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Abstract. Combination of geostatistical interpolation techniques (e.g.
kriging) and machine learning (e.g. neural networks) leads to better pre-
diction accuracy and productivity. Application of an artificial neural net-
work residual kriging (ANNRK) for spatial prediction of soil contami-
nation with Chromium (Cr) is considered in the paper. We examined
and compared two neural networks: Generalized Regression Neural Net-
work (GRNN) and Multilayer Perceptron (MLP). We consider them as
classes of neural networks widely used for the continuous function map-
ping, as well as a combined technique Multilayer Perceptron Residual
Kriging (MLPRK). The case study is based on the survey on surface
contamination by Cr at the subarctic city Noyabrsk, Russia. Structures
of used models have been developed using a computer simulation based
on a minimization of the RMSE. Each technique has its own benefits and
drawbacks; however both demonstrated fast training and good prediction
possibilities. The MLPRK showed the best predictive accuracy.

Keywords: Artificial Neural Networks, Chromium, Residual kriging,
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1 Introduction

Methods for predicting the spatial distribution of impurities on the basis of
sampling (monitoring, screening) are important part of assessing the state of
the environment. In the case when the medium is highly heterogeneous, such
methods have advantages over deterministic ones that require a large number of
input variables.

Kriging methods have been frequently used for soil and sediments proper-
ties prediction [2], [5]. Cokriging is a multivariate kind of the ordinary kriging
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(OK), which calculates estimates for a poorly sampled element with help of
well-sampled highly correlated elements (co-elements) [11].

Accuracy of kriging depends on the density and size of the sample grid,
since the method is based on interpolation. However, it is not always possible to
collect the required number of samples due to time-related or resource-related
constraints. To overcome these shortcomings and improve the accuracy, a more
effective method is required.

Currently, one of the applicable methods of prediction is the machine learning
and, in particular, the artificial neural networks (ANN), which provide many
powerful techniques for predicting, pattern recognition, data analysis, and many
other operations.

Overviews [1], [6] showed the high versatility of the ANNs. Recently, this
method is widely used in handling environmental issues [8]. The ANN models
successfully predict the pollutants content at unmonitored locations [14].

The most frequently used ANN in environmental studies is the multi-layer
perceptron (MLP) and generalized regression neural networks (GRNN). Percep-
trons are widely used in studies on soil chemical elements content assessment [9],
[4], [2]. Many researchers have explored perceptrons for resource estimation [12],
[13] and most of them proved the superiority of the MLP over the geostatistical
and deterministic methods.

The GRNNs are variations of the radial basis functions (RBF) neural net-
works, which are based on the kernel regression networks. The GRNNs are
used as interpolators and are known as universal function approximators, which
can approximate any continuous nonlinear function. The key difference between
GRNNs and MLPs is that the GRNNs do not require the learning process using
long-term iterative procedures as back propagation networks (MLPs etc.).

To neutralize weaknesses and to multiply dignities of the mentioned models, it
has been offered to combine different techniques. Researchers successfully exploit
the hybridization of geostatistical and neural approaches, which lead to better
predictions and lower errors [3], [7], [15].

In this work, we examine two solo ANN-based prediction models (MLP,
GRNN), as well as a hybrid model combining the ANN based forecasting and
cokriging (MLPRK) for prediction a soil pollutant Cr content at a particular
location of the Subarctic Noyabrsk, Russia. We examine the results obtained by
applying the models and compare the models output.

2 Materials and Methods

2.1 Study Area

Data for the study were obtained from the results of the soil survey in Noyabrsk
(N63.1926◦, E75.5066◦) and Yamalo-Nenets Autonomous Okrug (YNAO), Rus-
sia (see Fig. 1(a)). The area of sampling was approximately 16.5 km2. The de-
tailed spatial location of sampling points is shown in Fig. 1(b). The terrain was
flat and covered with sandy soil (Cryosols soil type). Totally, 237 topsoil samples
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at a depth of 0.05 m were collected. Concentration indicators for the elements
were obtained by chemical analysis.

(a) (b)

Fig. 1. The sampling area: (a) Yamalo-Nenets Autonomous Okrug, Russia; (b)
Noyabrsk city (dots are sampling points)

2.2 Chemical Analysis

Preparation of the soil specimens and chemical analysis were conducted in com-
pliance with actual standard requirements. The chemical laboratory involved
with the soil sample preparation and analysis passed through the Russian Fed-
eral Certification System.

2.3 Spatial Prediction of Cr Content by ANN

Study Algorithm. To estimate the pollutant content and to predict its distri-
bution at the unknown locations, three competing techniques was applied: two
ANN methods (MLP and GRNN), as well as a hybrid ANN-geostatistical model
Multi-layer Perceptron Residual Kriging (MLPRK).

The MLPRK is a three-step algorithm combining two different interpolation
techniques in one ensemble. The first step implies estimating large-scale non-
linear trends using neural networks (MLP). The second step is analysis of the
stationary residuals by ordinary kriging (exponential model), which is able to
provide local estimates. The final step is estimation produced as a sum of the
ANN predictions and ordinary kriging estimates of the residuals. In the work,
the ANN predictions were carried out in MATLAB; the ArcGIS application was
performed to predict the values by kriging.

Since further analysis implies the use of the ANN, a method of selecting input
variables (IVS) based on the estimation of partial mutual information (PMI) was
used [10].
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All the samples were randomly split into independent training and test data
sets. The training data set (165 samples) was used for building cokriging, training
the networks, and for interpolating the surface pollutant distribution. The test
data set (72 samples) was used for testing the models only.

Data Isotropy. Values of the experimental semivariogram were calculated de-
pending on the distance between the points in the pair within the lag h. The lag
was selected according to the size of the spatial correlation. With this approach,
the semivariogram value did not depend on the orientation of the pair in space,
which means isotropy of the structure. The variogram constructed in all direc-
tions (omnidirectional) depends on all pairs of points in the domain. To identify
differences in spatial structure depending on the direction the experimental var-
iograms in various directions were applied.

Building ANNs. As first ANN type, a feed-forward multi-layer perceptron
(MLP) with the Levenberg -Marquardt training method was used. The network
structure was determined during computer simulation. The input layer of MLP
was compiled with sampling points; the hidden layer consists of a several neurons,
and the output layer represents the element concentration in the relevant sample.
Selection of the number of neurons in the hidden layer was carried out by the
lower total root mean squared error (RMSE) (5) of prediction of the element (Cr)
concentration for the training (165 samples), test (72 samples), and a complete
set of data (237 samples). The number of neurons was varied from 2 to 20.
Each network was trained 500 times and the best of them was selected. The
network education quality was checked by the Spearmans correlation coefficient,
mean absolute error (MAE) (4), and RMSE between the results of the network
predictions and the training data set.

As the second ANN, the GRNN was chosen. The first layer in the GRNN
resembles the RBF with the amount of neurons that is equivalent to the quantity
of input vectors. Choice of the SPREAD parameter of the RBF, that is known
as a smoothing parameter, determines the width of the input area, to which
each basis function responds. It is the distance from the center of a Gaussian
where the value is one-half of the peak value. The GRNN network had 165 input
neurons according to 165 sampling points formed the training data set. During
the simulation, the SPREAD parameter varies from 0.01 to 0.30 with step 0.01;
totally, 300 simulations were done.

2.4 Residuals Estimation by the Ordinary Kriging

The starting procedure for the residual kriging is the prediction of residual values
by the neural network in the test points. Residuals in the neural network can be
defined as follows:

r(xi) = Z(xi)− ZANN(xi), (1)

where r(xi) are the residuals of data set (xi), Z(xi) are the measured values,
ZANN(xi) are the values estimated by the neural network. The resulting residuals
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were estimated using kriging. Evaluation in ordinary kriging (OK) is constructed
as a linear combination of input data

rOK(x) =
∑

λir(xi), (2)

where rOK is the estimated value at the point x using OK, λi(x) are the optimal
weights with the condition

∑
λi = 1, and r(xi) is the residual of the neural net-

work for the point (xi). The final evaluation of the pollutant content Y (xi) was
obtained as the sum of the neural network evaluation and residuals evaluation
by kriging

Y (xi) = ZANN(xi) + rOK(xi). (3)

2.5 Evaluation of Interpolation Accuracy

The performance of prediction models was based on the model error statistics.
The predictive accuracy of each selected approach was verified by the Spearmans
rank correlation coefficient r, MAE (4) and RMSE (5) between the prediction
and raw data from the training data set.

MAE =

∑n
i=1 |zmod(xi)− z(xi)|

n
, (4)

RMSE =

√∑n
i=1(zmod(xi)− z(xi))2

n
, (5)

where zmod(xi) is a predicted concentration (ANNs, cokriging), z(xi) is a mea-
sured concentration, n is a number of points.

3 Results

3.1 Descriptive Statistics of the Content

During the analysis, the contents of eight elements were obtained (Al, Cr, Mn,
Fe, Co, Ni, Zn, Pb). Correlation analysis (Table 1) revealed possible co-elements
for Cr (in bold). Three of them (Fe, Co, Ni) we used for the cokriging.
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Table 1. Correlation matrix of element contents

Al Cr Mn Fe Co Ni Zn Pb
Al 1
Cr -0.01 1
Mn 0.39 0.54 1
Fe 0.16 0.83 0.69 1
Co 0.04 0.65 0.59 0.64 1
Ni -0.01 0.72 0.60 0.75 0.70 1
Zn 0.34 0.10 0.35 0.18 0.23 0.36 1
Pb 0.34 0.07 0.14 0.07 -0.03 0.17 0.50 1

The descriptive statistics of Cr and its co-elements concentrations are shown in
the Table 2.

Table 2. Descriptive statistics of the modeled element (Cr) and co-elements (Fe, Co,
Ni), mg/kg

Element Min Max Mean SD CV SK RKu MED
Cr 16.6 140 62.4 24.2 0.388 0.805 0.438 58.8
Fe 4751 28270 13268 4397 0.331 0.786 0.748 12673
Co 2.00 11.4 4.50 1.49 0.332 0.989 2.13 4.42
Ni 3.58 41.9 11.3 4.52 0.398 2.23 12.0 11.0

SD is a standard deviation; CV is a coefficient of variation; SK is a Skewness;
RKu is a Kurtosis; MED is a Median.

From the basic statistics table, it is observed that the element attributes are
erratic and positively skewed. The Cr concentrations in all sampling points were
from 16.6 to 140 mg/kg, with an average value of 62.4 mg/kg and a standard
deviation of 24.2 mg/kg. Due to the skewness of the distribution, the median
value (58.8 mg/kg) is more representative of the average Cr content in the study
area than the arithmetic mean. Co-elements demonstrate similar characteristics
when the medians (12673 mg/kg for Fe, 4.4 mg/kg for Co, 11.0 mg/kg for Ni)
are more representative than mean values.

3.2 Spatial Prediction of Cr Concentration

The probability distribution of the Cr concentration for the training sites is
positively skewed and leptokurtic (Table 1). The result of the Chi-Square test
shows that this variable is close to normal distribution (p=0.18).

To demonstrate differences in the spatial structure depending on the direc-
tion, variograms are constructed in six directions (0◦, 30◦, 60◦, 90◦, 120◦ and
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150◦) (Fig. 2(a)). The anisotropy of the raw data in all these directions is invis-
ible on the direction variograms (Fig. 2(a)) and variogram surface (Fig. 2(b)).

(a) (b)

Fig. 2. Variograms in six directions (a); variogram surface for Cr concentration (b)

The final configuration of the MLP network selected was 2-6-1, i.e. the hidden
layer contains 6 neurons (see Fig. 3(a)). In our case, 165 sampling points formed
the training data set that was applied for networks training.

During the simulation for GRNN building, the SPREAD parameter varies
from 0.01 to 0.30 with step 0.01; totally, 300 simulations were done. The minimal
RMSE was achieved with the SPREAD parameter of 0.035 (see Fig. 3(b)).

(a) (b)

Fig. 3. MLP (a) and GRNN (b) frameworks selection based on RMSE minimization:
root mean square error (RMSE) of the neural network for test, training, and overall
data under different neuron number in the hidden layer for Cr
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3.3 Assessment of Accuracy of the Interpolation Methods

Table 3. Accuracy assessment indices of the (Cr) concentration

Method SRCC RMSE, mg/kg MAE, mg/kg
Cokriging 0.15 20.7 15.3

MLP 0.41 19.0 14.7
GRNN 0.09 20.0 15.0

MLPRK 0.42 18.8 14.8

Here, the SRCC is the Spearman’s rank correlation coefficient.

MLP and MLPRK have shown significant increase in modeling accuracy com-
paring to a geostatistical method (cokriging) and even to GRNN. As Table 3
reveals, the MLP-based models had smaller RMSE than cokriging (9.5% im-
provement). MAE index of the MLP-based models are about 4% better than
cokriging ones. The basic GRNN model demonstrated an unexpectedly low cor-
relation coefficient. This means that the method cannot be applied to modeling
in our case.

It is found that application of the hybrid approach (MLPRK) gives an in-
crease in the accuracy of prediction, which corresponds to the previous suggestion
[2].

4 Discussion

We compared approaches to modeling the spatial distribution of the chemical
element concentrations in the surface layer of soil (the geostatistical technique,
ANNs, and hybrid model of MLPRK). A quality of models prediction could be
analyzed with the help of the test data set, which is not applied to training
networks or kriging estimates. Directional variograms of raw data and a vari-
ogram surface of training data are shown in Fig. 4. They confirm absence of
any anisotropy of data. Table 3 shows the statistical parameters used to as-
sess the performance of the different methods (the best values demonstrated by
MLP-based models are written in bold).

The MLPRK model reproduces the spatial structure of the Cr distribution
quite well. This model has extracted structured information leaving out unex-
plained noise and local variability. This is shown on directional residuals vari-
ograms (Fig.4). The study of the residuals confirms importance of the variog-
raphy for analysis and modeling of spatial data with using the neural network
algorithms.
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Fig. 4. Variograms for residuals in directions for MLPRK

5 Conclusion

Comparison of different approaches to prediction of the chemical elements dis-
tribution in the surface layer of soil is carried out. Estimation of the ANN with
prediction of residuals by ordinary kriging reduces the ANN prediction errors,
and increases accuracy of the models. The results show that the MLP-based
models usually are more accurate than the kriging-based ones. In comparison
with cokriging, the most significant improvement of RMSE (9.5%) is observed
in the MLPRK model.

The results confirm possibility of the hybrid ANN-Kriging methods that can
be used to improve the accuracy of modeling the spatial distribution of concen-
trations of chemical elements in the upper layer of soils in urban areas charac-
terising by high heterogeneity. We assume that using (as input) not only spatial
coordinates, but also additional variables will improve the predictive ability of
ANN based models. This is since the variables have a significant correlation
with the predicted variable, for example, the concentration of joint elements,
geographic data, etc.
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