New Models of the Dynamics of Prices in the Real Estate Market Anton Krakhalyov Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090, Novosibirsk, Russia krahalyovanton@mail.ru Abstract. The new model of functioning of the real estate market is developed. Eective algorithms for solving mathematical programming problems modeling the activity of market entities and methods for long-term price forecasting in the market under consideration are proposed. Proposed methods of forecasting can be used in various markets with production. Keywords: Price dynamics model · Real estate market · Long-term forecasting of the prices · Model of dynamics of the Spread Copyright c by the paper's authors. Copying permitted for private and academic purposes. In: S. Belim et al. (eds.): OPTA-SCL 2018, Omsk, Russia, published at http://ceur-ws.org Íîâûå ìîäåëè äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè ? À.À. Êðàõàë¼â Èíñòèòóò ìàòåìàòèêè èì. Ñ.Ë. Ñîáîëåâà ÑÎ ÐÀÍ, Íîâîñèáèðñê, Ðîññèÿ krahalyovanton@mail.ru Àííîòàöèÿ Ðàçðàáîòàíà íîâàÿ ìîäåëü ôóíêöèîíèðîâàíèÿ ðûíêà íåäâèæèìîñòè. Ïðåäëàãàþòñÿ ýôôåêòèâíûå àëãîðèòìû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîãî ïðîãðàììèðîâàíèÿ, ìîäåëèðóþùèõ äåÿòåëü- íîñòü ñóáúåêòîâ ðûíêà, è ìåòîäû äîëãîñðî÷íîãî ïðîãíîçèðîâàíèÿ öåí íà ðàññìàòðèâàåìîì ðûíêå. Ïðåäëîæåííûå ìåòîäû ïðîãíîçèðî- âàíèÿ ìîãóò èñïîëüçîâàòüñÿ íà ðàçëè÷íûõ ðûíêàõ ñ ïðîèçâîäñòâîì. Êëþ÷åâûå ñëîâà: ìîäåëü äèíàìèêè öåí, ðûíîê íåäâèæèìîñòè, äîëãîñðî÷íîå ïðîãíîçèðîâàíèå öåí, ìîäåëü äèíàìèêè Ñïðåäà 1 Ââåäåíèå  1964 ãîäó áûëà îïóáëèêîâàíà ðàáîòà Ë.Â. Êàíòîðîâè÷à [8], êîòîðàÿ îïðåäåëèëà íàïðàâëåíèå ìíîãèõ èññëåäîâàíèé â îáëàñòè îïòèìàëüíîãî ïëà- íèðîâàíèÿ, âûïîëíåííûõ â ïîñëåäóþùèå ãîäû, â òîì ÷èñëå è çà ðóáåæîì, íàïðèìåð, ïî òåîðèè ýêîíîìèêè áëàãîñîñòîÿíèÿ.  îòå÷åñòâåííîé ýêîíîìè- ÷åñêîé íàóêå âîçíèêëà íîâàÿ îáëàñòü èññëåäîâàíèé: ìîäåëè ôóíêöèîíèðîâà- íèÿ ðàçëè÷íûõ ñóáúåêòîâ íàðîäíîãî õîçÿéñòâà. Ýòà îáëàñòü àêòèâíî ðàçâè- âàëàñü, â òîì ÷èñëå, â ìàòåìàòèêî-ýêîíîìè÷åñêîì îòäåëå ÈÌ ÑÎ ÀÍ ïîä ðó- êîâîäñòâîì àêàäåìèêà Â.Ë. Ìàêàðîâà. Åñëè âíà÷àëå èçó÷àëèñü, â îñíîâíîì, îòðàñëåâûå ïðîèçâîäñòâåííûå ñèñòåìû [1],[10], òî â äàëüíåéøåì ðàññìàò- ðèâàëèñü òàêæå ìîäåëè ðåãèîíàëüíûõ ñèñòåì è ìîäåëè íàðîäíîõîçÿéñòâåí- íîãî óðîâíÿ (íàïðèìåð, [11],[12]).  ðàìêàõ èññëåäîâàíèé ìîäåëåé ôóíê- öèîíèðîâàíèÿ â ïîñëåäíèå äåñÿòèëåòèÿ ðàçðàáàòûâàëèñü ìîäåëè îñâîåíèÿ ìèíåðàëüíî-ñûðüåâîé áàçû ðåñóðñíîãî ðåãèîíà [3]-[4] è ìîäåëè ôóíêöèîíè- ðîâàíèÿ ñóáúåêòîâ ðûíêà æèëüÿ (ïîñëåäíèå èññëåäîâàíèÿ îïóáëèêîâàíû ïîêà ÷òî â òåçèñàõ ìîëîäûõ ó÷¼ííûõ).  [1],[5],[10],[11],[12] íå âîçíèêàëî òðóäíîñòåé ïðè äîëãîñðî÷íîì ïðîãíî- çèðîâàíèè òåêóùèõ è ñîïîñòàâèìûõ öåí  ñ÷èòàëîñü, ÷òî èíäåêñ öåí (èí- ôëÿöèÿ) âåëè÷èíà ïîñòîÿííàÿ, ðàâíàÿ, ïðèáëèçèòåëüíî 2,5%.  íàñòîÿùåå âðåìÿ ïðîáëåìà äèíàìèêè öåí ïðåäñòàâëÿåò, ïîæàëóé, íàèáîëüøóþ òðóä- íîñòü ïðè ïðîãíîçèðîâàíèè (ñìîòðè [4] ñòð.4). Òåêóùèé àíàëèç ðûíêà íåäâè- æèìîñòè ïðåäïîëàãàåò èññëåäîâàíèå ñòàòèñòè÷åñêèõ äàííûõ. Îñíîâíàÿ çà- äà÷à òåêóùåãî àíàëèçà ñâîäèòñÿ ê îïðåäåëåíèþ äèíàìèêè ðîñòà èëè ïàäå- ? Ðàáîòà âûïîëíåíà ïðè ïîääåðæêå ÐÃÍÔ (ïðîåêò 16-02-00049). 202 À.À. Êðàõàë¼â íèÿ öåí íà íåäâèæèìîñòü è âûáîðó ñîîòâåòñòâóþùåé àíàëèòè÷åñêîé ìîäå- ëè.  äàííîé ðàáîòå ñòðîèòñÿ ìîäåëü ôóíêöèîíèðîâàíèÿ ñóáúåêòîâ ðûí- êà íåäâèæèìîñòè, â êîòîðîé âîçíèêàþùèå îïòèìèçàöèîííûå çàäà÷è ìîãóò áûòü îáåñïå÷åíû äîñòîâåðíîé èíôîðìàöèåé è ìîãóò ýôôåêòèâíî ðåøàòüñÿ. Îöåíêà íåäâèæèìîñòè ïîäðàçóìåâàåò ñáîð è àíàëèç ðûíî÷íîé èíôîðìà- öèè, âûÿâëåíèå êîëè÷åñòâåííûõ è êà÷åñòâåííûõ ôàêòîðîâ, íàèáîëåå âëèÿþ- ùèõ íà ñòîèìîñòü îáúåêòîâ íåäâèæèìîñòè, ñáîð çíà÷åíèé ôàêòîðîâ ñòîèìî- ñòè, ïîñòðîåíèå ìîäåëè è ðàñ÷¼ò ñòîèìîñòè. Äëÿ òîãî ÷òîáû ïîñòðîèòü òðåíä öåí íà áóäóùåå, â ðàáîòå èñïîëüçóåòñÿ ìîäèôèêàöèÿ ìîäåëè ïðîãíîçà [4], ýòà ìîäåëü ÿâëÿåòñÿ â ñâîþ î÷åðåäü ìîäèôèêàöèåé ìîäåëè äèíàìèêè ñïðåäà ñ ãàðìîíè÷åñêèìè êîëåáàíèÿìè [7]. Èç ðàññìàòðèâàåìûõ â ðàáîòå âðåìåííûõ ðÿäîâ íàì äîñòóïíû öåíû è ïðåäëîæåíèÿ â ïðîøëîì. Òàêæå, â íàñòîÿùåé ðàáîòå íåäâèæèìîñòü ðàçäåëåíà íà ïåðâè÷íîå è âòîðè÷íîå æèëüå, ÷òî ïîç- âîëÿåò áîëåå òî÷íî ïîñòðîèòü ìîäåëü ðûíêà íåäâèæèìîñòè. Îáîñíîâûâàåòñÿ äàííîå óòâåðæäåíèå òåì, ÷òî öåíà íà íîâîå è âòîðè÷íîå æèëüå ðàçëè÷àþòñÿ. Ïðåæäå, ÷åì ðàññìàòðèâàòü âîïðîñû, ñâÿçàííûå ñ äèíàìèêîé öåí, ïðèâåäåì êðàòêîå îïèñàíèå ìîäåëè ðûíêà. 2 Ìîäåëè ñóáúåêòîâ ðûíêà Ïðåäïîëàãàåòñÿ, ÷òî íà ðûíêå äåéñòâóþò òðè òèïà èãðîêîâ (àãåíòîâ): ïðîèçâîäèòåëü, ïîñðåäíèê, ïîòðåáèòåëü. Ïðåäëàãàåòñÿ íîâàÿ, óñîâåðøåí- ñòâîâàííàÿ ìîäåëü, â êîòîðîé ó÷òåíû ñâÿçè àãåíòîâ íà ðåàëüíûõ ðûíêàõ. Èäåÿ çàêëþ÷àåòñÿ, â îïðåäåëåíèè íîâîé çàâèñèìîñòè ïðîõîæäåíèÿ ñäåëêè (êàêèå àãåíòû ïðèíèìàþò ó÷àñòèÿ) îò ðûíêà (âòîðè÷íîå èëè íîâîå æè- ëüå).  ñîâðåìåííûõ óñëîâèÿõ î÷åíü ÷àñòî ïîñðåäíèêîì (ðèýëòîðîì) ìîæåò âûñòóïàòü ïîäðàçäåëåíèå ïðîèçâîäèòåëÿ, ñïåöèàëèçèðóþùååñÿ íà ïðîäàæå æèëüÿ, òàêîãî ðîäà îðãàíèçàöèè áóäåì ðàññìàòðèâàòü áåç ó÷àñòèÿ ïîñðåä- íèêà. Êàæäàÿ åäèíèöà æèëîé ïëîùàäè â ñëó÷àå íîâîãî æèëüÿ ïðîõîäèò ÷åðåç äâà çâåíà - ïðîèçâîäèòåëü → ïîòðåáèòåëü (ò.ê. ðèýëòîðîì ÿâëÿåòñÿ ïîäðàçäåëåíèå ïðîèçâîäèòåëÿ), ñëåäîâàòåëüíî, ó÷èòûâàåòñÿ îòñóòñòâèå äî- ïîëíèòåëüíûõ ïðîöåíòîâ çà ðàáîòó ïîñðåäíèêà. Ïðè ðàññìîòðåíèè ðûíêà âòîðè÷íîãî æèëüÿ áóäåì ðàññìàòðèâàòü ñõå- ìó ïðîäàâåö-ïîòðåáèòåëü → ïîñðåäíèê → ïîòðåáèòåëü. Òðåáóåòñÿ ðåøàòü îïòèìèçàöèîííûå çàäà÷è, âîçíèêàþùèå â ìîäåëè ôóíêöèîíèðîâàíèÿ òàêî- ãî ðûíêà, ó÷èòûâàÿ, ÷òî ïîêóïàòåëü, ïîñðåäíèê è ïðîäàâåö äåéñòâóþò íà îñíîâå ñòàíäàðòíûõ è ïðîçðà÷íûõ ìîòèâîâ è ñòðåìÿòñÿ ê íàèëó÷øåìó óäî- âëåòâîðåíèþ ñâîèõ èíòåðåñîâ. Èç ðàíåå îïóáëèêîâàííûõ ðàáîò ïî äàííîé òåìàòèêå ñëåäóåò îòìåòèòü ðàáîòó [9], ãäå ïðåäñòàâëåí òåîðåòè÷åñêèé àíà- ëèç ïîâåäåíèÿ ðûíêà æèëüÿ â êðàòêîñðî÷íîì ïåðèîäå, îñíîâíàÿ ìîäåëü ðàñ- ñìàòðèâàåò ðûíîê êàê ýêîíîìèêó îáìåíà ñ êâàçèëèíåéíûìè ôóíêöèÿìè ïî- ëåçíîñòÿìè àãåíòîâ ðûíêà. Âàëüðàñîâñêèå ðàâíîâåñèÿ äëÿ ðàññìàòðèâàåìîé ìîäåëè ïðåäñòàâëåíû ïîñðåäñòâîì ðåøåíèé è äâîéñòâåííûõ îöåíîê ñîîòâåò- ñòâóþùåé çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ. Íîâûå ìîäåëè äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè 203 Ïóñòü çàäàíû: T  êîëè÷åñòâî èíòåðâàëîâ âðåìåíè â ðàññìàòðèâàåìîì ïåðèîäå. Ïðåäïîëàãàåòñÿ, ÷òî ïðîèçâîäñòâî æèëîé ïëîùàäè îñóùåñòâëÿåò- ñÿ K òåõíîëîãè÷åñêèìè ñïîñîáàìè, êîòîðûå õàðàêòåðèçóþòñÿ: k  íîìåð ñïîñîáà, l  èíäåêñ âèäà ïëîùàäè (íàïðèìåð, îäíîêîìíàòíàÿ êâàðòèðà íà [t] [t] ïåðâîì ýòàæå è ò.ï.), qk  ñåáåñòîèìîñòü k -ãî ñïîñîáà, pl  öåíà l-ãî âèäà [t] ïëîùàäè íîâîãî æèëüÿ, sl  öåíà l-ãî âèäà ïëîùàäè âòîðè÷íîãî æè- ëüÿ. Òåõíîëîãè÷åñêèé ñïîñîá ôàêòè÷åñêè îòðàæàåò ñòðóêòóðó çäàíèÿ èëè [0] êîìïëåêñà çäàíèé. Ïðåäïîëàãàþòñÿ òàêæå èçâåñòíûìè: xj  íà÷àëüíûé [t] êàïèòàë j -ãî ïðîèçâîäèòåëÿ, δ  ôèêñèðîâàííûé ïðîöåíò, êîòîðûé ïî- [t] òðåáèòåëü ïëàòèò ïðè ïîêóïêå, ym  êàïèòàë ïîòðåáèòåëÿ ñ íîìåðîì m. Çàìåòèì, ÷òî äîõîäû ïîòðåáèòåëÿ â äàííîé ìîäåëè íå îïðåäåëÿþòñÿ, ýòà èíôîðìàöèÿ çàäà¼òñÿ èçâíå. Ïåðåìåííûìè â îïòèìèçàöèîííûõ çàäà÷àõ, âîçíèêàþùèõ â ìîäåëè, ÿâ- [t] ëÿþòñÿ: xj  êàïèòàë j -ãî ïðîèçâîäèòåëÿ íà òàêòå t ôóíêöèîíèðîâàíèÿ [t] ðûíêà, ωlkj  êîëè÷åñòâî ìåòðîâ êâ. l-ãî âèäà ïëîùàäè, êîòîðîå áóäåò ââå- [t] äåíî ïðè k -ì ñïîñîáå íà òàêòå t ôóíêöèîíèðîâàíèÿ ðûíêà, ψ li  êîëè÷åñòâî [t] ìåòðîâ êâ. l-ãî âèäà, êîòîðûå ïîêóïàåò i-ûé ïîñðåäíèê; ψ li  êîëè÷åñòâî [t] ìåòðîâ êâ. l-ãî âèäà, êîòîðûå ïðîäàåò i-ûé ïîñðåäíèê; θlm  êîëè÷åñòâî ìåòðîâ êâ. l-ãî âèäà, êîòîðûé ïîêóïàåò m-ûé ïîòðåáèòåëü (íîâîå æèëüå), [t] θelm  êîëè÷åñòâî ìåòðîâ êâ. l-ãî âèäà, êîòîðûé ïîêóïàåò ïîòðåáèòåëü m [t] (âòîðè÷íîå æèëüå), Cm  îñòàëüíûå ñðåäñòâà ïîòðåáèòåëÿ m â äåíåæíîì âûðàæåíèè. Ïóñòü 1 ≤ t ≤ T , 1 ≤ j ≤ J ,1 ≤ k ≤ K , 1 ≤ l ≤ L , 1 ≤ m ≤ M . Äàëåå îïèøåì çàäà÷è, ðåøàÿ êîòîðûå, êàæäûé ó÷àñòíèê ðûíêà îïðåäå- ëÿåò ñâîþ ôèíàíñîâóþ ñòðàòåãèþ. 2.1 Çàäà÷à ïðîèçâîäèòåëÿ Ïðîèçâîäèòåëü ñòðåìèòñÿ ìàêñèìèçèðîâàòü ñâîé êàïèòàë â êîíå÷íûé ìî- ìåíò âðåìåíè: [T ] xj → max Ïîÿñíèì äàëåå îãðàíè÷åíèÿ, íàêëàäûâàåìûå íà ôóíêöèîíèðîâàíèå ïðîèç- âîäèòåëÿ. Ïåðâîå èç ýòèõ îãðàíè÷åíèé çàïèñûâàåòñÿ â âèäå ñëåäóþùåãî óñëîâèÿ: L X K [t] [t] [t−1] X qk ωlkj − xj ≤0 (1) l=1 k=1  îãðàíè÷åíèå íà ñòðîèòåëüñòâî j -ãî ïðîèçâîäèòåëÿ åãî êàïèòàëîì. Ò.å. îí íå ìîæåò èñïîëüçîâàòü íà ñòðîèòåëüñòâî â ïåðèîä âðåìåíè t , áîëüøå ñðåäñòâ, ÷åì îí èìåë â ïðåäøåñòâóþùèé t − 1 ïåðèîä. Ïîñðåäíèê, ïðè ñî- âåðøåíèè ñäåëîê êàê ñ ïðîèçâîäèòåëåì (êóïëÿ), òàê è ñ ïîòðåáèòåëåì (ïðî- [t] [t] äàæà) áåð¼ò ñ íèõ ïðîöåíòû: δ è δ ñîîòâåòñòâåííî (â ðåàëüíîé ïðàêòèêå 204 À.À. Êðàõàë¼â [t] íà ðûíêå íîâîãî æèëüÿ âåëè÷èíà δ ðàâíà íóëþ). Ïîýòîìó, öåíà ïðîäàæè [t] [t] äëÿ ïðîèçâîäèòåëÿ áóäåò pl (1 − δ ). Îòñþäà âîçíèêàåò L K [t] X [t−1] [t] X [t−1] xj − pl (1 − δ ) ωlkj ≤ 0 (2) l=1 k=1  ôèíàíñîâîå îãðàíè÷åíèå. Ò.å. êàïèòàë â ïåðèîä t ýòî åñòü äåíüãè, âû- ðó÷åííûå ñ ïðîäàæè âñåõ ïðîèçâåä¼ííûõ âèäîâ ïëîùàäåé ìèíóñ èçäåðæêè ïðîèçâîäèòåëÿ â ýòîò ïåðèîä (áåç ó÷¼òà èçäåðæåê (2) ïðåâðàùàåòñÿ â ñòðî- ãîå ðàâåíñòâî). [t] [t] xj ≥ 0, ωlkj ≥ 0 (3) íåîòðèöàòåëüíîñòü êàïèòàëà è êîëè÷åñòâî ïîñòðîåííîãî æèëüÿ j -ûì ïðîèçâîäèòåëåì k -îì ñïîñîáîì ïðîèçâîäñòâà.  ðàáîòå ðàññìàòðèâàåòñÿ ñè- òóàöèÿ, êîãäà öåíû ñïðîãíîçèðîâàíû çàðàíåå. Èòàê, äëÿ j -îãî ïðîèçâîäè- òåëÿ èìååì çàäà÷ó:  [T ]   xj → max, PL PK [t] [t] [t−1] k=1 qk ωlkj − xj ≤ 0,  l=1    [1] [1] [0]  L P P K q ω ≤ x , l=1 k=1 k lkj j x[t] − L p[t−1] (1 − δ [t] ) K ω [t−1] ≤ 0 P P   j l=1 l k=1 lkj  [t]  [t] x ≥ 0, ω ≥ 0  j lkj   t = 1, T  ìîäåëè âîçíèêàåò J çàäà÷ ïðîèçâîäèòåëÿ òàêîãî âèäà.  íèõ ÷èñëî [t] [t] ïåðåìåííûõ xj  T , ïåðåìåííûõ ωlkj  T ∗ K . ×èñëî ëèíåéíûõ îãðàíè÷å- [t] íèé (1)-(3)  3T .  ïðåäïîëîæåíèè, ÷òî âåëè÷èíû pl  èçâåñòíû, çàäà÷à ïðîèçâîäèòåëÿ ÿâëÿåòñÿ çàäà÷åé ëèíåéíîãî ïðîãðàììèðîâàíèÿ ðàçìåðíîñòè 3T ∗ (T + T ∗ K) . 2.2 Çàäà÷à ïîñðåäíèêà  ýòîì ïóíêòå îïèøåì çàäà÷ó ïîñðåäíèêà, äåéñòâóþùåãî íà ðûíêå âòî- ðè÷íîãî æèëüÿ. Êàê áûëî ñêàçàíî, î÷åíü ÷àñòî ïîñðåäíèêîì (ðèýëòîðîì) ìîæåò âûñòóïàòü ïîäðàçäåëåíèå ïðîèçâîäèòåëÿ, ñïåöèàëèçèðóþùååñÿ íà ïðîäàæå íîâîãî æèëüÿ, ïîýòîìó ðàññìàòðèâàåì çàäà÷ó ïîñðåäíèêà òîëüêî íà âòîðè÷íîì ðûíêå. Öåëü ïîñðåäíèêà  ìàêñèìèçèðîâàòü ñâîþ ïðèáûëü çà âåñü ðàññìàòðèâàåìûé ïåðèîä: T L L X [t] X [t] [t] [t] X [t] [t] [δ ψ li sl + δ ψ li sl ] → max t=1 l=1 l=1 Âûøå ñêàçàíî, ÷òî ïðè ñîâåðøåíèè ñäåëîê ïîñðåäíèê áåð¼ò ïðîöåíò: δ  ñ ïðîäàâöà ïðè ïîêóïêå, δ  ñ ïîòðåáèòåëÿ ïðè ïðîäàæå (0 ≤ δ, δ ≤ 1). Äàëåå ñóùåñòâóåò Íîâûå ìîäåëè äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè 205 t X L t X L X [τ ] [τ ] [τ ] [τ ] X [τ ] [τ ] ψ li sl (1 − δ ) − (1 + δ ) ψ li sl − w0i ≤ 0 (4) τ =1 l=1 τ =1 l=1 îãðàíè÷åíèå, ïîêàçûâàþùåå, ÷òî â ïåðèîä t ïîñðåäíèê íå ìîæåò êóïèòü áîëüøå, ÷åì îí èìååò äåíåã çà ïðîäàæó íåäâèæèìîñòè â ïðîøëûå t−1 ïåðèîäû ïëþñ íà÷àëüíûé êàïèòàë w0i . [t] [t] ψ li ≥ 0, ψ li ≥ 0  îãðàíè÷åíèÿ íà íåîòðèöàòåëüíîñòü ïåðåìåííûõ. t−1 X L X [τ ] ψ li ≤ F τ =1 l=1  îãðàíè÷åíèå ñïðîñîì. Èìååì çàäà÷ó ïîñðåäíèêà: [t] [t] [t] P [t] [t]  Tt=1 [(δ + 1) L P PL l=1 ψ li sl − l=1 ψ li sl ] → max,   [τ ] Pt [τ ] [τ ]   Pt PL [τ ] [τ ] [τ ] PL τ =1 l=1 ψ li sl (1 − δ ) − (1 + δ ) τ =1 l=1 ψ li sl − w0i ≤ 0, [t] [t] [τ ] ψ li ≥ 0, ψ li ≥ 0, t−1 P PL l=1 ψ li ≤ F    τ =1 t = 1, T    ìîäåëè ôóíêöèîíèðîâàíèÿ ðûíêà âîçíèêàåò I çàäà÷ ïîñðåäíèêà. ×èñëî [t] [t] ïåðåìåííûõ â êàæäîé çàäà÷å ψ li è ψ li - 2T ∗ L . ×èñëî ëèíåéíûõ îãðà- [τ ] íè÷åíèé (4)  T .  ïðåäïîëîæåíèè, ÷òî âåëè÷èíû sl  èçâåñòíû, çàäà- ÷à ïîñðåäíèêà ÿâëÿåòñÿ çàäà÷åé ëèíåéíîãî ïðîãðàììèðîâàíèÿ ðàçìåðíîñòè T ∗ 2(T ∗ L) . Î÷åâèäíî, ÷òî ïðè ôèêñèðîâàííûõ öåíàõ  ýòî äèíàìè÷åñêàÿ çàäà÷à ïîñòðîåíèÿ îïòèìàëüíîãî ïîðòôåëÿ, àêòèâàìè â êîòîðîé ÿâëÿþòñÿ ïëîùàäè ðàçëè÷íîãî âèäà. 2.3 Çàäà÷à ïîòðåáèòåëÿ Öåëü ïîòðåáèòåëÿ  ìàêñèìèçèðîâàòü ñâîþ ôóíêöèþ ïîëåçíîñòè (â ýêî- íîìè÷åñêîé òåîðèè ýòî ôóíêöèÿ, âûðàæàþùàÿ çàâèñèìîñòü ïîëåçíîñòè äëÿ èíäèâèäà îò êîëè÷åñòâà ïîòðåáëÿåìûõ èì áëàã [3]) â êîíöå ðàññìàòðèâàå- ìîãî ïåðèîäà.  îòëè÷èå îò ðàííåå ðàññìàòðèâàåìûõ çàäà÷ íà ðûíêå íåäâèæèìîñòè, â íàñòîÿùåé ðàáîòå ïðåäñòàâëåíà íîâàÿ çàäà÷à ïîòðåáèòåëÿ, â êîòîðîé ó÷èòû- âàåòñÿ ðûíîê âòîðè÷íîãî æèëüÿ. Ïðåäïîëàãàåòñÿ, ÷òî ïîòðåáèòåëü ïðèîáðå- òàåò ëèáî âíîâü ïîñòðîåííîå, ëèáî âòîðè÷íîå æèëüå. Ôóíêöèþ ïîëåçíîñòè, (1) ñîîòâåòñòâóþùóþ íîâîìó æèëüþ, îáîçíà÷èì Um , à ïîëåçíîñòü âòîðè÷íîãî (2) æèëüÿ áóäåì èçìåðÿòü ôóíêöèåé Um . ( (1) PT [t] PT PL t t Um = ( t=1 Cm )( t=1 l=1 θlm pl ), (2) PT [t] PT PL et t [t] Um = ( t=1 Cm )( t=1 l=1 θlm sl (δ + 1)) 206 À.À. Êðàõàë¼â Ïðè ýòîì âîçíèêàþò ñëåäóþùèå îãðàíè÷åíèÿ: t X X L t X τ θlm pτl − τ ym ≤ 0, (5) τ =1 l=1 τ =1 t X L t X [τ ] X τ θelm sτl (δ + 1) − τ ym ≤ 0, (6) τ =1 l=1 τ =1  íà ïðèîáðåòåíèå æèëüÿ ïîòðåáèòåëåì åãî êàïèòàëîì. Òîãäà êàïèòàë ïî- òðåáèòåëÿ â ïåðèîä t ñîñòîèò èç ñòîèìîñòè ïðèîáðåò¼ííîãî èì æèëüÿ â ýòîò [t] ïåðèîä ïëþñ ïðî÷åå ïîòðåáëåíèå Cm : L X t t ym = θlm ptl + Cm [t] , (7) l=1 L X [τ ] t t ym = θelm stl (δ [t] + 1) + Cm , (8) l=1 Ñóùåñòâóþò òàêæå îãðàíè÷åíèÿ íà íåîòðèöàòåëüíîñòü ïåðåìåííûõ: [t] t t Cm ≥ 0, θlm ≥ 0, θelm ≥ 0. ∗ ∗ Òàêèì îáðàçîì, ïîëó÷àåì çàäà÷ó ïîòðåáèòåëÿ. Ïóñòü âåêòîðû Cm è θm äîñòàâëÿþò ìàêñèìóì ôóíêöèîíàëó XT T X X L (1) [t] t Um =( Cm )( θlm ptl ) → max . θ,C t=1 t=1 l=1 Ïðè îãðàíè÷åíèÿõ: t X X L t X τ θlm pτl − τ ym ≤ 0, τ =1 l=1 τ =1 L X t t ym = θlm ptl + Cm [t] , l=1 [t] t Cm ≥ 0, θlm ≥ 0, ∗∗ ∗∗ à âåêòîðû Cm è θm äîñòàâëÿþò ìàêñèìóì ôóíêöèîíàëó T T X L X X [t] (2) [t] t Um =( Cm )( θelm stl (δ + 1)) → max . θ,C t=1 t=1 l=1 Ïðè îãðàíè÷åíèÿõ: t X L t X [τ ] X τ θelm sτl (δ + 1) − τ ym ≤ 0, τ =1 l=1 τ =1 Íîâûå ìîäåëè äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè 207 L X [τ ] t t ym = θelm stl (δ [t] + 1) + Cm , l=1 [t] t Cm ≥ 0, θelm ≥ 0, Òîãäà ïîòðåáèòåëü âûáèðàåò èç äâóõ ïëàíîâ, òîò êîòîðîìó ñîîòâåòñòâóåò áîëüøåå çíà÷åíèå ôóíêöèîíàëà, ò.å., åñëè (1) (2) U = max(Um , Um ), òî âûáèðàåì ïëàí ñ ôóíêöèîíàëîì ðàâíûì U .  ìîäåëè ðûíêà âîçíèêàþò M çàäà÷ ïîòðåáèòåëåé äàííîãî âèäà. ×èñëî [t] t t e - 2T ∗ L â êàæäîé çàäà÷å. ×èñëî ïåðåìåííûõ Cm - T ; ïåðåìåííûõ θlm è θ lm t t ëèíåéíûõ îãðàíè÷åíèé (5)-(8)  4T . Ïðåäïîëàãàåì pl è sl - èçâåñòíû, òîãäà çàäà÷à ïîòðåáèòåëÿ ÿâëÿåòñÿ çàäà÷åé âûïóêëîãî ïðîãðàììèðîâàíèÿ ðàçìåð- íîñòè 4T ∗ (T + 2T ∗ L). Ïðè ôèêñèðîâàííûõ öåíàõ è çàäàííûõ ôóíêöèÿõ äîõîäà  ýòî çàäà÷à íàêîïëåíèÿ - ïîòðåáëåíèÿ. Âûøå óêàçàíî, ÷òî çàäà÷è ïðîèçâîäèòåëÿ, ïîñðåäíèêà è ïîòðåáèòåëÿ ïðè çàäàííûõ öåíàõ ÿâëÿþòñÿ çàäà÷àìè ëèíåéíîãî ëèáî âûïóêëîãî ïðîãðàììè- ðîâàíèÿ, ìåòîäû ðåøåíèÿ êîòîðûõ èçâåñòíû.  ýêîíîìè÷åñêîé ðåàëüíîñòè öåíû èçâåñòíû òîëüêî â ìîìåíòû t1 = −Ω + 1, t2 = −Ω + 3, ...,tk = 0. Äëÿ t òîãî, ÷òîáû ïîëó÷èòü èíôîðìàöèþ äëÿ ôîðìóëèðîâêè çàäà÷ (âåëè÷èíû pl t è sl äëÿ t = 1, ..., T ) äàëåå ïðåäëàãàåòñÿ ñëåäóþùàÿ ìîäåëü. 3 Ìîäåëè äèíàìèêè öåí  ðàííåå ðàññìàòðèâàåìûõ ðàáîòàõ ïðîãíîç öåí îñóùåñòâëÿåòñÿ ñ ïîìî- ùüþ ôèêòèâíûõ èëè ïñåâäîïåðåìåííûõ, ïðèíèìàþùèõ äèñêðåòíûå, îáû÷- íî öåëûå çíà÷åíèÿ, â ðåãðåññèþ âêëþ÷àþò êà÷åñòâåííûå ôàêòîðû [13].  [4] áûë ïðåäëîæåí äðóãîé ïîäõîä, ðàçâèòèþ êîòîðîãî ïîñâÿùåí äàííûé ðàçäåë. Ìîäåëü ïðîãíîçà ÿâëÿåòñÿ èìèòàöèîííîé è, êàê âñÿêàÿ èìèòàöèîííàÿ ìîäåëü, ïðåäïîëàãàåò íàëè÷èå ñöåíàðèåâ ïîâåäåíèÿ îòäåëüíûõ ïîêàçàòå- ëåé.  ðàññìàòðèâàåìîé ìîäåëè ïðåäïîëàãàþòñÿ çàäàííûìè ñöåíàðèè òåì- ïîâ ïðèðîñòà ñïðîñà íà æèëüå è ñöåíàðèè äèíàìèêè ïðåäëîæåíèÿ. Îñíîâíîé ôîðìîé ïðåäñòàâëåíèÿ èíôîðìàöèè î öåíàõ ÿâëÿþòñÿ âðåìåí- íûå ðÿäû íàáëþäåíèé: ðåòðîñïåêòèâíûå è ïðîãíîçèðóåìûå. Ìåòîäû èññëå- äîâàíèÿ èñõîäÿò èç ïðåäïîëîæåíèÿ î âîçìîæíîñòè ïðåäñòàâëåíèÿ ýëåìåíòîâ ðÿäà â âèäå ñóììû íåñêîëüêèõ êîìïîíåíò: òðåíäà (äîëãîñðî÷íîé òåíäåí- öèè) ðàçâèòèÿ; ðûíî÷íîé êîìïîíåíòû è îñòàòî÷íîé êîìïîíåíòû. Òðåíä ïðåäñòàâëÿåò ñîáîé óñòîé÷èâîå èçìåíåíèå ïîêàçàòåëÿ â òå÷åíèå äëèòåëüíî- ãî âðåìåíè. Ðûíî÷íàÿ êîìïîíåíòà õàðàêòåðèçóåò êîëåáàíèÿ çíà÷åíèé ýëå- ìåíòîâ ðÿäà, âûçâàííûå èçìåíåíèÿìè îäíîãî èëè äâóõ ïðåäûäóùèõ ýëåìåí- òîâ. Îñòàòî÷íàÿ êîìïîíåíòà ïðåäñòàâëÿåò ñîáîé ðàñõîæäåíèå ìåæäó ôàê- òè÷åñêèìè è ðàñ÷åòíûìè çíà÷åíèÿìè. Åñëè ïîñòðîåíà àäåêâàòíàÿ ìîäåëü, òî âåëè÷èíà ýòîé êîìïîíåíòû ÿâëÿåòñÿ áëèçêîé ê íóëþ. Åñòåñòâåííî, ÷òî 208 À.À. Êðàõàë¼â êà÷åñòâî ïðîãíîçà ìîæíî ñóùåñòâåííî ïîâûñèòü, åñëè ðàçðàáàòûâàòü àäàï- òèâíûå ìîäåëè. Áëàãîäàðÿ èñïîëüçîâàíèþ èçâåñòíûõ öåí è ïðåäëîæåíèÿ â ïðîøëîì, ó íàñ åñòü âîçìîæíîñòü äèàãíîñòèðîâàòü òåêóùóþ ôàçó ðûíêà íåäâèæèìîñòè è ïðîãíîçèðîâàòü åãî äîëãîñðî÷íóþ äèíàìèêó. Äàëåå ðàññìîòðèì ïîäðîáíåå ìîäåëü äëÿ ïîñòðîåíèÿ òðåíäà (ýêñòðàïî- ëÿöèîííîé êîìïîíåíòû) è îñòàòî÷íîé êîìïîíåíòû. Çà áàçó âîçüìåì ìîäåëü äèíàìèêè ñïðåäà ñ ãàðìîíè÷åñêèìè êîëåáàíèÿìè èç [7]. Àíàëèç ðàñ÷åòà ðàç- ëè÷íûõ ìîäèôèêàöèé ýòîé ìîäåëè ïîçâîëèë ïîëó÷èòü ñëåäóþùóþ ôîðìóëó äëÿ ðàñ÷åòà ýêñòðàïîëÿöèîííîé è îñòàòî÷íîé êîìïîíåíòû: m n X X 2πβ(t) σ2 p(t) = exp( µi α(t)i−1 + µm+i sin( )+ ), (9) i=1 i=1 τi 2 ãäå t ýòî ìîìåíò âðåìåíè ïðîãíîçèðóåìîãî ïåðèîäà; α(t) è β(t) - ïðîñòåé- øèå ôóíêöèè îò t; µi , τi - ïîñòîÿííûå êîýôôèöèåíòû; σ - êîýôôèöèåíò âîëàòèëüíîñòè (îñòàòî÷íàÿ êîìïîíåíòà); m - ÷èñëî ñëàãàåìûõ â ïîëèíîìå, îïèñûâàþùåì òðåíä, à n - ÷èñëî ãàðìîíèê â ýòîì îïèñàíèè. ×èñëà m, n è âèä ôóíêöèé α(t) è β(t) âûáèðàþòñÿ â çàâèñèìîñòè îò âèäà ïîêàçàòåëÿ (ñïðîñ, ïðåäëîæåíèå èëè öåíà) è â çàâèñèìîñòè îò ÷èñëà èçâåñòíûõ çíà÷åíèé ýòîãî ïîêàçàòåëÿ â ðåòðîñïåêòèâå. Ñ÷èòàåòñÿ, ÷òî èçâåñòíû öåíû ñ ìîìåíòà t1 äî ìîìåíòà tk . Äëÿ òîãî ÷òîáû ïîñòðîèòü êîíêðåòíóþ ìîäåëü íà îñíîâå áàçîâîé äëÿ êîíêðåòíîãî âðåìåííîãî ðÿäà, íåîáõîäèìî íàéòè ìåòîäîì íàèìåíüøèõ êâàä- ðàòîâ ðåøåíèå M ñèñòåìû: σ2 ln pt = f (t, τ1 , ..., τn )M + , t = t1 , ..., tk , 2 T ãäå M = (µ1 , ..., µm+n ) , 2πβ(t) 2πβ(t) 2πβ(t) f (t, τ ) = (1, α(t), ..., α(t)m−1 , sin( ), sin( ), ..., sin( )), τ1 τ2 τn Ïóñòü èìåþòñÿ íàáëþäåíèÿ äèíàìèêè ïîêàçàòåëÿ pk (t) = p(tk ) â ìîìåíòû âðåìåíè tk , ñëåäîâàòåëüíî, îöåíêè íåèçâåñòíûõ ïàðàìåòðîâ M , τ1 , ..., τn ìå- òîäîì íàèìåíüøèõ êâàäðàòîâ íàõîäÿòñÿ èç óñëîâèé äîñòèæåíèÿ ìèíèìóìà ôóíêöèè: K X Q(M, τ1 , ..., τn ) = (ln pk − f (tk , τ1 , ..., τn )M )2 , (10) k=1 ∂Q Ðåøàÿ óðàâíåíèå ∂M = 0, ïîëó÷àåì ñèììåòðè÷íóþ ÑËÓ, êîòîðàÿ ëåãêî ðåøàåòñÿ ìåòîäîì Ãàóññà, è íàõîäÿòñÿ íåîáõîäèìûå âåëè÷èíû K X M =( f (tk , τ1 , ..., τn )f T (tk , τ1 , ..., τn ))−1 f (tk , τ1 , ..., τn ) ln pt (11) k=1 Íîâûå ìîäåëè äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè 209 Ïðè èçâåñòíûõ τ1 , ..., τn îöåíêà M ñðàçó âû÷èñëÿåòñÿ ñ ïîìîùüþ (11); åñëè âåëè÷èíû τ1 , ..., τn íåèçâåñòíû, òî çàìåíÿÿ â (10) âåêòîð ïåðåìåííûõ M íà âåêòîð-ôóíêöèþ M (τ1 , ..., τn ) ñîãëàñíî (11) ïîëó÷àåì âìåñòî (10) ôóíêöèþ Q(M (τ1 , ..., τn ), τ1 , ..., τn ), êîòîðóþ äîñòàòî÷íî ìèíèìèçèðîâàòü ïî n ïàðà- ìåòðàì. Îöåíêà ñðåäíåêâàäðàòè÷åñêîãî îòêëîíåíèÿ σ îïðåäåëÿåòñÿ ïî ôîð- ìóëå: s Q(M , τ1 , ..., τn ) σ= . K Ýòà îöåíêà ñîâïàäàåò ñ îñòàòî÷íîé êîìïîíåíòîé â íàøåé ìîäåëè, ÷åì ìåíü- øå å¼ çíà÷åíèå, òåì ëó÷øå íàøà ìîäåëü âîñïðîèçâîäèò ïðîãíîçèðóåìûå ðå- çóëüòàòû. Òàêèì îáðàçîì, ìû îïèñàëè àëãîðèòì ïîñòðîåíèÿ ýêñòðàïîëÿöèè âðåìåí- íîãî ðÿäà, êîòîðûé ìîæíî ïðèìåíÿòü äëÿ ïðîãíîçèðîâàíèÿ ñïðîñà, ïðåäëî- æåíèÿ è öåíû íà íåäâèæèìîñòü. 4 Îïèñàíèå ýêñïåðèìåíòàëüíûõ ðàñ÷åòîâ (àäàïòàöèÿ ìîäåëè) Äëÿ ðåàëèçàöèè è ïðîâåðêè ïðåäëîæåííîé ìîäåëè è àëãîðèòìà ïðîãíî- çèðîâàíèÿ ðàçðàáîòàíà ïðîãðàììà â ñðåäå Excel. Áûë ïðîâåäåí ÷èñëåííûé ýêñïåðèìåíò ïðîãíîçèðîâàíèÿ öåí, îñíîâàííûé íà èíôîðìàöèè, îïóáëèêî- âàííîé íà ñàéòå www.nn-baza.ru äëÿ âòîðè÷íîãî ðûíêà íåäâèæèìîñòè ðàé- îíîâ ãîðîäà Íîâîñèáèðñêà. Ðàñ÷åòû ïðîâîäèëèñü äëÿ 9 ðàéîíîâ ãîðîäà. Äëÿ êàæäîãî ðàéîíà ðàçðàáîòàíû ìîäåëè ñ ðàçëè÷íûìè ïàðàìåòðàìè, çàòåì âû- áèðàëàñü íàèáîëåå òî÷íî âîñïðîèçâîäèìàÿ ðåàëüíûå äàííûå ïðè åå ïðîâåð- êå.  ðàñ÷åòàõ èñïîëüçîâàëèñü öåíû çà 1 êâ.ì. âòîðè÷íîãî æèëüÿ, èçâåñòíûå ñ îêòÿáðÿ 2009 ãîäà ïî àïðåëü 2015.  ìîäåëè (9) ôóíêöèè α(t) è β(t) ïîëà- ãàëèñü ðàâíûìè ln(t) è t ñîîòâåòñòâåííî. Ïðè ýòîì t1 ïîëàãàëîñü ðàâíûì 1, à tK ðàâíûì 67.  ðàñ÷åòàõ m (÷èñëî ñëàãàåìûõ â ïîëèíîìå, îïèñûâàþùåì òðåíä) îêàçàëîñü ðàâíûì 4 äëÿ âñåõ ðàñ÷åòîâ, à n (÷èñëî ãàðìîíèê) âûáèðà- ëîñü òàê, ÷òîáû ïðèáëèæåíèå ìèíèìàëüíî îòêëîíÿëîñü îò ðåòðîñïåêòèâû. Äëÿ ïðîâåðêè àäåêâàòíîñòè ìîäåëè áûëà ïðîâåäåíà íàñòðîéêà ìîäåëè. Ïóñòü äëÿ ïåðèîäà, íà÷èíàþùåãîñÿ â îêòÿáðå 2009ã. è çàêàí÷èâàþùåãîñÿ àïðåëåì 2015ã., íàì èçâåñòíû öåíû íà íåäâèæèìîñòü. Ñ÷èòàÿ àïðåëü 2014ã. ïîñëåäíèì ìåñÿöåì áàçîâîãî ïåðèîäà, ïîñòðîèì íîâóþ ìîäåëü äèíàìèêè öåí (tK ðàâíî 55), è ñðàâíèâàåì åå ñ ôàêòè÷åñêîé äèíàìèêîé çà ïåðèîä ñ ìàÿ 2014ã. äî àïðåëÿ 2015ã. Îòêëîíåíèå ìîäåëüíîé äèíàìèêè îò ôàêòè÷åñêîé äèíàìèêè äëÿ âñåõ ðàñ÷åòîâ íå ïðåâîñõîäèëî 10%. Äëÿ èëëþñòðàöèè ïðèâåäåì ðåçóëüòàòû äâóõ ðàñ÷åòîâ: òàáëèöû ñî çíà- ÷åíèÿìè ïîñòîÿííûõ êîýôôèöèåíòîâ µi , ÷èñëî ãàðìîíèê n, çíà÷åíèå øó- ìîâîãî êîýôôèöèåíòà σ è ãðàôèêè äèíàìèêè öåí. Ñàìûå íèçêèå öåíû íà âòîðè÷íîì ðûíêå íàáëþäàëèñü â Ïåðâîìàéñêîì ðàéîíå. ×èñëî n äëÿ íåãî îêàçàëîñü ðàâíûì 1. Êîýôôèöèåíò σ = 0,024427. 210 À.À. Êðàõàë¼â Òàáëèöà 1. Çíà÷åíèå êîýôôèöèåíòîâ ìîäåëè Ïåðâîìàéñêîãî ðàéîíà µ1 µ2 µ3 µ4 µ5 3,734249 0,136812 -0,14752 0,031998 -0,00209 Ðèñ. 1. Ïåðâîìàéñêèé ðàéîí. Çåëåíàÿ ëèíèÿ - ôàêòè÷åñêàÿ äèíàìèêà, ñèíÿÿ - ìîäåëüíàÿ, ðàññ÷èòàí- íàÿ ïî ïîëíîé èíôîðìàöèîííîé áàçå (îêòÿáðü 2009 - àïðåëü 2015), êðàñíàÿ - ìîäåëüíàÿ, ðàññ÷èòàííàÿ ïî ñîêðàùåííîé áàçå (îêòÿáðü 2009 - àïðåëü 2014). Ñàìûå âûñîêèå öåíû íàáëþäàëèñü â Öåíòðàëüíîì ðàéîíå; òàêæå Öåí- òðàëüíûé ðàéîí ïðåäñòàâëÿåò èíòåðåñ òåì, ÷òî ýòî åäèíñòâåííûé ðàéîí, äëÿ êîòîðîãî ñòîèìîñòü, ïðîãíîçèðóåìàÿ íà áàçå öåí, íà÷èíàþùåéñÿ â îêòÿáðå 2009ã. è çàêàí÷èâàþùåéñÿ àïðåëåì 2015ã., ïðåâçîøëà ñòîèìîñòü, ïðîãíîçè- ðóåìóþ íà áàçå öåí ñ îêòÿáðÿ 2009ã. ïî àïðåëü 2014ã. ×èñëî n äëÿ íåãî îêàçàëîñü ðàâíûì 3. Òàáëèöà 2. Çíà÷åíèå êîýôôèöèåíòîâ ìîäåëè Öåíòðàëüíîãî ðàéîíà µ1 µ2 µ3 µ4 µ5 µ6 µ7 4,269267 0,315867 -0,2323 0,039357 -0,00976 0,008022 -0,03459 Íîâûå ìîäåëè äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè 211 Êîýôôèöèåíò σ = 0,032801. Ðèñ. 2. Öåíòðàëüíûé ðàéîí. 5 Çàêëþ÷åíèå  ðàáîòå ðàññìîòðåíî ïîâåäåíèå îñíîâíûõ òèïîâ ó÷àñòíèêîâ ðûíêà íåäâèæèìîñòè. Äëÿ êàæäîãî òèïà ó÷àñòíèêà ñôîðìóëèðîâàíà çàäà÷à ìàòå- ìàòè÷åñêîãî ïðîãðàììèðîâàíèÿ. Äëÿ òîãî, ÷òîáû îáåñïå÷èòü ìîäåëè ó÷àñò- íèêîâ íåîáõîäèìîé èíôîðìàöèåé, èñïîëüçóåòñÿ âûøå óïîìÿíóòàÿ ìîäåëü äèíàìèêè öåí íà ðûíêå íåäâèæèìîñòè. Äëÿ ðåàëèçàöèè è ïðîâåðêè ïðåä- ëîæåííîé ìîäåëè è àëãîðèòìà ïðîãíîçèðîâàíèÿ ðàçðàáîòàíà ïðîãðàììà â ñðåäå Excel. Ðåçóëüòàòû ÷èñëåííûõ ðàñ÷¼òîâ, ïðîâåäåííûõ äëÿ âòîðè÷íîãî æèëüÿ ãîðîäà Íîâîñèáèðñêà, ïîêàçàëè äîñòàòî÷íóþ ðàáîòîñïîñîáíîñòü ýòîé ìîäåëè. Ñ èñïîëüçîâàíèåì òåîðèè èìèòàöèîííîãî ìîäåëèðîâàíèÿ, ìàòåìà- òè÷åñêîãî ïðîãðàììèðîâàíèÿ, ðåãðåññèîííîãî àíàëèçà è ýëåìåíòîâ ôèíàí- ñîâîé ìàòåìàòèêè èññëåäîâàíû âîïðîñû ïîñòðîåíèÿ ðàáîòîñïîñîáíûõ ìî- äåëåé ñóáúåêòîâ ðûíêà.  äàëüíåéøåì ïðåäïîëàãàåòñÿ ïðîäîëæèòü ñîâåð- øåíñòâîâàíèå ìîäåëè ðûíêà ñ öåëüþ ñäåëàòü å¼ åùå áîëåå àäåêâàòíîé è ïðèáëèæåííîé ê ýêîíîìè÷åñêîé ðåàëüíîñòè. Ñïèñîê ëèòåðàòóðû 1. Antsyz, S. M. et al.: Optimization of System Solutions in Distributed Databases. Managing editors Makarov V. L., Marshak V. D. Nauka, Novosibirsk (1990), (in 212 À.À. Êðàõàë¼â Russian) 2. Antsyz, S. M., Krakhalyov, A. A.: On the dynamics of prices in the real estate market. In: Proceedings of the 12th International Asian School-Seminar on Problems of optimization of dicult systems, Novosibirsk, December 12-16, 2016. pp. 5057 (2016), (in Russian) 3. Antsyz, S. M., Lavlinsky, S. M., Kalgina, I. S.: On some approaches to the organization of development program of a resource region. Vestnik ZabSu 11(102), 119126 (2013), (in Russian) 4. Antsyz, S. M., Lavlinsky, S. M., Pevnitskiy, A. I., Protsenko, A. V.: About methods of economic evaluation of the deposit of polymetallic ores. Preprint/RAS. Sib. Branch Inst. of Math.; N 77. Novosibirsk, 31 p. (2000), (in Russian) 5. Antsyz, S. M., Makarov, V. L., Marshak, V. D., Fefelov, V. F.: Mathematical support of perspective industry planning. Managing editor Rubinshteyn G. Sh. Nauka. Sib. Branch, Novosibirsk (1979), (in Russian) 6. Antsyz, S. M., Pudova, M. V.: Interior point methods for solving problems with a special structure. Preprint/SB RAS, Inst. of Math.; N 44. Novosibirsk, 27 p. (1997), (in Russian) 7. Artemiev, S. S., Yakunin, M. M.: Mathematical and Statistical Modelling on the Stock Markets. Inst. of Comp. Math. and Math. Geoph.Publ., Novosibirsk. 158 p. (2003), (in Russian) 8. Kantorovich L. V., Dynamic model of optimal planning [in Russian]. In: Planning and economic-mathematical methods: On the occasion of the seventieth birthday of Academician V.S. Nemchinov. pp. 323-345. Moscow (1964), (in Russian) 9. Khutoreskiy, A. B. Analysis of the Short-term Equilibrium in the Real Estate Market with an Application to the Development of Housing Policy. EERS, Ìoscow. 68 p. (2001), (in Russian) 10. Makarov, V. L., Marshak, V. D., Models of Optimal Functioning of Department Systems. Ekonomika, Ìoscow (1979), (in Russian) 11. Optimization inter-regional intersectoral models. In: IEIE SB AS USSR. Managing editors Granberg A. G., Matlin I. S. Nauka. Sib. Branch, Novosibirsk (1989), (in Russian) 12. Rubinshteyn, G. Sh.: Modeling of economic interactions in territorial systems. In: IEIE SB AS USSR. Managing editor Granberg A. G.. Nauka. Sib. Branch, Novosibirsk (1983), (in Russian) 13. Suslov, V. I., Ibragimov, N. M.: Econometrics: Textbook. SB RAS, Novosibirsk (2005), (in Russian)