
What Factors Influence the Design of
a Linked Data Generation Algorithm?

Anastasia Dimou

anastasia.dimou@ugent.be

IDLab, Dep. of Electronics and Information Systems,

imec – Ghent University

Pieter Heyvaert

pieter.heyvaert@ugent.be

IDLab, Dep. of Electronics and Information Systems,

imec – Ghent University

Ben De Meester

ben.demeester@ugent.be

IDLab, Dep. of Electronics and Information Systems,

imec – Ghent University

Ruben Verborgh

ruben.verborgh@ugent.be

IDLab, Dep. of Electronics and Information Systems,

imec – Ghent University

ABSTRACT
Generating Linked Data remains a complicated and intensive engi-

neering process. While different factors determine how a Linked

Data generation algorithm is designed, potential alternatives for

each factor are currently not considered when designing the tools’

underlying algorithms. Certain design patterns are frequently ap-

plied across different tools, covering certain alternatives of a few of

these factors, whereas other alternatives are never explored. Con-

sequently, there are no adequate tools for Linked Data generation

for certain occasions, or tools with inadequate and inefficient algo-

rithms are chosen. In this position paper, we determine such factors,

based on our experiences, and present a preliminary list. These fac-

tors could be considered when a Linked Data generation algorithm

is designed or a tool is chosen. We investigated which factors are

covered by widely known Linked Data generation tools and con-

cluded that only certain design patterns are frequently encountered.

By these means, we aim to point out that Linked Data generation

is above and beyond bare implementations, and algorithms need to

be thoroughly and systematically studied and exploited.

1 INTRODUCTION
Generating Linked Data remains a complicated and intensive engi-

neering process, despite the significant number of existing tools.

Most solutions primarily choose their own (often non-interoperable)

approach. Format- and source-specific approaches were investigated
asmore generic alternatives [4]. In all cases, rules define how Linked

Data should be generated. These rules often remain implicit and em-

bedded in the implementation e.g., the DBpedia Extraction Frame-

work, but more generic solutions distinguish them and turn them

explicit and declarative, e.g., [R2]RML processors.

The rules cover a use case’s context, whereas the execution algo-
rithm covers its technical and functional requirements. On the one

hand, each use case’s context—how the Linked Data is modeled or

which vocabularies are used to generate Linked Data—is described

within the rules and does not influence the algorithm’s design. For

instance, the rules consider the adequate ontology terms to annotate

the data. On the other hand, different factors related to technical

and functional requirements of each use case determine how an

LDOW2018, April 2018, Lyon, France
© 2018 Copyright held by the owner/author(s).

algorithm should be designed as well as how third-parties choose

the most adequate tool. Potential alternatives for these factors af-
fect how efficiently the rules are executed to generate Linked Data.

For instance, “What is the purpose? Is the Linked Data consumed

immediately or is it published for future use?” or “What triggers
the generation? Is the Linked Data generated from a real-time data

stream which needs to be immediately processed, or on demand?”.

Certain design patterns are noticed to be frequently applied

across different tools, covering particular alternatives of these fac-

tors, whereas other alternatives or factors were never explored.

For instance, if we lack tools whose algorithms support real-time

data streams, Linked Data can be generated by storing the data

in a database and using corresponding tools, e.g., Morph-streams.

Thus, there are often no adequate tools for Linked Data genera-

tion for certain occasions or tools with inadequate and inefficient

algorithms are chosen as best alternatives.

However, those factors were not thoroughly and systematically

studied so far, nor were the algorithms’ designs. Different solutions

do not concretely describe the algorithms that drive their imple-

mentation while optimizations are applied according to specific use

cases, decreasing a tool’s chances to be reused. The algorithms are

not designed considering different factors and the use case’s tech-

nical and functional requirements are not matched to any factors.

In this work, we present a preliminary list of factors that could

be considered. We do not aim for a complete list. This is a position

paper whose goal is to provide insights and raise awareness, as

Linked Data generation goes beyond and above bare implementa-

tions. We reviewed a few of the pioneering and broadly used tools

that cover one or more of these factors and discuss the results of

our observations. By these means, we aim to ensure that one can

(i) choose or design the most adequate algorithm, and (ii) generate

Linked Data without being restricted by tooling limitations.

The remainder of the paper is structured as follows: In Section 2,

we discuss the preliminary list with different factors that we identi-

fied and in Section 3 we investigate which factors each tool covers

in Section 4, we outline our conclusions.

2 EXECUTION FACTORS
Different factors determine how an algorithm should be designed

for generating Linked Data. A factor can be any fact or circum-

stance that contributes to the envisaged result, i.e., the Linked Data



LDOW2018, April 2018, Lyon, France Anastasia Dimou, Pieter Heyvaert, Ben De Meester, and Ruben Verborgh

Table 1: Factors affecting Linked Data generation, when it
occurs and which the associated elements are.

factor element generation’s execution
data rules before during

purpose ✓
direction ✓ ✓

materialization ✓
location ✓ ✓

driving force ✓ ✓ ✓
trigger ✓

dynamicity ✓ ✓ ✓
diversity ✓ ✓ ✓

complexity ✓ ✓ ✓

generation. Those factors are related to (and often dependent on)

the elements involved in a Linked Data generation activity:

data both raw data to generate the desired Linked Data from,

as well as existing Linked Data.

rules mapping rules that define how LinkedData are generated

relying on available data.

tools tools that apply mapping rules to data and generate

Linked Data.

Multiple factors determine how Linked Data is generated fulfill-

ing different technical or functional requirements posed by different

use cases. The different factors that we identified are outlined below

and summarized in Table 1. For each factor, we outline the two

furthest alternatives to shed light on the options, but intermedi-

ate or hybrid approaches may be adopted as well. The differences

are determined depending on what the generation purpose is (Sec-

tion 2.1), its direction (Section 2.2) and materialization (Section 2.3),

where it occurs (location, Section 2.4), what drives (Section 2.5)

and what triggers the execution (Section 2.6), how dynamic (Sec-

tion 2.7) or diverse the data is (Section 2.8), and the data or rules

complexity (Section 2.9).

Use case. Let us consider a use case that illustrates each factor

with the help of an example. The use case is about an intelligent

transportation search engine, which relies on Linked Data derived

from heterogeneous data sources. The search engine obtains in-

formation about airports from an airline data source, about train

stations from a train data source and about the location of countries,

cities, and addresses from a data source with spatial data.

2.1 Purpose
Different purposes can prompt the Linked Data generation. On a

high level, we identify: production and consumption. The purpose
that drives the generation affects the design choices of the execution

algorithm, but remains independent of the involved elements (data

or rules). The fundamental difference lies on the extend of use cases

that the Linked Data generation task aims to cover:

Production Linked Data generation can be driven by a pro-

duction need, i.e., a data owner generates Linked Data to an-

notate and turn the data publicly available. Production-driven

generation remains independent of the data’s potential con-

sumption which should then be adjusted to the Linked Data

as it becomes available.

Consumption Linked Data generation can occur due to cer-

tain consumption needs, namely a data consumer requires to
process Linked Data which still need to be generated from

raw data. Thus, the generated Linked Data is the response

for a particular consumption need.

Example. NMBS, the Belgian train provider, has a legal obli-

gation to publish information about train stations. Different data

consumers can profit of this Linked Data, which is already produced,
to build intelligent applications adjusted to the already generated

Linked Data. The Belgian Airlines, Belgium’s national airlines, want

to identify all airports where its airplanes fly to. This consumption
need leads to generating Linked Data specifically for this purpose.

2.2 Direction
LinkedData generationmight follow different directions [10], which

are determined by the available data:

Target-centric The execution is focused on describing a set

of views over the data source(s). The approach is same as the

Global-As-View (gav) formalism for data integration [6, 11].

When mapping among different data models, it is possible

to define one of the data models as a view onto the other

data model [10]. The target might be (i) a certain graph pat-
tern derived from existing Linked Data, whose schema is

desired to be replicated; (ii) a given query (results-driven
editing approach [8]); (iii) a given schema (a combination

of ontologies and vocabularies – schema-driven editing ap-

proach [8]); or (iv) a set of mapping rules (model-driven edit-

ing approach [8]). For instance, a data owners has a data

source, while other data is already described as Linked Data.

The data owner then generates its own Linked Data, consid-

ering a certain target.

Source-centric The execution is focused on describing the

entities of each data source, independently of other data

sources (data-driven editing approach [8]). The approach is

similar to the Local-as-View (lav) formalism for data inte-

gration [6, 11], as a mapping occurs from the original data

source(s) to the mediated schema (Linked Data or schema),

making it easier to add and remove data sources. For in-

stance, a data owner has two data sources. She defines rules

to semantically annotate those data sources, without being

concerned about similar or complementary data which is

already available as Linked Data.

The direction is determined before the generation activity is trig-

gered, and depends mainly on the available data and rules. Different

execution algorithms may be designed that support either the one

or the other, or both directions.

Example. Following our use case, the Belgian Airlines specify

a set of sparql queries which act as the target. The rules are de-
fined for each data source specifically, so the resulting Linked Data

matches the sparql queries’ graph patterns. nmbs specified a set

of rules to generate its own Linked Data from its own available

sources (source-centric).



What Factors Influence the Design of
a Linked Data Generation Algorithm? LDOW2018, April 2018, Lyon, France

2.3 Materialization
In relational databases, views simplify a database’s conceptual

model with the definition of a virtual relation [1]. A materialized
view is a database that contains results, while the process of setting

up a materialized view is called materialization [1]. To achieve this,

different materialization strategies exist [7]. In the same context,

the Linked Data generation materialization differs on when the

consumption occurs, i.e., dumping or on-the-fly [10], affecting the

corresponding algorithms. On the former case, long term consump-

tion is expected, whereas, on the latter, direct. The materialization,

as the purpose of execution, does not depend on the elements in-

volved in the Linked Data generation, and it impacts before the

Linked Data is generated.

Dumping A data dump is generated into a volatile or persis-

tent triplestore, aiming to provide a view of the data (similar

to a materialized view in relational databases).

On-the-fly This occurswhen the LinkedData generation takes

place on-the-fly (as a non-materialized view).

Example. NMBS dumps the train station Linked Data in a triple-

store, which is used for storing and retrieving Linked Data, whereas

the Belgian Airlines generates the airports Linked Data on-the-fly
when a query is executed without storing it.

2.4 Location
The elements involved in Linked Data generation might reside

on different sites. The fundamental difference lies in where the

data and rules reside, and where the execution takes place. That

is determined before the Linked Data generation is initiated and

affects how the algorithms are designed. For instance, how the input

data is retrieved or processed differs. We identify the following:

In-situ Linked Data generation is performed in-situ when it

is addressed by the same site that holds both the tool and

data. For instance, a data owner has the data and rules locally
stored and in the same place as the tool that executes the

rules to generate the Linked Data.

Remote Linked Data generation occurs remotely when the

tool does not reside on the same site as the data and rules.

For instance, the tool is a remote service, e.g., Software-as-a-

Service (SaaS). To the contrary, the tool may reside locally,

but the data and rules not.

Example. The train stations Linked Data is generated in-situ, as
both the tool and data might be on the same site. To the contrary,

the data for airports might reside remotely from the site where the

tool to generate the Linked Data is.

2.5 Driving force
The rules to generate Linked Data can be executed using alternative

driving forces [4], namely rules and data, or any combination of the

two (hybrid), and algorithms are affected depending on the element

that drives the Linked Data generation. Which approach is followed

depends either on the data or rules.

Mapping-driven The processing is driven by rules which

prompt the Linked Data generation and adequate data is

employed. For instance, a data consumer poses a query that

is translated to rules or directly provides rules based on

which Linked Data is generated.

Data-driven The execution is driven by data which prompts

the Linked Data generation and adequate rules are executed.

Once this data reaches a Linked Data generation tool, a new

execution is triggered to generate Linked Data according to

rules associated to this data.

Example. Once an updated version of the train stations is avail-

able, the data might be sent to a Linked Data generation tool and

prompts a new generation round (data-driven). The airports Linked
Data generation is triggered by the rules which specify the corre-

sponding data sources (mapping-driven).

2.6 Trigger
Linked Data generation can occur real-time or ad-hoc [9]. While it

is independent of the elements involved in Linked Data generation,

as it occurs with the purpose and materialization, it affects the algo-

rithms design, e.g., real-time execution requires timely generation.

Real-time Real-time execution is related to the notions of

event, i.e., “any occurrence that results in a change in the
sequential flow of program execution” and response time, i.e.,

“the time between the presentation of a set of inputs and the
appearance of all associated outputs”.

On-demand On demand execution occurs if agents trigger the

execution to generate Linked Data when desired.

Example. The train stations generation occurs real-time, as every
time the data is updated, new Linked Data is generated. If the train

stations Linked Data is not generated every time a new version is

available, its generation occurs on-demand.

2.7 Dynamicity
A data source’s dynamicity might differ, influencing how the Linked

Data generation occurs. Thus, it affects how an algorithm is de-

signed and a corresponding tool is implemented. For instance, the

memory allocation is influenced. This factor depends on the data,

but not on the rules, and affects the generation both before and

while it is executed.

Static data A static data structure refers to a data collection

that has a certain size.

Dynamic data A dynamic data structure refers to a data col-

lection that has the flexibility to grow or shrink in size. For

instance, it might not be possible to obtain all data, as the

data can be infinite in size.

Example. The train stations original dataset is static: when the

Linked Data generation is triggered, the original raw dataset’s size

is known. The airport’s dataset is dynamic: its returned size is not

foreseen, as it depends on a query’s answers.

2.8 Diversity
Linked Data generation may occur based on a single or multiple

data sources. The different data sources might be homogeneous or

heterogeneous with respect to their structure, e.g., tabular, hierar-
chical or attribute-value pairs, their format, e.g., CSV, ML, JSON, or

their access interface, e.g., database connectivity, Web APIs or local



LDOW2018, April 2018, Lyon, France Anastasia Dimou, Pieter Heyvaert, Ben De Meester, and Ruben Verborgh

files [5]. The diversity factor influences the Linked Data generation

both before, e.g., what is supported, and during the execution, e.g.,

how heterogeneous data sources are aligned.

Homogeneity Data with same data structure and format.

Heterogeneity Data with different structures and formats.

2.9 Complexity
Data or rules complexity affects the algorithm’s design.

Data The original dataset’s size or e.g., the depth of a data

source which is hierarchically-structured can influence how

the Linked Data generation is accomplished. For instance,

big datasets require to be treated differently than smaller,

as parallelization or distribution might be preferred which

might be an overhead for smaller datasets.

Rules The rules complexity might be affected by e.g., the de-

sired transformations and (cross-sources) joins.

All in all, the purpose, direction, materialization, driving force,
and trigger affect the Linked Data generation before the execution
occurs, whereas the location, and complexity affect during execution,
while the dynamicity and diversity influence both before and during.
All these should be taken into consideration when designing the

corresponding algorithms.

3 TOOLS
We outline the pioneering and broadly used open source rule-based

tools for Linked Data generation which support the W3C recom-

mended R2RML language [3] or its extension for heterogeneous

data sources, RML [4].We investigate which factors each tool covers

and we discuss the results.

DB2triples. DB2Triples1 is a tool for extracting data from rela-

tional databases, semantically annotating the data extracts accord-

ing to R2RML rules and generating Linked Data. It implements the

two W3C specifications for generating Linked Data from databases,

i.e., R2RML [3] and Direct Mapping [2]. It is an open-source system

released under GNU Lesser General Public License, version 2.1
2
.

DB2Triples is adequate for generating LinkedData for production,
but not for consumption. It is a command-line tool that dumps the
generated Linked Data to a file. It only considers local (in-situ),
homogeneous and static databases. Its function is prompt by the

mapping and occurs on-demand, while it does not address neither
data nor rules complexity.

Morph. Morph
3
is a tool for Linked Data generation from data

residing in relational databases. It supports (i) data upgrade, which
generates Linked Data from a relational database, according to

certain R2RML mapping rules; and (ii) query translation, which
evaluates SPARQL queries over virtual Linked Data, by rewriting

those queries into SQL. Morph employs a query translation algo-

rithm from SPARQL to SQL with different optimizations during the

query rewriting process, to generate more efficient SQL queries. It

is an open-source system released under Apache License, Version

1
DB2triples, https://github.com/antidot/db2triples

2
GNU LGPL, version 2.1, https://goo.gl/Wi7qbV

3
Morph, https://goo.gl/JtAyFL

2.0. Morph-streams
4
is an extension over Morph for evaluating

SPARQL-Stream queries over a range of data streams. It allows

to register SPARQL-Stream continuous queries over an R2RML-

wrapped data source, apply query-rewriting and receive updated

results as soon as the queries are evaluated.

Morph allows to generate Linked Data for both production and

consumption by both dumping the Linked Data, when they are

generated for production, and consuming on-the-fly them, when

they are generated for consumption. Similarly to DB2triples, Morph

may only be used with in-situ (except for CSV files which can be

remote and get accessed via HTTP) and homogeneous raw data,

but it can support both dynamic and static data. Morph functions

mapping-driven and on-demand. To a certain extend, Morph tries to

address the query translation (SPARQLtoSQL) complexity. Morph-

streams generates Linked Data from both static and dynamic data,
on-demand and real-time from heterogeneous data sources imported

though in a homogeneous database. Morph-streams tries to address

complexity with respect to query-rewriting.

Ontop. Ontop5 is another tool that allows to query relational

databases as Virtual RDF Graphs using SPARQL, as Morph does too.

It translates SPARQL queries into Datalog rules before transforming

them into SQL queries (query-translation). Similarly to Morph,

Ontop covers the same factors and tries to address complexity with

respecto to query translation.

R2RMLParser. The R2RMLParser
6
is a tool that relies on R2RML

mapping rules to generate Linked Data from relational databases.

The R2RML Parser deals in principle with incremental Linked Data

generation. In more details, each time a Linked Data generation

task is executed, not all of the input data should be used, but only

the one that changed (so-called incremental transformation). The

R2RMLParser is released under the Creative Commons Attribution-

NonCommercial 4.0
7
license.

The R2RMLParser can be characterized as mapping-driven and

on-demand. The generation occurs for production reasons and the

Linked Data is dumped when generated. As the aforementioned

tools which are focused on relational databases, the R2RML parser

focuses on local, homogeneous raw data. However, it seems to ad-

dress to a certain extend, the dynamicity (both static and dynamic)
and complexity of the data with respect to time.

XSPARQL. XSPARQL8 performs dynamic query translation to

generate Linked Data from different sources. XSPARQL primarily

provides a query-driven approach that combines XQuery [17] and

SPARQL [34, 47]. This way, it allows to query data in XML and RDF

using the same framework, and supports both the generation of RDF

from XML (lifting), and XML from RDF (lowering). XSPARQL was

extended to also support Linked Data generation from databases

combining SQL and SPARQL via R2RML rules, but Linked Data

cannot be generated from both XML and databases.

XSPARQL does support heterogeneous data to a certain extend,

but it is limited to data in XML format and relational databases.

4
Morph-streams, hhttps://goo.gl/FYr9Lc

5
Ontop, https://github.com/ontop/ontop

6
R2RMLParser, http://github.com/nkons/r2rml-parser

7
Creative Commons Attribution-NonCommercial 4.0, http://creativecommons.org/

licenses/by-nc/4.0/

8
XSPARQL, http://xsparql.deri.org/

https://github.com/antidot/db2triples
https://goo.gl/Wi7qbV
https://goo.gl/JtAyFL
hhttps://goo.gl/FYr9Lc
https://github.com/ontop/ontop
http://github.com/nkons/r2rml-parser
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://xsparql.deri.org/


What Factors Influence the Design of
a Linked Data Generation Algorithm? LDOW2018, April 2018, Lyon, France

Extending it to support other heterogeneous data requires new

pipelines, as each format is separately addressed and combination

of heterogeneous data is not feasible. Otherwise, XSPARQL is a

consumption-driven tool which generates Linked Data on-the-fly,
relying on local data and is prompt on-demand by the rules.

RMLMapper. The RMLMapper
9
is an RML Engine, i.e., a rule-

based Linked Data generator for data sources accessed using differ-

ent protocols containing data in various structures, formats, and

serializations, e.g., CSV, XML and JSON. It is written in Java and

can be used on its own via a command-line interface or its modules

separately in different interfaces, e.g., as a library or remote service.

It is released under MIT license.

In contrast to the tools mentioned above, the RMLMapper fo-

cuses on heterogeneous and both local and remote data to generate

Linked Data. However it still deals with static data and it does not

optimize neither data or rules complexity. It follows an on-demand
and mapping driven approach and dumps the data in a file or any

other triplestore.

CARML. CARML
10

is also an RML Engine. It is developed as a

Java library that transforms (semi-)structured sources to RDF based

on rules declared in RML. More precisely, it supports data in CSV,

JSON and XML format. It is an open-source system released under

MIT license
11

that takes a static input and streams it to generate

teh corresponding Linked Data.

CARML follows the same principles as the RMLMapper. It also

focuses on heterogeneous data, follows themapping-driven approach,
and generates Linked Data on-demand. It functions with static that
streams them to generate Linked Data. Nevertheless, as most of the

other tools do not optimize the data or rules complexity.

4 CONCLUSIONS
Overall, we observe patterns, i.e., correlations among different fac-

tors or certain of their alternatives repeat over different tools.

Tools which are consumption-driven typically function both with

static and dynamic data but onlywith homogeneous data.Consumption-
driven tools may be used for production purposes but they are not

optimized for that purpose and cannot handle heterogeneity.
The dynamicity is only addressed by consumption-driven imple-

mentations in the form of dynamic data that answer a certain query.

Even though it is not obvious from the aforementioned, the extend

to which the consumption-driven tools address dynamicity do not

adhere well with the complexity, in particular of data, e.g., its size.

Production-driven tools support heterogeneous data but typically
do not support real-time generation. Only the most recent, CARML,

focuses on Linked Data generation from dynamic data. However,
even then, the dynamicity is caused from otherwise static data.

In general, there are no tools which support the data-driven
approach, as there are no tools which support real-time data.

Moreover, none of the tools put effort into optimizing the com-

plexity of the data or rules nor do they optimize their generation

algorithms. The consumption-driven tools, i.e., Morph and Ontop,

9
RMLMapper, http://github.com/RMLio/RML-Mapper

10
CARML, https://github.com/carml/carml

11
MIT license, https://opensource.org/licenses/MIT

are the only tools which optimize the query translation, when gen-

erating Linked Data, while Morph-streams optimizes the query
rewriting. Query rewriting and translation may be considered as

partially handling the rules and data complexity.
Among the production-driven tools, none addresses complexity.

The R2RMLparser is the only one that aims to address to a certain

extend the data complexity, in its case with respect to time.

Even though data complexity is studied in data mining, neither

results from these studies are applied to Linked Data generation

algorithms nor such algorithms are investigated in this context.

Overall, lack of in-depth understanding of Linked Data gener-

ation complexity and the many degrees of freedom in designing

algorithms to generate Linked Data prevents human and software

agents from effortless generating and directly profiting of large

amounts of Linked Data for use with Semantic Web technologies.

With this position paper, which is not meant to be complete with

respect to the factors or tools, we aim to show the diversity of factors

that influence the Linked Data generation and the limited spectrum

that is covered by current tools. We intent to raise awareness that

the algorithms which drive the Linked Data generation should be

more systematically studied so as human and software agents to

be able to effortlessly and efficiently generate Linked Data.

In the future, we aim to study more thoroughly these factors and

their alternatives. We hope that the factors and their alternatives

will be exploited, more diverse algorithms will be designed and

more efficient tools for Linked Data generation will be developed.

REFERENCES
[1] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization strategies

in a column-oriented DBMS. In Data Engineering, 2007. IEEE 23rd International
Conference on, 2007.

[2] M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda. A Direct Mapping of

Relational Data to RDF. W3C Recommendation, W3C, Sept. 2012.

[3] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF Mapping Language.

W3C Rec, Sept. 2012.

[4] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de

Walle. RML: A Generic Language for Integrated RDF Mappings of Heterogeneous

Data. In Workshop on Linked Data on the Web, 2014.
[5] A. Dimou, R. Verborgh, M. Vander Sande, E. Mannens, and R. Van de Walle.

Machine-interpretable Dataset and Service Descriptions for Heterogeneous Data

Access and Retrieval. In Proceedings of the 11th International Conference on
Semantic Systems, 2015.

[6] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. 2012.
[7] E. N. Hanson. A performance analysis of view materialization strategies. 1987.
[8] P. Heyvaert, A. Dimou, R. Verborgh, E. Mannens, and R. Van de Walle. Towards

Approaches for Generating RDF Mapping Definitions. In Proceedings of the 14th
International Semantic Web Conference: Posters and Demos, volume 1486, 2015.

[9] N. Konstantinou, D.-E. Spanos, D. Kouis, and N. Mitrou. An approach for the

Incremental Export of Relational Databases into RDF Graphs. International
Journal on Artificial Intelligence Tools, 24, 2015.

[10] A. Langegger and W. Wöß. XLWrap – querying and integrating arbitrary spread-

sheets with SPARQL. In The Semantic Web - ISWC 2009: 8th International Semantic
Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009, 2009.

[11] M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings of the
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 233–246, 2002.

APPENDIX

http://github.com/RMLio/RML-Mapper
https://github.com/carml/carml
https://opensource.org/licenses/MIT


LDOW2018, April 2018, Lyon, France Anastasia Dimou, Pieter Heyvaert, Ben De Meester, and Ruben Verborgh

Table 2: Linked Data generation tools, mapping language and supported input formats

carml DB2triples Morph Ontop R2RMLparser RMLMapper XSPARQL

language
R2RML – ✓ ✓ ✓ ✓ ✓ ✓

RML ✓ – – – – ✓ –

input
relational database – ✓ ✓ ✓ ✓ ✓ ✓

CSV ✓ – ✓ – – ✓ –

JSON ✓ – – – – ✓ –

XML ✓ – – – – ✓ ✓

Table 3: Linked Data generation tools and factors

factor carml DB2triples Morph Ontop R2RMLparser RMLMapper XSPARQL

purpose
production ✓ ✓ ✓ ✓ ✓ ✓ –

consumption – – ✓ ✓ – – ✓

materialization
dumping ✓ ✓ ✓ ✓ ✓ ✓ ✓
on-the-fly – – ✓ ✓ – – n/a

location
in-situ ✓ ✓ ✓ ✓ ✓ ✓ ✓
remote ✓ – – – – ✓ n/a

driving force
mapping ✓ ✓ ✓ ✓ ✓ ✓ ✓

data – – – – – – –

trigger
real-time – – – ✓ – – –

on demand ✓ ✓ ✓ ✓ ✓ ✓ ✓

dynamicity
static ✓ ✓ ✓ ✓ ✓ ✓ ✓

dynamic – – ✓ ✓ – – ✓

diversity
homogeneity ✓ ✓ ✓ ✓ ✓ ✓
heterogeneity ✓ – – – – ✓ ✓

complexity
data – – – – (✓) – –

rules – – (✓) – – – –


	Abstract
	1 Introduction
	2 Execution Factors
	2.1 Purpose
	2.2 Direction
	2.3 Materialization
	2.4 Location
	2.5 Driving force
	2.6 Trigger
	2.7 Dynamicity
	2.8 Diversity
	2.9 Complexity

	3 Tools
	4 Conclusions
	References

