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Abstract

A class of power series q-distributions, generated by considering a q-
Taylor expansion of a parametric function into powers of the parameter,
is discussed. The q-Poisson (Heine and Euler), q-binomial, negative
q-binomial and q-logarithmic distributions belong in this class. The
probability generating functions and q-factorial moments of the power
series q-distributions are derived. In particular, the q-mean and the
q-variance are deduced.

1 Introduction

Benkherouf and Bather[BB88] derived the Heine and Euler distributions, which constitute q-analogs of the
Poisson distribution, as feasible priors in a simple Bayesian model for oil exploration. The probability function
of the q-Poisson distributions is given by (Charalambides[Cha16, p. 107])

px(λ; q) = Eq(−λ)
λx

[x]q!
, x = 0, 1, . . . ,

where 0 < λ < 1/(1 − q) and 0 < q < 1 (Euler distribution) or 0 < λ < ∞ and 1 < q < ∞ (Heine
distribution). Also, Eq(t) =

∏∞
i=1(1 + t(1 − q)qi−1) is a q-exponential function. It should be noted that

eq(t) =
∏∞

i=1(1 − t(1 − q)qi−1)−1 is another q-exponential function and that these q-exponential functions are
connected by Eq(t)eq(−t) = 1 and Eq−1(t) = eq(t).

Kemp and Kemp [KK91], in their study of the Weldon’s classical dice data, introduced a q-binomial distribu-
tion. It is the distribution of the number of successes in a sequence of n independent Bernoulli trials, with the
odds of success at a trial varying geometrically with the number of trials. Kemp and Newton [KN90] further
studied it as stationary distribution of a birth and death process. The probability function of this q-binomial
distribution of the first kind is given by

px(θ; q) =

[
n

x

]
q

θxq(
x
2)∏n

i=1(1 + θqi−1)
, x = 0, 1, . . . , n,

where 0 < θ <∞, and 0 < q < 1 or 1 < q <∞.

Charalambides [Cha10] in his study of the q-Bernstein polynomials as a q-binomial distribution of the second
kind, introduced the negative q-binomial distribution of the second kind. It is the distribution of the number of
failures until the occurrence of the nth success in a sequence of independent Bernoulli trials, with the probability
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of success at a trial varying geometrically with the number of successes. The probability function of this negative
q-binomial distribution of the second kind is given by

px(θ; q) =

[
n+ x− 1

x

]
q

θx
n∏

i=1

(1− θqi−1), x = 0, 1, . . . ,

where 0 < θ < 1 and 0 < q < 1.
A q-logarithmic distribution was studied by C. D. Kemp[Kem97] as a group size distribution. Its probability

function is given by

px(θ; q) = [−lq(1− θ)]−1 θ
x

[x]q
, x = 1, 2, . . . ,

where 0 < θ < 1, 0 < q < 1, and

−lq(1− θ) = lim
x→0

( ∞∏
i=1

1− θqx+i−1

1− θqi−1
− 1

)
=

∞∑
j=1

θj

[j]q

is a q-logarithmic function.
The class of power series q-distributions, introduced in section 2, provides a unified approach to the study

of these distributions. Its probability generating function and q-factorial moments are derived. Demonstrating
this approach, the probability generating function and q-factorial moments of the q-Poisson (Heine and Euler),
q-binomial, negative q-binomial, and q-logarithmic distributions are obtained.

2 Power series q-distributions

Consider a positive function g(θ) of a positive parameter θ and assume that it is analytic with a q-Taylor
expansion

g(θ) =

∞∑
x=0

ax,qθ
x, 0 < θ < ρ, ρ > 0, (1)

where the coefficient

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 ≥ 0, x = 0, 1, . . . , 0 < q < 1, or 1 < q <∞, (2)

with Dq = dq/dqt the q-derivative operator,

Dqg(t) =
dqg(t)

dqt
=
g(t)− g(qt)

(1− q)t
,

does not involve the parameter θ. Clearly, the function

px(θ; q) =
ax,qθ

x

g(θ)
, x = 0, 1, . . . , (3)

with 0 < q < 1 or 1 < q <∞, and 0 < θ < ρ, satisfies the properties of a probability (mass) function.

Definition 2.1. A family of discrete q-distributions px(θ; q), θ ∈ Θ, q ∈ Q, is said to be a class of power series
q-distributions, with parameters θ, q and series function g(θ) if it has the representation (3), with series function
satisfying condition (1).

Remark 2.2. The range of x in (3), as in the case of the (usual) power series distributions), may be reduced.
Thus, we may have ax,q > 0 for x ∈ T , with

T = {x0, x0 + 1, . . . , x0 + x1 − 1}, x0 ≥ 0, x1 ≥ 1.

Moreover, note that the truncated versions of the a power series q-distribution are also power series q-distributions
in their own right.
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The probability generating function P (t) =
∑∞

x=0 px(θ; q)tx, on using (1) and (3), is readily deduced as

P (t) =
g(θt)

g(θ)
. (4)

Clearly, the mth q-derivative, with respect to t, of the probability generating function is

dmq P (t)

dqtm
=

∞∑
x=m

px(θ; q)[x]m,qt
x−m.

Thus, the mth q-factorial moment of the power series q-distribution, on using (4), is obtained as

E([X]m,q) =
1

g(θ)
·
[
dmq g(θt)

dqtm

]
t=1

=
θm

g(θ)
·
dmq g(θ)

dqθm
, m = 1, 2, . . . . (5)

In particular the q-mean is given by

E([X]q) =
θ

g(θ)
· dqg(θ)

dqθ
. (6)

Also, on using the expression

V ([X]q) = qE([X]2,q)− E([X]q)
(
E([X]q)− 1

)
, (7)

the q-variance is obtained as

V ([X]q) =
qθ2

g(θ)
·
d2qg(θ)

dqθ2
− θ

g(θ)
· dqg(θ)

dqθ

(
θ

g(θ)
· dqg(θ)

dqθ
− 1

)
. (8)

Example 2.3. q-Poisson distributions. These are power series q-distributions, with series function g(λ) =
eq(λ) = 1/Eq(−λ), where 0 < λ < 1/(1− q) and 0 < q < 1 or 0 < λ <∞ and 1 < q <∞. Since Dqeq(t) = eq(t)
and eq(0) = 1, it follows from (2) that

ax,q =
1

[x]q!
[Dx

q eq(t)]t=0 =
1

[x]q!
, x = 0, 1, . . . ,

Also, the probability generating function of the q-Poisson distributions, on using (4), is deduced as

P (t) =
eq(λt)

eq(λ)
= Eq(−λ)eq(λt).

The q-factorial moments, by (5) and since Dm
q eq(λ) = eq(λ), are readily deduced as

E([X]m,q) = λm, m = 1, 2, . . . .

In particular, the q-mean is given by
E([X]q) = λ.

Also, using (7), the q-variance is obtained as

V ([X]q) = qλ2 − λ(λ− 1) = λ(1 + (q − 1)λ).

Example 2.4. q-Binomial distribution of the first kind. The series function of this distribution is g(θ) =∏n
i=1(1 + θqi−1), where 0 < θ <∞ and 0 < q < 1 or 1 < q <∞. Since

Dqg(θ) =

∏n
i=1(1 + θqi−1)−

∏n
i=1(1 + θqi)

(1− q)θ

=
[(1 + θ)− (1 + θqn)]

∏n−1
i=1 (1 + θqi)

(1− q)θ
= [n]q

n−1∏
i=1

(1 + (θq)qi−1),
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it follows successively that

Dx
q g(θ) = [n]x,qq

1+2+···+(x−1)
n−x∏
i=1

(1 + (θqx)qi−1) = [n]x,qq
(x
2)

n−x∏
i=1

(1 + (θqx)qi−1),

for x = 1, 2, . . . , n. Thus, by (2),

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 =

[
n

x

]
q

q(
x
2), x = 0, 1, . . . , n.

Also, the probability generating function of the q-binomial distribution of the first kind, on using (4), is deduced
as

P (t) =

∏n
i=1(1 + θtqi−1)∏n
i=1(1 + θqi−1)

.

The q-factorial moments, by (5) and since

Dm
q g(θ) = [n]m,qq

(m
2 )

n−m∏
i=1

(1 + (θqm)qi−1) = [n]m,qq
(m

2 )
n∏

i=m+1

(1 + θqi−1),

are obtained as

E([X]m,q) =
[n]m,qθ

mq(
m
2 )∏m

i=1(1 + θqi−1)
, m = 1, 2, . . . .

In particular, the q-mean is

E([X]q) =
[n]qθ

(1 + θ)
.

Also, using (7) and, subsequently, the expression q[n− 1]q = [n]q − 1, the q-variance is obtained as

V ([X]q) =
[n]q[n− 1]qθ

2q2

(1 + θ)(1 + θq)
+

[n]qθ

1 + θ

(
1− [n]qθ

1 + θ

)
=

[n]qθ

(1 + θ)(1 + θq)

(
1 +

[n]qθ(q − 1)

1 + θ

)
.

Example 2.5. Negative q-binomial distribution of the second kind. It is a power series q-distribution, with series
function g(θ) =

∏n
i=1(1− θqi−1)−1, where 0 < θ < 1 and 0 < q < 1. Since

Dqg(θ) =

∏n
i=1(1− θqi−1)−1 −

∏n
i=1(1− θqi)−1

(1− q)θ

=
[(1− θqn)− (1− θ)]

∏n+1
i=1 (1− θqi−1)

(1− q)θ
= [n]q

n+1∏
i=1

(1− θqi−1),

it follows successively that

Dx
q g(θ) = [n]q[n+ 1]q · · · [n+ x− 1]q

n+x∏
i=1

(1− θqi−1) = [n+ x− 1]x,q

n+x∏
i=1

(1− θqi−1),

for x = 1, 2, . . . . Thus, by (2),

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 =

[
n+ x− 1

x

]
q

, x = 0, 1, . . . .

Also, the probability generating function of the negative q-binomial distribution of the second kind, on using (4),
is deduced as

P (t) =

∏n
i=1(1− θtqi−1)−1∏n
i=1(1− θqi−1)−1

.
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The q-factorial moments, by (5) and since

Dm
q g(θ) = [n+m− 1]m,q

n+m∏
i=1

(1− θqi−1)−1

= [n+m− 1]m,q

n∏
i=1

(1− θqi−1)−1
m∏
i=1

(1− θqn+i−1)−1,

are obtained as

E([X]m,q) = [n+m− 1]m,qθ
m

m∏
i=1

(1− θqn+i−1)−1, m = 1, 2, . . . .

In particular, the q-expected value is

E([X]q) =
[n]qθ

1− θqn
.

Also, using (7) and, subsequently, the expression [n+ 1]q = [n]q + qn, the q-variance is successively obtained as

V ([X]q) =
[n]q[n+ 1]qθ

2q

(1− θqn)(1− θqn+1)
+

[n]qθ

1− θqn

(
1− [n]qθ

1− θqn

)
=

[n]qθ

(1− θqn)(1− θqn+1)

(
1 +

[n]qθ(q − 1)

1− θqn

)
.

Example 2.6. q-Logarithmic distribution. The series function of this distribution is

g(θ) = −lq(1− θ) =

∞∑
j=1

θj

[j]q
, 0 < θ < 1, 0 < q < 1.

Taking successively its q-derivatives,

Dx
q g(θ) =

∞∑
j=x

[j − 1]x−1,qθ
j−x = [x− 1]q!

∞∑
j=x

[
j − 1

j − x

]
q

θj−x,

and using the negative q-binomial formula

∞∑
k=0

[
x+ k − 1

k

]
q

θk =

x∏
i=1

(1− θqi−1)−1,

we find

Dx
q g(θ) = [x− 1]q!

x∏
i=1

(1− θqi−1)−1.

Thus, by (2),

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 =
1

[x]q
, x = 1, 2, . . . .

Also, the probability generating function of the q-logarithmic distribution, on using (4), is deduced as

P (t) =
−lq(1− θt)
−lq(1− θ)

.

The q-factorial moments, by (5) and since

Dm
q g(θ) = [m− 1]q!

m∏
i=1

(1− θqi−1)−1,

are obtained as

E([X]m,q) =
[−lq(1− θ)]−1[m− 1]q!θm∏m

i=1(1− θqi−1)
, m = 1, 2, . . . .
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In particular, the q-mean value is

E([X]q) =
[−lq(1− θ)]−1θ

1− θ
.

Also, using (7), the q-variance is obtained as

V ([X]q) =
[−lq(1− θ)]−1θ2q
(1− θ)(1− θq)

+
[−lq(1− θ)]−1θ

1− θ

(
1− [−lq(1− θ)]−1θ

1− θ

)
=

[−lq(1− θ)]−1θ
1− θ

(
1

1− θq
− [−lq(1− θ)]−1θ

1− θ

)
.
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