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Abstract. This paper continues the study that has been begun in the series of
authors’ papers and has devoted to clarifying the interconnection between de-
notational and operational approaches for modelling logical time based on the
concept of logical clocks. In the paper, a new category, namely the category of
schedules, has introduced. The original definition of a morphism of schedules
precedes to introducing this category. Refinement of a number of results of pre-
vious papers made it possible to establish the functorial nature of the method of
associating the linear clock structure with a schedule and to prove that the corre-
sponding functor determines the equivalence of the category of schedules and the
category of linear clock structures.
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1 Introduction

The trend of widespread use of distributed computing, observed in recent years,
is a technological answer to the practical achievement of the upper bound of
processor performance on the one side and the development of communication
tools on the other. In addition, there is a tendency to integrate cybernetic and
physical systems, which has been accelerated in the context developing Internet-
of-Things. You can find the more detailed analysis of these trends in [1].

But this analysis allows us to state that the problems associated with parallel,
distributed and parallel computations turned out to be on the leading edge of
Computer Science and Information Technology.

This work is focused on the problem of modelling logical time in distributed
systems, in particular on the model based on the concept of logical time, and is
a continuation of authors’ results presented in [1]1.

1 Preliminary results of this article are available by http://ceur-ws.org/Vol-1844/
10000488.pdf in [2].



The mentioned above paper is focused on the two approaches based on log-
ical clocks to the modelling of time. Authors had shown that the language of
the category theory is adequate for building models of Universum of events.
In other words, the denotational approach to the modelling can well be formu-
lated in the terms of the category theory. In contrast, for building operational
models, authors have selected the set-theoretic approach. Unfortunately, the dif-
ference between mathematical backgrounds led to unclarity and incompleteness
of describing the relationship between two classes of models, denotational and
operational.

Thus, we see that the relationship of two approaches for determining seman-
tic meaning of temporal constraint specifications based on the concept of logical
clocks did not clarify by the paper. Therefore, the following problem arises.

Problem. Establish the nature of the relationship between the two approaches
described above to modelling of logical time based on the concept of clocks.

The object of this paper to identify and ground the required relationship in the
terms of category theory.

This paper has the following structure: Section 2 reminds the category-
theoretic description of the denotational model of logical time given in [2, 1];
Section 3 contains the category-theoretic description the operational model of
logical time.

Section 2 has an overview character and contains a small number of new
results, which are mostly of an auxiliary nature.

In the contrast, section 3 is original. It contains the definitions of sched-
ule morphisms, the description of the category of schedules, and the proof of
Main Theorem that establishes the equivalence of the category of linear clock
structures and the category of schedules. This equivalence is precisely the rela-
tionship that eluded authors in the set-theoretic formulation.

2 Category of Clock Structures

The main definitions and results obtained in [1] are collected in this section. We
do not give those proofs that do not require any changes in comparison with the
corresponding proofs in [1]. A proof is given only if this proof simplifies the
corresponding proof in [1] or if this proof establishes a new fact.

Consideration of causality relationship as a quasi-order (i.e. a reflexive and
transitive relation) on the set of event occurrences is a generally accepted ap-
proach. Following this approach, we understand an Universum of events as a
set I of event occurrences with a quasi-order “4” . Usually, we consider along
with the relation “4” the relations ≡ , ≺ , # , and ‖ . These relations are defined



Table 1. Relations Derived from the Causality Relation

Notation Meaning

i ≡ j both i 4 j and j 4 i are fulfilled

i ≺ j i 4 j is fulfilled but j 4 i is not fulfilled

i # j either i ≺ j is fulfilled or j ≺ i is fulfilled

i ‖ j neither i 4 j is fulfilled nor j 4 i is fulfilled

by the causality relation as in Table 1 (see also [1]). Now we give the defini-
tion of clock structure as an Universum of events with additional structures and
properties. First of all we fix a finite set C whose each element is interpreted as
a reference to the source (it is called a clock) of occurrences of the same event.
This leads us to the following definition in accordance with [1].

Definition 1. A C-structure is a triplet S =
(
I, γ,4

)
where

− I is the set of instants corresponding to the occurrences of events,
− γ : I → C is a surjective mapping that associates the clock that is the source

of an instant with this instant,
− “4” is a quasi-order on I that models the causality relation between in-

stants.
The triplet meets also the following axioms
the axiom of unbounded liveness: the set I is infinite;
the axiom of finite causality: for any i ∈ I , the corresponding principal ideal
( i ] is finite;
the axiom of total ordering for clock timelines: for each c ∈ C , the c-timeline
Ic = γ−1(c) is linearly ordered by “≺”.

This definition is not a novelty introduced in [1], it was used in accordance with
[3]. But the following definition is such a novelty.

Definition 2. Let S′ = (I′, γ′,4) and S′′ = (I′′, γ′′,4) be C-structures then
a mapping f : I′ → I′′ is called a morphism of C-structures if the following
holds
− for any i ∈ I′ , the equation γ′′ ( f i) = γ′ i is fulfilled,
− for any i ∈ I′ and j ∈ I′ , f i 4 f j whenever i 4 j ,
− for any i ∈ I′ and j ∈ I′ , f i # f j whenever i # j .

The following proposition is evident.

Proposition 1. The class of all C-structures equipped with morphisms of C-
structures forms a category denoted below by StructC .

An important special class of clock structures is formed by so-called linear
clock structures, defined in [1].



Definition 3. A C-structure L = (I, γ,4) is called a linear structure if i ‖ j
is false for all i, j ∈ I .

Now let us recall some results obtained in [1] concerning the arrangement
of clock structures.

Definition 4. Let S = (I, γ,4) be a clock structure, A ⊂ I and i ∈ A then i is
called a minimal instant in A if the statement j ≺ i is false for any j ∈ A.

To refer to the subset of minimal instants of A we use the denotation min A .
We associate the sequence of slices I[0] , I[1] , . . . , I[n] , . . . with any C-
structure S in the following manner

I[0] = min I ;

I[n] = min
(
I \

n−1⋃
k=0
I[k]

)
for n ∈ N+

(1)

where I is the instant set of S .

Proposition 2. For a C-structure S = (I, γ,4) the following properties hold

1.
∣∣∣I[n]

∣∣∣ ≤ ∣∣∣C∣∣∣ for each n ∈ N ;
2. if i, j ∈ I[n] then either i ‖ j or i ≡ j for some n ∈ N ;
3. the sequence of slices is a covering of the set of instants;
4. if i ∈ I[n] , j ∈ I , and j ≡ i then j ∈ I[n] for some n ∈ N ;
5. if i ∈ I[n + 1] then there exists j ∈ I[n] such that j ≺ i for some n ∈ N .

We will need some other properties of slices. From item 2 we directly obtain the
follows.

Corollary 1. If L with an instant set I is a linear C-structure then i, j ∈ I[n]
implies i ≡ j .

Corollary 2. The restriction γ on I[n] is injective for all n ∈ N .

Proof. If γ i = γ j for some i, j ∈ I[n] then the axiom of total ordering for the
clock timelines of Def. 1 makes impossible the case i ‖ j in item 2 of Prop. 2.
Further i ≡ j together with the mentioned axiom implies i = j . ut

Proposition 3. Let S = (I, γ,4) be a C-structure and for some m, n ∈ N ,
i ∈ I[m] and j ∈ I[n] then the following properties hold

1. if i 4 j then m ≤ n , while i ≺ j implies m < n ;
2. if S is linear and m ≤ n then i 4 j , while m < n implies i ≺ j .



Proof. To prove item 1 suppose m > n . Then item 5 of Prop. 2 implies the
existence of j′ ∈ I[n] such that j′ ≺ i . But j′ ≺ i 4 j contradicts by item 2 of
Prop. 2 the fact j′, j ∈ I[n] .
To prove item 2 note the following.
If m = n we directly obtain the statement by Cor 1.
If m < n then item 5 of Prop. 2 implies the existence of i′ ∈ I[m] such that
i′ ≺ j then i′ ≡ i and from i 4 i′ ≺ j we conclude i ≺ j . ut

The established properties of the clock structures make it possible to estab-
lish the properties of their morphisms.

Proposition 4. For any morphism f : S′ → S′′ from the C-structure S′ =

(I′, γ′,4) into the C-structure S′′ = (I′′, γ′′,4) and i ∈ I′[m] , f i ∈ I′′[n]
for some m, n ∈ N the following properties hold

1. the mapping f : I′ → I′′ preserves relations “4”, “≡”, “≺”, and “#”;
2. if for some j ∈ I′, we have i ≡ j then f j ∈ I′′[n] ;
3. n ≥ m ;
4. if f is an isomorphism then m = n .

Proof. To prove item 1 note that f preserves relations “4” and “#” by Def. 2.
The statement i ≡ j is equivalent to i 4 j and j 4 i and, therefore, f preserves
“≡” . Further taking into account that i ≺ j if and only if i 4 j and i # j one can
immediately obtain that f preserves “≺” .
To prove item 2 let us use proven item 1. Really, i ≡ j ensures, as item 1 claims,
f i ≡ f j. Now use of item 4 of Prop. 2 leads to the required statement.
To prove item 3 we use induction in m . For m = 0 it is true that n ≥ m . Suppose
the statement holds for m ≤ k and let m = k+1 , i ∈ I′[m] , f i ∈ I′′[n]. Suppose
n < k + 1 . Then by item 5 of Prop. 2 there exists j ∈ I′[n] such that j ≺ i. As
above shown f j ≺ f i . If f j ∈ I′′[r] then by induction hypothesis r ≥ n. Taking
into account j ≺ i and item 1 of Prop. 3 one can derive that r < n . Thus, we
have obtained two mutually excluding inequality r ≥ n and r < n and conclude
that our supposition is incorrect i.e. n ≥ m .
Item 4 follows immediately from item 3. ut

Morphisms of linear clock structures hold additional properties.

Proposition 5. For any morphism f : L′ → L′′ from the linear C-structure
L′ = (I′, γ′,4) into the linear C-structure L′′ = (I′′, γ′′,4) and i, j ∈ I′ the
following properties hold

1. if f i ≡ f j then i ≡ j ;
2. if i ∈ I′[m] , j ∈ I′ , f i, f j ∈ I′′[n] for some m, n ∈ N then j ∈ I′[m] ;



3. f I′[m] ⊂ I′′[n] for some n such that m ≤ n .

Proof. To prove item 1 note that i 6≡ j is equivalent to i # j for linear clock
structures. Item 1 of Prop. 4 ensures f i # f j but this contradicts to f i ≡ f j .
To prove item 2 note f i, f j ∈ I′′[n] ensures f i ≡ f j for a linear clock structure.
Taking into account the previous item one can conclude that i ≡ j . Now we need
to use item 4 of Prop. 2 to obtain the required statement.
Item 3 follows directly from the previous item. ut

The operational approach to describe logical time dependences in distributed
systems (including cyber-physical systems) is based on observing streams of
system messages. Below this approach is described with the language of the
category theory.

Definition 5. Let C be a finite set of logical clocks then any non-empty subset
of C is called a clock message.

Informally, a clock message contains the information about which clocks ticked
at the same time-point.
To refer to the set of clock messages associated with a clock set C we use below
the denotation MC .

Definition 6. A schedule (or more precisely a C-schedule) is an infinite se-
quence π = (π[0], π[1], . . . , π[n], . . .) of clock messages.

In [1], authors have defined the relation of modelling between linear clock
structures and sets of schedules. Unfortunately, this relation does not associate
natural sets of schedules with linear clock structures.

Thus, one can see that the use of the category theory language only for
the denotational semantic model does not give a tool for establishing the re-
quired relationship with the operational semantic model being formulated in the
set-theoretic terms. In this context, an attempt to reformulate the operational
semantic model using the category theory language seems reasonable.

3 Category of Schedules

The operational approach to describe logical time dependences in distributed
systems (including cyber-physical systems) is based on observing streams of
system messages. Below this approach is described with the language of the
category theory.

Definition 7. Let C be a finite set of logical clocks then any non-empty subset
of C is called a clock message.



Informally, a clock message contains the information about which clocks ticked
at the same time-point.
To refer to the set of clock messages associated with a clock set C we use below
the denotation MC .

Definition 8. A schedule (or more precisely a C-schedule) is an infinite se-
quence π = (π[0], π[1], . . . , π[n], . . .) of clock messages.
For two C-schedules π′ and π′′ , a C-morphism from π′ into π′′ is a triple
〈π′, k,π′′〉 where k : N→ N is an injective mapping such that for any n ∈ N

1. k(n) ≥ n ;
2. π′[n] ⊂ π′′[k(n)] .

If we define the composition of C-morphisms 〈π′, k1,π
′′〉 and 〈π′′, k2,π

′′′〉 as
follows

〈π′, k1,π
′′〉 ◦ 〈π′′, k2,π

′′′〉 = 〈π′, k2 ◦ k1,π
′′′〉

then it is evident that

1. C-morphisms of the form 〈π, 1N,π〉 are units of this composition;
2. the associative law is fulfilled for this composition.

Thus, the following statement is true.

Proposition 6. The set of all C-schedules equipped with C-morphisms of sche-
dules forms a small category denoted below by SchedC .

Now we can formulate the principal result of this paper.

Main Theorem. The categories LinStructC and SchedC are equivalent i.e.
there exists a pair of functors

F : SchedC → LinStructC and G : LinStructC → SchedC

such that F G is naturally isomorphic to the identity endofunctor of LinStructC

and G F is naturally isomorphic to the identity endofunctor of SchedC .

Note 1. All necessary definitions and facts about natural transformations and
natural isomorphisms can be found in [4].

We use the following theorem as the main tool to establish the validity of Main
Theorem.

Theorem 1. Categories C and D are equivalent if and only if there exists a
functor F : C→ D such that



1. for any object d in D , there exists an object c in C such that F c and d are
isomorphic;

2. for any objects c′ and c′′ in C , the mapping F : C
(
c′, c′′

)
→ D

(
F c′, F c′′

)
is a bijection.

The proof of this theorem one can find in [5, Theorem 7.1], the proof of the
more general statement is given in [4, IV.4, Theorem 1].

In [1], the linear C-structure Lπ was associated with any π ∈ MC schedule
in the following manner

Lπ = 〈Iπ, γ,4〉

where

Iπ = {〈c, n〉 ∈ C × N | c ∈ π[n]} ;

γ〈c, n〉 = c for 〈c, n〉 ∈ Iπ ;

〈c′, n′〉 4 〈c′′, n′′〉 if and only if n′ ≤ n′′ for 〈c′, n′〉, 〈c′′, n′′〉 ∈ Iπ .

Here we generalize this association by its extension up to a functor F from the
category SchedC into the category LinStructC .
To do this we assign the required correspondences as follows

for π ∈ SchedC Fπ = Lπ ; (2a)

for 〈π′, k,π′′〉 ∈ SchedC
(
π′,π′′

)
and 〈c, n〉 ∈ Lπ

′ (
F 〈π′, k,π′′〉

)
〈c, n〉 = 〈c, k(n)〉 .

(2b)

Now we need to check the validity of some statements. The corresponding
checks are gathered in the following proposition.

Proposition 7. Let π′ , π′′ , and π′′′ be objects of SchedC then

1. for any 〈c, n〉 ∈ Iπ
′

and 〈π′, k,π′′〉 ∈ SchedC
(
π′,π′′

)
, the item 〈c, k(n)〉

belongs to Iπ
′′

;
2. for any C-morphisms 〈π′, k1,π

′′〉 and 〈π′′, k2,π
′′′〉, the following is true

F
(
〈π′, k1,π

′′〉 ◦ 〈π′′, k2,π
′′′〉

)
= F

(
〈π′, k1,π〉

′′) ◦ F
(
〈π′′, k2,π

′′′〉
)

;

3. F〈π′, 1,π′〉 is the identity mapping from Lπ
′

into itself .

Proof. Item 1 follows immediately from the definition of a schedule morphism
(see Def. 8).
Item 2 and item 3 are checked by direct calculation. ut



Corollary 3. Formulae (2a) and (2b) determine a functor

F : SchedC → LinStructC .

Below the following lemma are also needed for us.

Lemma. For any linear C-structure L , there exists C-schedule π such that Lπ

is isomorphic to L .

Proof. Let L = (I, γ,4) then we assign π[n] = γI[n] ⊂ C . Hence, the se-
quence π = π[0], π[1], . . . , π[n], . . . is a C-schedule.
Let us calculate Lπ = (Iπ, γπ,4) .
By construction, Iπ ⊂ C × N and 〈c, n〉 ∈ Iπ if c ∈ π[n] . In other words,
〈c, n〉 ∈ Iπ if c = γ i for some i ∈ I[n] . Cor. 2 guarantees that such i is uniquely
determined. Thus, we can determine the mapping f : Iπ → I by the following
conditions f 〈c, n〉 = i ∈ I[n] if and only if γ i = c . Item 2 of Prop. 3
ensures that f is a morphism from Lπ into L .
Now consider the mapping g : I → Iπ determined as follows g i = 〈γ i, n〉
where i ∈ I[n] . The correctness of g is ensured by the construction of Lπ .
Item 1 of Prop. 3 ensures that g is a morphism from L into Lπ .
It is evident that by construction g

(
f 〈c, n〉

)
= 〈c, n〉 for any 〈c, n〉 ∈ Iπ and

f (g i) = i for any i ∈ I .
Thus, we have proven that L and Lπ are isomorphic. ut

Now we have all necessary to prove Main Theorem.

Proof (of Main Theorem). Our proof is based on applying Theorem 1 with the
constructed above functor F : SchedC → LinStructC . In accordance with the
mentioned theorem, it is sufficient to prove that functor F holds two following
properties

1. for any L ∈ LinStructC , there exists π ∈ SchedC such that Fπ is isomor-
phic to L ;

2. for any π′,π′′ ∈ SchedC the mapping

〈π′, k,π′′〉 ∈ SchedC
(
π′,π′′

)
7→ F 〈π′, k,π′′〉 ∈ LinStructC

(
Fπ′, Fπ′′

)
is bijective.

Lemma and the method of constructing the functor F guarantee the validity of
the first property.
The mapping in the second property is injective. Indeed, if F 〈π′, k1,π

′′〉 =

F 〈π′, k2,π
′′〉 then 〈c, k1(n)〉 = 〈c, k2(n)〉 for all 〈c, n〉 ∈ Iπ

′

. Taking into ac-
count that for each n ∈ N, there exists c ∈ C such 〈c, n〉 ∈ Iπ

′

one can conclude



that k1 = k2 .
The mapping in the second property is surjective. Really, if f is a morphism
from Lπ

′

into Lπ
′′

then f 〈c, n〉 = 〈c, k f (n)〉 . The occurrence of the same c on
both sides of the equation is caused that f is a morphism. Reasoning as above
we obtain the function k f : N→ N . It is evident that

Iπ
′

[n] =
{
c ∈ C | 〈c, n〉 ∈ Iπ

′
}
× {n} . (3)

Item 3 of Prop. 4 ensures the inequality k f (n) ≥ n . Thus, 〈π′, k f ,π
′′〉 is a mor-

phism from π′ into π′′ .
Now taking into account equality (3) and definition (2b) one can easily derive
that F 〈π′, k f ,π

′′〉 = f . ut

4 Conclusion

Summing up the above, one can conclude that the approach based on the cate-
gory theory is more expressive than the approach based on the set theory. Sys-
tematic using this approach we have established the character of the relation-
ship between denotational and operational approaches to modelling logical time
based on the concept of logical clocks. This relationship, as it has been shown
(see Main Theorem), is an equivalence of the corresponding categories. This
equivalence explains the equivalence between the denotational and operational
semantics for some subset of Clock Constraint Specification Language (CCSL)
called RCCSL [6].

At the same time, it should be mentioned that the results presented above
do not give an exhaustive description of the categories introduced in [2] and
this paper. Among the problems being posed by this and previous papers are the
following.

1. What does a morphism of schedules mean informally or, in other words, how
are relations between schedules established by morphisms understanding
informally?

2. Does the equivalence of categories established above ensure the equivalence
of the denotational and operational semantics of CCSL?

3. Does the category-theoretic approach provide methods to compose more
complex systems using less complex systems or, in other words, what cate-
gory-theoretic constructions are realised in the introduced categories?

4. Does the theoretic-category approach give a general model theory for logical
time modelling based on the concept of logical clocks?
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