n ∈ N :

NER : T 7→ M

where

M = {m | m is a substring of T and ∃URI ∈ KB s.t.m ∈ f (URI)}

The process of mapping the named entities inM to specific URIs of

KB is called named entity disambiguation (NED). NED is required

because the same name may be used for different entities, i.e. there

may be distinct URIs e1, e2 s.t. f (e1) ∩ f (e2) , ∅. The first step for

disambiguating a mentionm is to generate an appropriate candi-

date entity set form, denoted as Em . This is defined as the set of

individuals in KB that can be referred to asm:

Em = {URI ∈ KB | m ∈ f (URI)}

After we generate candidate entity sets for all named entities in a

text T , NED selects the most appropriate entity from each of those

sets:

NED :m 7→ e ∈ Em , for eachm ∈ M

To sum up, NER identifies individual names in a text T and

NED maps those names to the most appropriate candidates for

them inKB. Clearly, to be more efficient, NED could disambiguate

jointly the entire M . The process of named entity recognition and
disambiguation (NERD) combines NER and NED:

NERD : T
NER
−−−−→ M

NED
−−−−−→ E

where E is the set of URIs finally selected by NED.

Consider text T = “Arizona and Oklahoma are two of the ships

that sank in Pearl Harbor during the events of World War II” of

Figure 1. NER gives us the set of namesM = {Arizona,Oklahoma,

Pearl Harbor,World War II}. Next, we use Google KnowledgeGraph

(GKG) as knowledge base KB and apply NED to map these men-

tions to URIs in KB. The problem is the ambiguity of mentions.

For example:

EArizona = {/m/0vmt, /m/019r32, /m/06rxnl, . . .}

In particular, “Arizona” could refer to the American state of

Arizona
1
, a Pennsylvania-class battleship named Arizona

2
, and the

beverage manufacturing company known as Arizona
3
, among other

candidates. NED needs to identify the correct choice for the specific

text T , one that abides with human understanding of written word:

Arizona 7→ /m/019r32

Oklahoma 7→ /m/01b8zk

Pearl Harbor 7→ /m/0gc1_

World War II 7→ /m/081pw

This mapping is also illustrated in Figure 1.

3 NAMED ENTITY RECOGNITION
As the above-presented model suggests, the first step in any NERD

pipeline is the identification of the named entity mentions setM in

a given textT . This step is important, since the discovery of exactly

those noun phrases that denote named entities directly affects the

quality of the final disambiguation results. For the NER part of

GEEK we use Stanford CoreNLP
4
[15], a constantly evolving NLP

toolkit. In particular, we use its Entity Mentions Annotator, which

analyzes a text T and outputs a list of named entity mentions in T ,
that can be used as an approximation ofM . Stanford CoreNLP offers

three named entity recogintion models, developed using different

training data:

• 3 class model, which discovers entities of type Location,

Person, or Organization.

• 4 class model, which discovers entities of type Location,

Person, Organization, or Misc, so that there’s a category for

entities that don’t match the first three (miscellaneous).

• 7 class model, which discovers entities of type Location,

Person, Organization, Money, Percent, Date, or Time.

Experimentation with the above CoreNLP models revealed that,

while the 3 class model is able to capture most relevant entities,

in some cases it can be complemented by the 4 class and 7 class

models. Moreover, the 3 class model is relatively better in detecting

the full span of multi-word named entities. Thus, aiming for max-

imum named entity recognition coverage, we combine Stanford

CoreNLP’s models using the following three step procedure:

(1) We extract named entities using Stanford CoreNLP’s 3 class

model.

1
https://g.co/kg/m/0vmt

2
https://g.co/kg/m/019r32

3
https://g.co/kg/m/06rxnl

4
https://stanfordnlp.github.io/CoreNLP/

https://g.co/kg/m/019r32
https://g.co/kg/m/01b8zk
https://g.co/kg/m/0gc1_
https://g.co/kg/m/081pw
https://g.co/kg/m/0vmt
https://g.co/kg/m/019r32
https://g.co/kg/m/06rxnl
https://stanfordnlp.github.io/CoreNLP/
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(2) We extract named entities using Stanford CoreNLP’s 4 class

model, but keep only those entities that don’t overlap with

the ones we got from the first step.

(3) We extract named entities using Stanford CoreNLP’s 7 class

model, but keep only those entities that don’t overlap with

the ones we got from the first two steps. Furthermore, we

reject any entities that have types of Money, Percent, Date,

or Time, as we aren’t interested in quantitative or temporal

entities.

We should note that the type Stanford CoreNLP provides for

each detected named entity may not always be correct (people

may be recognized as locations, locations as organizations, and so

on). For this reason, we use Stanford CoreNLP only to identify the

named entity mentions in the text, and we do not use the provided

type information in the disambiguation process.

4 NAMED ENTITY DISAMBIGUATION
4.1 Candidate Entity Generation
After discovering the setM of named entities in textT , the next step
is to find the best mapping between those named entities and the

canonical entities that reside in KB. To that end, for eachm ∈ M
we generate the set of candidate entities Em that contains only

those entities that one could refer to by sayingm, using Google’s

Knowledge Graph (GKG)
5
as our KB. Technically, we achieve

this by using Google’s Knowledge Graph Search API (GKG API)
6
,

Google’s replacement for their deprecated Freebase
7
. Using GKG

API, one can get a ranked list of GKG entities related to a given query

string. In particular, for each matching entity, GKG API returns its

names, the corresponding Wikipedia
8
information, its schema.org

9

types, etc. In our case, we use the API to retrieve GKG entities that

match a certain named entity mention. For example, querying for

“Arizona” fetches a number of entities that match that string, like

the state of Arizona, the Pennsylvania-class battleship, the beverage

company, and so on.

Unfortunately, not all entities this method yields belong to the

set of candidate entities Em for a mentionm. For example, it’s not

unusual that GKG API returns an entity that is missing fields criti-

cal for our disambiguation framework, such as the corresponding

Wikipedia information. Entities missing such important response

fields are deemed useless for our disambiguation pipeline, and are

immediately rejected.

Another inconvenience is that GKG API is a general purpose

tool that has not been specifically designed to serve as generator of

candidate entities to be used for NED. For example, when we query

for “Arizona”, GKG API returns, among other entities, Phoenix, the

capital of the state of Arizona. It is pretty clear what happens here:

GKG API returns not only those entities that could be referred to

by saying “Arizona”, but also entities closely related to “Arizona”.

That may make perfect sense for some applications, but in our

case it poses a serious problem. Given that for a mention m we

want Em to be comprised of only those entities that we can refer to

5
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

6
https://developers.google.com/knowledge-graph/

7
https://developers.google.com/freebase/

8
https://en.wikipedia.org/wiki/Main_Page

9
http://schema.org/

by sayingm, we shouldn’t allow Phoenix to be a candidate entity

for “Arizona”, as no one would use the name of a state to refer to

its capital city. In order to mitigate the effect of this problem, we

turn to Wikipedia for help. We try to make an educated decision

about whether or not an entity can be referred to asm by querying

Wikipedia’s disambiguation pages and redirects. This is achieved by

consulting Wikipedia’s disambiguation pages for candidate entities

and Wikipedia’s redirect pages for possible aliases of entities, and

giving priority to those entities returned by GKG API that are also

returned by Wikipedia (as GKG API returns each entity’s corre-

sponding Wikipedia article). We fetch the required information

using services provided by MediaWiki API
10
. We access the disam-

biguation pages and the redirects via the MediaWiki Links API
11

and the MediaWiki Redirects API
12

respectively.

By combining the aforementioned methods, we manage to con-

struct an approximation for a mention’s set of candidate entities.

Building the sets of candidate entities properly is crucial for a suc-

cessful disambiguation system [7], as, on one hand, including too

few entities in a candidate entity set could lead to the exclusion of

the appropriate entity, and, on the other hand, polluting a candidate

entity set with too many entities could lead the disambiguation

process astray.

4.2 NED measures
After building the set of candidate entities Em for a named entity

mentionm, we need to select a concrete entity e ∈ Em to realize

the mappingm 7→ e . As stated above, our goal is try to make the

same mapping a human reader would make. In order to do that,

GEEK employs three measures akin to human thinking patterns.

4.2.1 GKG resultScore. When we query GKG API with a string

m, then each returned entity is accompanied with a resultScore field.

This is a positive real number that indicates how good a match is

the returned entity for the given request. In our framework, this

value is used as an alternative measure of an entity’s popularity
prior (also known as prior probability or commonness). Popularity
prior is a measure of the conditional probability of one referring to

an entity e , given the mention stringm:

Popularity Prior[e |m] = P[m 7→ e |mentionm appears in text]

This conditional probability can be approximated in various

ways, more prominently using Wikipedia and its links to deduce

how often each surface form is used to refer to a specific entity in

the encyclopedia. Popularity prior’s usefulness as a disambiguation

measure can be explained using what is seemingly a tautology: a

mentionm usually refers to the entity e that is referred to bym
most of the time. However, it is one of the most widely used mea-

sures in NED systems [6, 12–14, 17, 21, 23–25]. Before we can use

resultScore, we normalize it for all entities in each set of candidate

entities Em . As a result, in each Em , the most popular entity will

have a resultScore of 1, and all the rest will have 0 < resultScore < 1.

For example, the most popular entity form = Arizona seems to be

the state of Arizona, as expected.

10
https://www.mediawiki.org/wiki/API:Main_page

11
https://www.mediawiki.org/wiki/API:Links

12
https://www.mediawiki.org/wiki/API:Redirects

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://developers.google.com/knowledge-graph/
https://developers.google.com/freebase/
https://en.wikipedia.org/wiki/Main_Page
http://schema.org/
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Links
https://www.mediawiki.org/wiki/API:Redirects
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4.2.2 Document Similarity. In prior work [13], the first few sen-

tences of an entity’s Wikipedia article have been used to extract the

most relevant terms for the entity. We follow a similar approach.

For every entity e returned by GKG API, the articleBody field con-

tains the first few words of the corresponding Wikipedia article

that describes the entity, denoted asTe . Comparing the entire textT
as a bag of words with those short descriptions can help us discover

which entities are appropriate for the given context. The steps are:

(1) Tokenize T and Te , remove stopwords, and stem the remain-

ing tokens.

(2) Search for T ’s tokens in Te using fuzzy string matching, for

increased flexibility.

(3) Calculate a document similarity measure using the formula

log(1 + |T ∩Te |)/log(1 + |T |). The logarithms serve to make

sure we don’t need high overlap of used words inT andTe to
achieve a high value. Also, the returned value is by definition

normalized.

Simply comparing the words contained in two documents has

the potential to guide the disambiguation process. For example,

returning to Figure 1, the word “ship” would help a human under-

stand that Arizona and Oklahoma are ships, and not states. The

same goes for a system that uses this measure to calculate document

similarity, as the word “ship”, as well as several of its derivatives,

appear multiple times in the respective articleBody fields.

4.2.3 Entity Relatedness. In the literature, it is common to as-

sume that a text contains a few coherent topics [3, 4, 6, 8, 9, 12,

13, 21, 23–25, 27], so its entities are semantically related. This sort

of “semantic locality” allows for joint or collective methods of dis-

ambiguation. These methods process all candidate entity sets of a

document at the same time, and aim to select those entities (one

from each set) that demonstrate maximum semantic relatedness. In

most cases, Wikipedia’s link structure is used as a way to calculate

semantic relatedness between entities. Specifically, the more incom-

ing links are shared between the Wikipedia articles describing two

entities, the more semantically similar those entities are assumed

to be. Most systems [4, 9, 11, 13, 14, 21, 24, 25] utilize an efficient

derivative of the Normalized Google Distance [2] suggested by

Milne and Witten [16], known as the Wikipedia Link-based Mea-

sure (WLM). One can easily gather an article’s incoming links using

the MediaWiki Linkshere API
13
. If IN1 is the set of incoming links

for e1’s Wikipedia article, IN2 is the set of incoming links for e2’s
Wikipedia article, andWP is the set of articles in Wikipedia, then:

WLM(e1, e2) = 1 −
log(max(|IN1 |, |IN2 |)) − log(|IN1 ∩ IN2 |)

log(|WP |) − log(min(|IN1 |, |IN2 |))

Returning to Figure 1, it is clear why relatedness is so important. It is

much easier to disambiguate Arizona and Oklahoma as battleships,

given that Pearl Harbor is the military strike, and, on the same note,

it is pretty straightforward to disambiguate Pearl Harbor as the

military strike, given the text talks about World War II.

4.3 Building the candidate entity graph
Previously, we touched on the positive correlation that exists be-

tween the proposed NEDmeasures and a disambiguation that seems

13
https://www.mediawiki.org/wiki/API:Linkshere

natural to a human reader. However, we need to find a way to com-

bine those measures in a sensible way, as, more often than not, each

of them favors a different disambiguation decision. For example, in

the text shown in Figure 1, the GKG resultScore measure indicates

that Arizona and Oklahoma are states, while document similarity

and entity relatedness indicate that they are, in fact, ships.

We combine those three measures on a graphG , the cornerstone
of GEEK, which we call candidate entity graph. Given a text T
that contains k named entity mentions M = {m1,m2, . . . ,mk },

we generate candidate entity sets E1,E2, . . . ,Ek . Then, for each
candidate entity set Ei = {ei1, . . . eini }, where ni = |Ei |, we add to

G nodes ei1, . . . eini , where each node ei j corresponds to the j-th
candidate entity for mentionmi . We complete the construction of

G , by connecting each node ei j to each node euv , where i , u, with
an undirected weighted edge. The edge’s weight is calculated as a

linear combination of the three NED measures introduced above,

applied for both of the candidate entities ei j (j-th candidate entity

for mentionmi ) and euv (v-th candidate for mentionmu ):

weiдht(ei j , euv ) = a ·

(
b · rs(ei j ) + (1 − b) · sim(T ,Tei j )

2

+
b · rs(euv ) + (1 − b) · sim(T ,Teuv )

2

)
+ (1 − a) ·WLM(ei j , euv )

where rs ≡ normalized GKG resultScore

sim ≡ binary document similarity

0 ≤ a,b ≤ 1

The candidate entity graph G is undirected, weighted, complete,

and k-partite. That means G’s nodes are distributed among k inde-

pendent sets. If two nodes belong to the same independent set, then

they are not adjacent. If they belong to different independent sets,

then they are adjacent and connected by an undirected weighted

edge. The idea behind this is simple: there is no point in connecting

two entities that are candidates for the same named entity mention

mi , as they are mutually exclusive, that is, if ei j , eil ∈ Ei , then
(mi 7→ ei j ) =⇒ ¬(mi 7→ eil ) and (mi 7→ eil ) =⇒ ¬(mi 7→ ei j )
The parameters a and b serve to add two degrees of freedom to the

way we prioritize NED measures. In particular:

• a determines how much we value the matching between a

mention’s string (calculated as GKG resultScore) as well as

the complete text’s string (calculated by document similarity)

and the candidate entity’s attributes, versus how much we

valueWLM .

• b determines how much we value GKG’s resultScore as a

degree of entity commonness, versus how much we value

term-overlap document similarity.

Given that all NED measures are normalized (their values range

from 0 to 1), it follows from the way we calculate the weights of

G’s edges that those weights are also normalized.

4.4 Solving the candidate entity graph
Building the candidate entity graphG is an important step towards

disambiguating the named entities found in text T . That is be-

cause we transform an unstructured, hard to process piece of text

https://www.mediawiki.org/wiki/API:Linkshere
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into a well-defined, abstract data structure we can work with. Of

course, building G is not the end of the story. We need to find a

way to map G to a disambiguation for T ’s entities. This mapping

represents GEEK’s main contribution when compared to the liter-

ature’s graph-based NERD solutions: a straightforward subgraph

extraction method that incrementally eliminates unsuitable candi-

date entities. This leads to a sequence of candidate entity graphs

G(1),G(2),G(3), . . ., where each G(x+1)
better approximates the cor-

rect disambiguation result compared to G(x )
.

Given that G is comprised of k independent sets of nodes, each

set Ei containing candidate entities for named entity mentionmi , it

is clear that we need to select exactly one node ei j from each inde-

pendent set Ei . This process is equivalent to mapping each named

entity mention to exactly one of its candidate entities. However,

what is not clear is the optimal way to perform said mapping. In

our framework, we assume that the correct disambiguation lies in

G’s maximum weight k-clique, denoted as G∗
. G∗

is the induced

subgraph ofG that contains exactly one node from each indepen-

dent set Ei , such that the total weight of the connecting edges is

maximized. Hence, we face the problem of finding a maximum

weight k-clique in an undirected, weighted, complete, and k-partite
graph. Such combinatorial optimization problems have been tack-

led by NERD frameworks in the past, and have been proved to be

NP-hard [12–14, 23]. This is pretty clear on an intuitive level, as

we have to choose one entity from each of k candidate entity sets

Ei , 1 ≤ i ≤ k . If each Ei contains n candidate entities on average,

then our choices for the disambiguation are exponentially many:

nk . Consequently, we cannot hope to create an exact algorithm

to find G∗
, given reasonable runtime and resource consumption

constraints.

In this context, we need to come up with an approximation for

G∗
. To this end, we formulate a heuristic method that is tailored to

our problem specifications. Our goal isn’t to find a general purpose

solution for the maximum weight k-clique optimization problem,

but only a way to solve the problem, given that it arises from a

semantically coherent text and its candidate entities. The method

we suggest is based on the fact that a lot of candidate entities

seem outlandish for a specific textual context. Thus, finding these

out of place entities is the key to our disambiguation algorithm.

For example, in the text of Figure 1, the candidate entity Arizona

Beverage Company seems to be a bad choice for the disambiguation

of mention “Arizona”, as suggested by all three NED measures.

Indeed, the Arizona Beverage Company isn’t usually what one

refers to when one says “Arizona” (low commonness), the text

doesn’t contain any terms that would suggest it’s talking about

this company (low document similarity), and, finally, the beverage

company isn’t related to the other entities in the text (low entity

relatedness).

In order to identify those alien entities in the candidate entity

space, we consider for each candidate entity ei j the disambiguation

in which ei j has the maximum weight contribution. For each can-

didate entity ei j , we define its maximum contribution graph Gei j
as the G∗

candidate in which node ei j has the maximum possible

weight of incident edges. Calculating the Gei j graphs for all can-

didate entities is straightforward, as it only requires visiting ei j ’s
neighbors in G. Each Gei j graph suggests a disambiguation for all

entities inT , and those graphs can be used to identify the alien enti-

ties discussed above. To elaborate further, when we construct Gei j
for a candidate entity ei j , it’s like we are forcing ei j in the given

context, in order to see what happens with our objective function,

which is the resulting graph’s total weight. We hypothesize that

there are two cases:

• ei j is the correct disambiguation choice for mention mi ,

which will be reflected on Gei j ’s increased total weight, as

the NED measures’ values will be high.

• ei j is not the correct disambiguation choice for mentionmi ,

which will be reflected on Gei j ’s decreased total weight, as

the NED measures’ values will be low.

Aiming for an incremental disambiguation process that eliminates

said alien entities, we developed a worst out heuristic method,

which removes the entity that seems most unfitting in each step,

until we achieve disambiguation of all entities. This is more effective

than a best in heuristic, as it is easier to identify the many entities

that don’t fit, rather than those few entities that are correct. An

outline of this method is presented by Algorithm 1. An example of

building the maximum contribution graph for a candidate entity is

presented in Figure 2. It’s important to note that after each removal

step, we need to recalculate the maximum contribution graphs

for our candidate entities, as demonstrated in Figure 3. Solving

the candidate entity graph is the final step in the disambiguation

process, and the entire pipeline is illustrated by a flow diagram in

Figure 4.

1: functionWorstOutHeuristic(G)
2: if |Ei | ≤ 1 ∀i = 1, 2, . . . ,k then
3: return G ▷ disambiguation complete

4: end if
5: for each ei j ∈ G do
6: calculate Gei j
7: end for
8: tied_nodes = {ei j ∈ G : |Ei | > 1 ∧ �euv with |Eu | > 1

such thatweiдht(Gei j ) > weiдht(Geuv )}

9: find e ∈ tied_nodes with minimum incident edges weight

10: return WorstOutHeuristic(G \ e)
11: end function

Algorithm 1: Outline of the worst out heuristic method used
to disambiguate named entities in text. Every function call
isolates the “most outlandish” entity, which is then removed
from graph G, until disambiguation is achieved. Note that
the total weight of the maximum contribution graphs is the
first thing we take into account. However, we use the nodes’
incident edges weights to resolve ties.

5 EXPERIMENTAL EVALUATION
5.1 Datasets
We evaluated GEEK using three kinds of datasets: a small texts

dataset we manually generated, a medium-sized texts dataset com-

prised of Reuters news articles, and a selection of two other datasets

provided by GERBIL [28] (again a dataset containing smaller texts
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E1

e11

E2

e21

E3

e31

e32

α

β

γ

δ

ϵ

Figure 2: Building the maximum contribution graph for
node e11 of independent set E1 in the case of a three-mention
text T . Node e11 greedily chooses nodes e21 and e31 for Ge11 .
This means β ≥ δ . Edges e11–e21 and e11–e31 are chosen be-
cause they are themaximumweight connectors between e11
and the respective node sets E2 and E3. Edge e21–e31 com-
pletes Ge11 ’s edges. We have weiдht(Ge11) = α + β + γ and
contribution(Ge11, e11) = α + β . These two criteria, in that
order, applied for all nodes in G, are used to determine the
node to be eliminated. In this illustration, the number of
nodes in sets E1, E2, and E3 is limited only for the sake of
simplicity.

and another comprised of larger documents), on its web-based plat-

form that facilitates the comparison of several NERD systems
14
.

We note that we didn’t experiment on annotators that have been

already outperformed by the NERD tools provided by GERBIL, such

as Milne and Witten’s Wikipedia Miner system [16].

Small texts dataset. In the interest of our system’s evaluation, we

collected and compiled a dataset of small texts, which are dense in

highly ambiguous named entities. The entities in this dataset were

manually extracted and annotated. Each named entity was mapped

to its best match in GKG and Wikipedia. This dataset was inspired

from the KORE 50 NIF NER Corpus
15
. Its texts were gathered from

online sources, such as encyclopedia articles, news feeds, blog posts,

social media, and so on. It aims to test our system’s disambiguation

capabilities given a limited context and a well defined semantic core.

From now on, it will be denoted as SAT-300 (300 Short Ambiguous

Texts). The SAT-300 dataset is available as part of this paper
16
.

Medium-sized texts dataset. The second part of our experimental

evaluation was performed using a standard benchmark dataset

in the field of NERD. This is a dataset of 231 Reuters news-wire

articles used by Hoffart [11] to compare his own NERD system with

other disambiguation systems found in the literature. Much like

SAT-300’s texts, these were processed by hand, and their named

entities were mapped to a number of knowledge bases, including

14
http://gerbil.aksw.org/gerbil/

15
https://datahub.io/dataset/kore-50-nif-ner-corpus

16
https://github.com/WWW-2018-submission-SAT-300-dataset/SAT-300-dataset
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e11
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e21
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e31

e32

α

δ

ϵ

Figure 3: Continuing on Figure 2, we assume that node e31
has been eliminated. Among other nodes, e11 needs to up-
date its maximum contribution graph Ge11 . Now e11 is con-
nected to e32, as it offers the next highest weight connec-
tion to set E3. Edges e11–e21 and e11–e32 are chosen because
they are the maximum weight connectors between e11 and
the respective node sets E2 and E3. Edge e21–e32 completes
Ge11 ’s edges. Now we have weiдht(Ge11) = α + δ + ϵ and
contribution(Ge11, e11) = α + δ . We conclude that both elim-
ination criteria have been altered, a fact that demonstrates
why we need to update the maximum contribution graphs
after every node removal.

Freebase (GKG’s predecessor) and Wikipedia. This dataset aims to

test our system’s disambiguation capacity when it comes to longer

texts, that may include a larger number of possibly unrelated topics.

From now on, it will be denoted as Reuters-231.

Other datasets. To the end of further experimental evaluation of

GEEK, we turn to GERBIL and use the KORE-50 dataset in order to

assess its performance when it comes to short texts, as well as the

complete CoNLL dataset to test our system on larger texts.

5.2 Evaluation Measures
In order to assess the disambiguation that a system produces for a

single text T , the precision, recall, F1 score, and accuracy measures

may be used. In the context of NERD, precision is the fraction of

correctly disambiguated named entity mentions that are generated

by the system:

precision =
|correctly disambiguated entities|

|disambiguated entities produced by the system|

Recall is the fraction of correctly disambiguated named entity men-

tions that should be disambiguated:

recall =
|correctly disambiguated entities|

|entities that should be disambiguated|

The F1 score is the harmonic mean of precision and recall:

F1 = 2

precision · recall

precision + recall

http://gerbil.aksw.org/gerbil/
https://datahub.io/dataset/kore-50-nif-ner-corpus
https://github.com/WWW-2018-submission-SAT-300-dataset/SAT-300-dataset
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Use given

mentions

Use CoreNLP to

extract mentions

Are named entity

mentions in T given?

Yes No

Query GKG API

for candidate entities

Query Wikipedia disambiguation

pages for T ’s mentions, using

the MediaWiki Links API

Find Wikipedia redirects

for all candidates, using

the MediaWiki Redirects API

Normalize GKG resultScore

for each candidate entity

Calculate term-based

document similarity

for each candidate entity

Query MediaWiki Linkshere API

to find incoming links

for each candidate entity

Build graph G with

parameters a, b

Solve graph G using

heuristic method, as in Algorithm 1

NER

NED

Figure 4: GEEK’s named entity recognition and disambigua-
tion pipeline. First we have the NER step, followed by the
NED step. In the disambiguation step, which is themost crit-
ical, we start by defining a crude estimate of the candidate
entity set by using the GKG API, which is refined with the
use ofWikipedia’s APIs. Next we collect the information we
need to build the candidate entity graph, which is solved in
a heuristic manner.

The evaluation measures of precision and recall are used when

the NERD system is responsible for the step of NER. Oftentimes,

that is avoided, when the named entities to be disambiguated have

already been marked and are provided to the disambiguation sys-

tem straightaway. In this case, only the NED part of the system is

evaluated, and accuracy is used as the only evaluation measure:

accuracy =
|correctly disambiguated entities|

|entities marked in text|

In the case of a collection of texts, one could use precision and

recall to evaluate a system’s NER +NED performance, and accuracy

to evaluate its NED performance, for each and every one of the

texts separately. However, this would turn the experimental results

into a long, difficult to interpret list of numbers. That is why we

use the Micro Average and Macro Average aggregation approach:

• Micro Average: We assume that the dataset’s texts are com-

bined to form a large text, on which we are able to use the

above-provided definitions of precision, recall, and accuracy.

• Macro Average: We evaluate the system’s performance on

the dataset by averaging precision, recall, and accuracy cal-

culated on each of the collection’s texts.

For the sake of space preservation, we use the abbreviations Micro

Average F1 score ≡ µAF1, Macro Average F1 score ≡ MAF1, Micro

Average Accuracy ≡ µAA, and Macro Average Accuracy ≡ MAA.

Similarly to the case of a single text, we use the aggregated version

of accuracy in cases where the named entities to be disambiguated

are given to the disambiguation system as part of its input.

5.3 System Parameterization
Our system includes several parameters that affect the behaviour

and performance of the disambiguation process. The most crucial

elements we need to decide on are:

• The maximum number of entities requested by GKG API.

Reducing this value means we have fewer candidates for

each named entity mention, which makes the disambigua-

tion process easier. On the other hand, increasing this value

means we have richer, more inclusive candidate entity sets,

at the expense of disambiguation efficiency.

• b, which indicates how much we value GKG resultScore

versus document similarity as NED measures when we build

our candidate entity graph G.
• a, which indicates how much we value GKG resultScore

and document similarity versus WLM when we build our

candidate entity graph G.

We tuned these parameters using about a hundred short ambiguous

texts similar to those contained in SAT-300, and we settled on the

following values for our experiments:

• We request a hundred candidate entities for each mention,

which covers most cases without excluding the correct enti-

ties from the candidate entity sets or making the candidate

entity graph unnecessarily complex.

• b = 0.85, whichmeans we value GKG resultScore muchmore

than document similarity. The fact that term-based document

similarity is a rather naive NED measure was obvious from

the early stages of our analysis. Our testing concurs with

this, as the system seems to perform better when the other

NED measures undertake the heaving lifting.

• a ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, meaning

we make a transition from a system that only cares about

WLM (a = 0.0) to a system that only cares about the combi-

nation of GKG resultScore and document similarity (a = 1.0).

We didn’t choose only one value for a, as the best value of a
seems to vary depending on the text in hand. Also, observing

the system’s behaviour with different values of a can give

us insight into its optimal configuration.

5.4 Experimental Results
SAT-300 dataset. The performance of our system on the SAT-300

dataset in terms of the µAF1 and MAF1 measures can be seen in

the SAT-300 relevant parts of Table 1 and Figure 5. We used the F1
score, because in this experiment we fed the texts to the system as

plain strings, and it was the system’s responsibility to recognize

and then disambiguate the named entities.

For comparison, the results obtained fromGERBIL for a sample of

its available annotators on the same dataset using the A2KB task
17

are displayed in Table 2. We note that our system outperforms

other systems on small ambiguous texts. Based on this experimental

analysis, we can draw several conclusions about our system:

17
Full SAT-300 results: http://gerbil.aksw.org/gerbil/experiment?id=201801240021

http://gerbil.aksw.org/gerbil/experiment?id=201801240021
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Table 1: GEEK scores on SAT-300 and Reuters-231 datasets
for different values of a (all values in %).

a
SAT-300 Reuters-231

µAF1 MAF1 µAA MAA

0.0 72.48 71.91 57.53 51.83

0.1 77.65 76.60 61.42 57.78

0.2 83.25 82.55 69.83 67.35

0.3 88.01 87.48 79.37 76.67

0.4 92.13 92.21 85.29 84.03

0.5 92.87 93.58 87.66 87.84
0.6 88.64 89.54 84.21 85.70

0.7 82.41 82.99 82.26 84.31

0.8 74.48 74.90 81.35 83.51

0.9 68.57 68.29 78.65 81.36

1.0 65.08 64.60 76.86 80.27

Table 2: Scores of GERBIL’s annotators when faced with the
A2KB task of finding named entities in SAT-300’s texts and
then linking them to a knowledge base. Best GEEK configu-
ration is appended for comparison (all values in %).

Annotator µAF1 MAF1

AIDA 68.28 63.66

Babelfy 57.29 56.08

DBpedia Spotlight 58.62 54.43

Dexter 46.81 41.35

Entityclassifier.eu NER 35.26 33.39

FOX 39.18 34.97

Kea 2.64 1.39

WAT 60.55 51.92

GEEK 92.87 93.58

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of parameter a

50

60

70

80

90

Ev
al
ua

ti
on

m
ea
su
re
s
(%
)

SAT-300 µAF1
SAT-300 MAF1
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Figure 5: Illustration of our system’s performance on the
SAT-300 and Reuters-231 datasets, as the parameter a in-
creases from 0 to 1.

• The system’s best configuration is a = 0.5. This means that

balancing between GKG resultScore and document similarity

versus entity relatedness yields the best results.

• We notice from Table 1 and Figure 5 that a = 0.0 gives us bet-

ter results than a = 1.0. This means that the most important

measure is entity relatedness. This reflects the nature of our

dataset. Indeed, we anticipate small, semantically coherent

texts to contain highly related entities. We also observe that

GEEK performs better on SAT-300 compared with Reuters-

231. That difference is due to the entities found in the two

datasets: SAT-300 only contains entities stored both in GKG

and Wikipedia, so there are rarely out-of-knowledge-base

entities; this is not true for Reuters-231, as well as the larger

CoNLL dataset below, where exist many entities that don’t

exist in GKG. Those inevitably lead to false positives in the

context of an annotator that always tries to map all mentions

to entities.

• Both Micro Average and Macro Average aggregation mea-

sures give us similar results.

Reuters-231 dataset. The results of the experimental evaluation

of our system using the Reuters-231 dataset can be seen in the

Reuters-231 relevant parts of Table 1 and Figure 5. For this dataset,

we only calculate accuracy because this is the measure used by

Hoffart [11] in the original article. This means that in this case the

system performed only the NED task: we fed the system with the

texts to be disambiguated, along with the named entity mentions

they contain. Our conclusions are:

• The system’s best configuration still is a balanced value of

a = 0.5. In that case, accuracy exceeds 87%. This represents a

5% improvement compared against Hoffart’s AIDA system.

• We notice from Table 1 and Figure 5 that a = 1.0 gives us

better results than a = 0.0. This means that the most impor-

tant measures are GKG resultScore and document similarity.

That’s no surprise, as the Reuters-231 dataset is comprised

of news articles, which contain a fair amount of more or

less unambiguous mentions, which can be resolved without

resorting to entity relatedness.

• In contrast to SAT-300’s experimental results, we see that

the Micro Average and Macro Average approaches behave

somewhat differently in the case of Reuters-231. More specif-

ically, we have µAA > MAA for a < 0.5 and µAA < MAA

for a > 0.5. This variance offers us insight into the way our

NED measures function:

– For small values of a, we prioritize coherence in our texts,

expressed by the relatedness between entities. This deci-

sion works in our favor in the case of texts that contain

a large number of entities, as those are expected to be

semantically correlated, thus easy to disambiguate using

WLM. On the other hand, texts that contain few, possibly

unrelated entities will be harder to process. This means

that the majority of errors is expected to happen in entity-

sparse texts, lowering their individual accuracy measure.

For example, if we have a text T that contains two named

entities and we get one of them wrong, then its accuracy

immediately drops to 50%. Returning to the definition
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of Micro Average and Macro Average aggregation mea-

sures, we conclude that our MAA will be affected, as we

average significantly smaller numbers. Of course, µAA
is not affected in any way, as this measure doesn’t care

about the dataset’s texts individually. That’s why we get

µAA > MAA for a < 0.5.

– For larger values of a, we prioritize commonness and doc-

ument similarity in our texts, expressed by the measures

of GKG resultScore and term overlap. This decision works

in our favor in the case of texts that contain few unrelated

entities, so coherence wouldn’t help. On the other hand,

texts that contain many semantically similar entities are

harder to disambiguate. This means that the majority of

errors is expected to happen in texts containing a high

number of entities, which doesn’t affect their individual

accuracy measure as much. For example, if we have a text

T that contains a hundred named entities and we get one

of them wrong, then its accuracy barely drops to 99%. In

contrast to what we noticed above, we conclude that our

MAA will not be drastically affected. Again, µAA is not

affected in any way. This analysis explains why we get

µAA < MAA for a > 0.5.

KORE-50 and CoNLL datasets. Setting a = 0.5, which from the

experimental evaluation turned out to be the best overall perform-

ing value, we further tested GEEK by comparing its performance

on GERBIL’s A2KB task against the service’s annotators on the

KORE-50 dataset
18
, a dataset similar to SAT-300, but with a higher

level of ambiguity, as well as the complete CoNLL collection of

documents
19
. The results, in terms of the µAF1 and MAF1 scores,

can be found in Table 3. We conclude that GEEK outperforms other

annotators on the small documents of KORE-50, but it does not

achieve top performance when it comes to the larger texts of CoNLL.

This is due to the nature of the disambiguation algorithm applied by

GEEK, where in-document coherence is crucial, and this attribute

is less prominent in larger documents.

To sum up, GEEK seems to outperform the state-of-the-art on

short documents, while being competitive on longer documents.

6 RELATEDWORK
6.1 NER
As mentioned above, the subtask of NER is critical for a NERD

pipeline. When it comes to NER, two main approaches have been

followed in the literature:

• Building a dedicated tool. This could mean anything from

using a statistical approach [3] to training a classifier on

Wikipedia’s links [16]. This approach is the most flexible, as

the developers of the NERD system can tailor the NER com-

ponent to their needs, or even blur the boundaries between

NER and NED [6, 20, 26].

• Using an off-the-shelf tool. This limits the flexibility of the

NER component, but offers the upside of having an estab-

lished and well-tuned framework for the preprocessing step

of entity recognition, which decouples the tasks of NER and

18
Full KORE-50 results: http://gerbil.aksw.org/gerbil/experiment?id=201801280015

19
Full CoNLL results: http://gerbil.aksw.org/gerbil/experiment?id=201801280016

Table 3: Comparison of GEEK with GERBIL’s annotators
when faced with the A2KB task of finding named entities
in KORE-50 and CoNLL texts and then linking them to a
knowledge base (all values in %).

Annotator

KORE-50 CoNLL

µAF1 MAF1 µAF1 MAF1

AIDA 58.40 52.58 67.35 64.23
Babelfy 56.45 52.63 44.81 39.66

DBpedia Spotlight 35.24 28.50 53.92 51.27

Dexter 23.28 17.00 47.47 43.40

Entityclassifier.eu NER 29.97 26.97 44.92 42.03

FOX 28.02 25.31 57.23 57.26

Kea 50.31 46.27 39.81 36.10

WAT 51.95 39.63 67.22 64.21

GEEK 62.90 61.50 53.69 51.16

NED. One such tool is Stanford NER
20
, used by Hoffart [11]

in his NERD system. An evolution of this tool, in the form

of Stanford CoreNLP, is also used in our framework.

6.2 NED
Even though the NER options are pretty straightforward, the NED

methods vary wildly across the literature. A non-exhaustive list of

NED systems that stand out for the novel ideas they introduced

follows: Bunescu and Pasca [1] were the first to appreciate the value

of Wikipedia’s structured information, like articles, redirects, and

disambiguation pages, to the end of entity disambiguation. They

introducedWikification, the idea of mapping textual mentions to

Wikipedia articles. After that point, all successful NERD systems

used Wikipedia as a resource in one way or the other. Cucerzan

[3] created the first system that executes NERD in an end-to-end

process, getting unstructured text as input, recognizing entities,

and mapping them to Wikipedia. Also, his work introduces the po-

tential value of joint or collective disambiguation. Milne andWitten

[16] introduced a novel way to recognize mentions by training a

classifier on Wikipedia data and stressed the importance of prior

probability or commonness in the NED process. However, their

greatest contribution was the repackaging of Normalized Google

Distance into the Wikipedia Link-based Measure, an efficient and

effective way of calculating entity relatedness, which was used by

the majority of NERD frameworks that followed. Kulkarni et al. [13]

implemented the first full-fledged collective disambiguation system.

They also made significant contributions to the algorithmic side

of collective disambiguation, recognizing its high complexity and

resorting to heuristic methods. Graph-based collective inference

methods are among the most successful in the field of entity linking.

As is the case with GEEK, these methods always reduce the text to

an appropriate graph, which can guide the disambiguation process.

Han et al. [10] and Hoffart [11] proposed graph based structures

that combine the disambiguation features of the respective systems

and model the entity disambiguation task in an intuitive manner.

Moro et al. [18] decided to build their graph using random walks,

20
https://nlp.stanford.edu/software/CRF-NER.shtml

http://gerbil.aksw.org/gerbil/experiment?id=201801280015
http://gerbil.aksw.org/gerbil/experiment?id=201801280016
https://nlp.stanford.edu/software/CRF-NER.shtml
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while Piccinno et al. [19] suggested a plethora of different algo-

rithms for the solution of their graph. Ganea et al. [5] introduced a

probabilistic graphical model for collective disambiguation.

7 CONCLUSIONS
In this paper we introduced GEEK, a framework that tackles the

difficult task of NERD by combining well-established measures,

such as commonness of entities and coherence, with new potent

tools, such as the Google Knowledge Graph Search API. We pro-

posed a graph representation of texts, which allowed us to model

disambiguation as a concise graph-based problem and solve it using

a heuristic method that finds the best clique in a stepwise manner.

The main strength of GEEK is that it is built on top of publicly

available data sources and has a straightforward graph algorithm at

its core. Moreover, the experimental evaluation on GERBIL showed

that GEEK produces competitive scores in comparison with other

state-of-the-art systems, which suggests that one does not always

need specialized knowledge bases or sophisticated disambiguation

algorithms to achieve a high quality disambiguation result.
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