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Abstract. We present a simple prover for first-order logic with certified
soundness and completeness in Isabelle/HOL, taking formalizations by
Tom Ridge and others as the starting point, but with the aim of using
the approach for teaching logic and verification to computer science stu-
dents at the bachelor level. The prover is simple in the following sense: It
is purely functional and can be executed with rewriting rules or as code
generation to a number of functional programming languages. The prover
uses no higher-order functions, that is, no function takes a function as
argument or returns a function as its result. This is advantageous when
students perform rewriting steps by hand. The prover uses the logic of
first-order logic on negation normal form with a term language consist-
ing of only variables. This subset of the full syntax of first-order logic
allows for a simple proof system without resorting to the much weaker
propositional logic.

1 Introduction

Our motivation is in some ways similar to the development of lean theorem
provers like leanTAP and leanCoP [4], although with more focus on the use
in teaching and less focus on reaching considerable performance. In contrast to
leanTAP and leanCoP we also require formal verification of the soundness and
completeness of the prover, in our case in Isabelle/HOL [3]. The development
described in this paper is available online:

https://bitbucket.org/isafol/isafol/src/master/Simple_Prover/

Let us recall the following conclusions concerning leanCoP [4, p. 159]:

Lean provers can easily be integrated and modified by people who do not
have a deep knowledge about fully automatic provers. Since it is much
easier (and faster) to understand a few lines of Prolog code than several
thousand lines of, e.g., C code, lean theorem provers are also very well
suited for teaching purposes. Finally, for the same reason it is also much
easier to verify completeness and correctness of lean theorem provers.

https://bitbucket.org/isafol/isafol/src/master/Simple_Prover/


Using ISO Prolog the compact code for leanCoP amounts to the following
clauses:

prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),
append(Q,R,S), prove([!],[[-!|C]|S],[],I).

prove([],_,_,_).
prove([L|C],M,P,I) :- (-N=L; -L=N) -> (member(U,P),

unify_with_occurs_check(U,N);
append(Q,[D|R],M), copy_term(D,E), append(A,[U|B],E),
unify_with_occurs_check(U,N),
append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I).

We agree with the authors that the leanCoP code is well suited for teaching
and in particular more so than thousands of lines of C code. Clearly, the concise
code of leanCoP is much easier to get an overview of than a huge C program.
Already in the representation of first-order formulas leanCoP shines in that it
can simply rely on the terms of Prolog. However, the conciseness and simple
representation does, in our opinion, come at a price. The code of leanCoP is
written in the Prolog language and our experience from teaching both C and
Prolog is that our students understand the execution model of C much faster
than that of Prolog which involves backtracking and unification without occurs
check. On top of that, leanCoP relies on some rather advanced features that go
beyond pure Prolog to manipulate terms and to get the execution right. In par-
ticular it relies on ISO Prolog’s build-in unification predicate with occurs-check
unify_with_occurs_check/2, the copy_term/2 predicate, the special equiva-
lence predicate ==/2 and the if-then-else predicate whose semantics is actually
surprisingly complex. We believe that there must be some middle ground be-
tween thousands of lines of C code and a Prolog program that relies on very
complex features of the language.

Our simple prover is an attempt at reaching this middle ground. The prover
is purely functional and can be executed with rewriting rules. We provide all
rewriting rules, also for if-then-else constructs, arithmetic, list operations, etc.
We avoid the more advanced features of functional programming such as higher-
order functions, that is, no function takes a function as argument or returns
a function as its result. This is advantageous when students perform rewriting
steps by hand.

One of the advantages of leanCoP is that because of its small size it should be
easy to verify its completeness. This does, however, require reasoning about the
advanced Prolog features mentioned above, which is no easy task. In contrast
functional programming allows equational reasoning, and our simple prover is
formally verified in Isabelle/HOL. This also means that modifications of the
code are possible with interactive feedback in the Isabelle proof assistant that
indicates where the soundness and completeness arguments need to be adapted
to the changes.
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To simplify things our simple prover does not allow for complex terms — all
terms are variables, with free variables functioning as constants, if necessary. We
find this acceptable since it means that we can delay teaching unification to e.g.
a more advanced course on automated reasoning.

We have taken the formalizations by Tom Ridge and others [5,6] as the
starting point, but we have totally rewritten the program (with no higher-order
functions) as well as the soundness and completeness proof (now using the Isar
proof language [8]). We discuss this further in section 7 on related work.

Section 2 explains the proof system on which the prover is based. Section
3 explains the prover as encoded in Isabelle — in particular the syntax and
semantics of first-order logic as well as the prover and its execution on a small
example. Section 4 explains the formalized soundness proof. Section 5 explains
the formalized completeness proof. Section 6 considers code generation from
Isabelle/HOL to functional programming languages. Section 7 is a discussion of
related work. Finally, section 8 concludes on the paper.

2 The Proof System

We consider essentially the same proof system as Tom Ridge and others [5,6]
with a sequent as an ordered list of formulas in negation normal form (nnf), cf.
Fig. 1. We will always use the rules in a backward chaining fashion — to prove
a sequent we choose a rule or axiom whose conclusion fits the sequent and then
prove its premises recursively in the same way. We choose a discipline where we
always apply Ax and Ax rather than NoAx and NoAx whenever this is possible.
With this discipline the described backward chaining procedure is deterministic.

The rules Ax and Ax denote the leaves of the derivation tree, where the
complement of the considered predicate occurs at a later position in the sequent,
producing a tautology. The rules NoAx and NoAx apply when the complement
does not appear in the sequent and move the predicate to the end of the sequent
to continue work on the rest of the formulas.

Since a sequent already denotes a disjunction, the ∨-rule breaks down a dis-
junction into its parts and adds them to the end of the sequent. For conjunctions
however, the derivation tree branches using the ∧-rule to attempt a derivation
of both conjuncts separately.

In the ∃-rule for existential quantifiers, we use a superscript, initially 0, to
denote the next variable to try to use as witness for the existential. The quantified
formula is instantiated with this variable in the premise, but we also add the
original formula with an incremented superscript behind its instantiation. Thus
all witnesses will eventually be tried.

Finally, the premise of the ∀-rule, for universal quantifiers, is the formula
instantiated with a fresh variable. The idea is that if the formula holds for this
arbitrary variable, it must hold for any variable.

Note that for invalid formulas the derivation will not terminate as some
branch will never end in a leaf.
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Rule Note

Ax
` P (vi1 , ..., vik ), Γ, P (vi1 , ..., vik ),∆

Leaf of the derivation tree.

Ax
` P (vi1 , ..., vik ), Γ, P (vi1 , ..., vik ),∆

Leaf of the derivation tree.

` Γ, P (vi1 , ..., vik ) NoAx` P (vi1 , ..., vik ), Γ

` Γ, P (vi1 , ..., vik )
NoAx

` P (vi1 , ..., vik ), Γ

` Γ,A,B
∨` A ∨B,Γ

` Γ,A ` Γ,B
∧` A ∧B,Γ

The only branching rule.

` Γ, [vi/x]A, (∃x.A)i+1

∃
` (∃x.A)i, Γ

Superscripts are only relevant for
this rule, and allow [vi/x]A to be
instantiated for all i.

` Γ, [vr/x]A
∀` ∀x.A, Γ

vr is a fresh free variable, chosen as
r = max(S) + 1, where S is the set
of subscripts already used for the
free variables in A (r = 0 if there
are no free variables in A).

Fig. 1. Proof System
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3 The Simple Prover

The proof system is encoded in Isabelle. We present the syntax, semantics and
definition of the prover before showing the progression of a small example proof.

3.1 Syntax

The datatype nnf represents formulas in negation normal form. Variables are
represented using de Bruijn indices, the type of predicate names is id and the
bool in the predicate constructor Pre is a sign — when it is True we have our
hands on an atom and when it is False the negation of an atom.

type-synonym id = nat

datatype nnf =
Pre bool id 〈nat list〉 | Con nnf nnf | Dis nnf nnf | Uni nnf | Exi nnf

3.2 Test example

TEST P Q abbreviates a test formula which is proved in Isabelle and converted
into negation normal form.

abbreviation (input) TEST P Q ≡ (∃ x . P x ∨ Q x ) −→ (∃ x . Q x ) ∨ (∃ x . P x )

proposition TEST P Q

proposition TEST P Q = (∀ x . ¬ P x ∧ ¬ Q x ) ∨ (∃ x . Q x ) ∨ (∃ x . P x )

The definition test is the same formula in our formalization.

abbreviation (input) P-id ≡ 0

abbreviation (input) Q-id ≡ Suc 0

definition
test ≡ Dis
(Uni (Con (Pre False P-id [0 ]) (Pre False Q-id [0 ])))
(Dis (Exi (Pre True Q-id [0 ])) (Exi (Pre True P-id [0 ])))

3.3 Semantics

For the semantics we, for teaching purposes, consider only countable universes
using unit lists (an arbitrary universe is too abstract while a universe of natu-
ral numbers may fool students to think we only care about numbers). It is not
difficult to use another infinite type than that of unit lists; this can be done by,
for instance, declaring an arbitrary infinite type — this is the approach used
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by Ridge [5,6] — or using HOL’s type ind of individuals — as suggested by
Ridge in a footnote [6]. The change can be made locally and does not affect the
completeness proof. Note that proxy is not the universe but the set from which
the elements of the universes are taken.

type-synonym proxy = unit list

type-synonym model = proxy set × (id ⇒ proxy list ⇒ bool)

type-synonym environment = nat ⇒ proxy

definition is-model-environment :: model ⇒ environment ⇒ bool where
is-model-environment m e ≡ ∀n. e n ∈ fst m

primrec semantics :: model ⇒ environment ⇒ nnf ⇒ bool where
semantics m e (Pre b i v) = (b = snd m i (map e v)) |
semantics m e (Con p q) = (semantics m e p ∧ semantics m e q) |
semantics m e (Dis p q) = (semantics m e p ∨ semantics m e q) |
semantics m e (Uni p) =
(∀ z ∈ fst m. semantics m (λx . case x of 0 ⇒ z | Suc n ⇒ e n) p) |

semantics m e (Exi p) =
(∃ z ∈ fst m. semantics m (λx . case x of 0 ⇒ z | Suc n ⇒ e n) p)

The definition is-model-environment is used later together with semantics to
state the soundness and completeness theorem.

3.4 Prover

In Isabelle, the prover is defined as a number of functions by their defining
equations in a style similar to the ML functional programming languages. From
these we can immediately prove a set of lemmas repeating the equations to
illustrate to our students that these are building blocks that can be reasoned
about like any other lemmas of Isabelle. These lemmas can be taken as rewrite
rules that students can study and hand-run to see how the prover works.

The prover uses no higher-order functions, that is, no function takes a func-
tion as argument or returns a function as its result. Except for prover all rewrite
rules are primitive recursive. We represent sequents as lists of formulas where
each formula is tagged by the superscript used for the ∃-rule.

The functions prover, solves and solve drive the main function track by trying
to prove all the given branches, represented as a list of sequents.

We use check to start this with just a single branch containing the given
formula.

lemma check p ≡ prover [[(0 ,p)]]

lemma prover (h # t) ≡ prover (solves (h # t))
lemma prover [] ≡ True
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lemma solves [] ≡ []

lemma solves (h # t) ≡ solve h @ solves t

lemma solve [] ≡ [[]]

lemma solve (h # t) ≡ track t (fst h) (snd h)

lemma track s n (Pre b i v) ≡ stop [s @ [(0 ,Pre b i v)]] (Pre (¬ b) i v) (base s)
lemma track s n (Con p q) ≡ [s @ [(0 ,p)],s @ [(0 ,q)]]
lemma track s n (Dis p q) ≡ [s @ [(0 ,p),(0 ,q)]]
lemma track s n (Uni p) ≡ [s @ [(0 ,subst 0 (fresh (frees (Uni p # base s))) p)]]
lemma track s n (Exi p) ≡ [s @ [(0 ,subst 0 n p),(Suc n,Exi p)]]

The main function track implements the proof rules from the conclusion to
the premises. The case for conjunction creates two new branches, while a dis-
junction extends the current branch as expected. For universal quantifiers, the
variable is replaced by a fresh constant using functions described below while for
existential quantifiers, it checks if the variable n satisfies the quantified formula
and also re-tags the existential with the successor of n, in case it does not. In
the predicate case of the main function track it determines whether we are in a
leaf using stop.

lemma stop c p [] ≡ c
lemma stop c p (h # t) ≡ (if p = h then [] else stop c p t)

We use stop to check if a formula exists in the given list and in that case
return an empty list of new goals, thus stopping the search on that branch.
Otherwise stop returns the given default.

The function base removes the superscript tag from each formula in a se-
quent, returning a list of formulas.

lemma base [] ≡ []

lemma base (h # t) ≡ snd h # base t

The function subst takes care of substitution in a formula. Since we only have
variables in our term language, the given s will always be a variable.

lemma subst x s (Pre b i v) ≡ Pre b i (mend x s v)
lemma subst x s (Con p q) ≡ Con (subst x s p) (subst x s q)
lemma subst x s (Dis p q) ≡ Dis (subst x s p) (subst x s q)
lemma subst x s (Uni p) ≡ Uni (subst (Suc x ) (Suc s) p)
lemma subst x s (Exi p) ≡ Exi (subst (Suc x ) (Suc s) p)

This makes the quantifier cases easy to handle when using de Bruijn indices,
as incrementing the term to account for passing a quantifier is just incrementing
the variable. In the predicate case we use the function mend which applies more
to each argument of the predicate after subtracting the variable we are substi-
tuting for, x, from it. This way, more can match on the result of the subtraction
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to determine the variable’s index relative to what we are substituting for. If the
result is positive, this is not the variable to substitute for and it is decremented
instead to account for the removed quantifier. If sub x h is zero, then more del-
egates to over with the subtraction the other way around. Thus if over receives
a zero, the variable is equal to what we are substituting for and over returns the
s we are substituting with, otherwise the variable is smaller and returned as is.

lemma mend x s [] ≡ []

lemma mend x s (h # t) ≡ more x s h (sub h x ) # mend x s t

lemma more x s h 0 ≡ over s h (sub x h)
lemma more x s h (Suc n) ≡ dec h

lemma over s h 0 ≡ s
lemma over s h (Suc n) ≡ h

The function fresh returns a new variable given a list of used variables (we
use subtraction and then addition to find the maximum of two natural numbers).

lemma fresh [] ≡ 0
lemma fresh (h # t) ≡ Suc (add (sub (dec (fresh t)) h) h)

The function free returns the free variables in a formula, taking into account
the binding of variables by the universal and existential quantifiers. The latter
is accomplished by the functions dump and dash which together decrement all
variables in the list while simultaneously removing any zeros, as these are bound
by the quantifier and thus not free.

lemma frees [] ≡ []

lemma frees (h # t) ≡ free h @ frees t

lemma free (Pre b i v) ≡ v
lemma free (Con p q) ≡ free p @ free q
lemma free (Dis p q) ≡ free p @ free q
lemma free (Uni p) ≡ dump (free p)
lemma free (Exi p) ≡ dump (free p)

lemma dump [] ≡ []

lemma dump (h # t) ≡ dash (dump t) h

lemma dash l 0 ≡ l
lemma dash l (Suc n) ≡ n # l

For auxiliary functions we prefer short, single-word names (at most 5 charac-
ters) that describe the functionality as well as possible within these restrictions.
Given this preference we believe the names work well, but one could argue that
they are a little far-fetched. If teachers or students disagree with our preference
they can fortunately easily rename the functions; renaming and other minor
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modifications are relatively easy in Isabelle and the formal proofs ensure that
doing so does not introduce an accidental mistake.

In addition to these rewriting rules there are also some data and library
rewrite rules. See the Appendix. The data rewrite rules state equalities and in-
equalities based on the datatypes for the formulas. The library rewriting rules
state properties of auxiliary concepts such as if-then-else and the natural num-
bers.

We state the soundness and completeness theorem. The proof is about one
thousand lines and described in the following sections.

theorem check p = (∀m e. is-model-environment m e −→ semantics m e p)

3.5 Test example continued

The following proposition shows that our prover check proves the test formula
test.

proposition check test
unfolding test-def
unfolding program(1 )
unfolding program(2 )
unfolding program(3−) data library
unfolding program(2 )
unfolding program(3−) data library
unfolding program(2 )
unfolding program(3−) data library
unfolding program(2 )
unfolding program(3−) data library
unfolding program(2 )
unfolding program(3−) data library
unfolding program(2 )
unfolding program(3−) data library
unfolding program(2 )
unfolding program(3−) data library
by (rule TrueI )

We show the result of every other unfolding in Fig. 2, namely the situation
after each program(2 ) line where the prover function is unfolded. The single
program(1 ) line simply unfolds the check function.

4 Soundness

We prove soundness of the prover. First we model the derivation of a sequent
and show that finite derivations correspond to executions of the prover. Now all
that remains is to show soundness of the finite derivations.
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check
(Dis (Uni (Con (Pre False 0 [0]) (Pre False (Suc 0) [0])))
(Dis (Exi (Pre True (Suc 0) [0])) (Exi (Pre True 0 [0]))))

prover
[[(0, Dis (Uni (Con (Pre False 0 [0]) (Pre False (Suc 0) [0])))

(Dis (Exi (Pre True (Suc 0) [0]))
(Exi (Pre True 0 [0]))))]]

prover
[[(0, Uni (Con (Pre False 0 [0]) (Pre False (Suc 0) [0]))),
(0, Dis (Exi (Pre True (Suc 0) [0])) (Exi (Pre True 0 [0])))]]

prover
[[(0, Dis (Exi (Pre True (Suc 0) [0])) (Exi (Pre True 0 [0]))),
(0, Con (Pre False 0 [0]) (Pre False (Suc 0) [0]))]]

prover
[[(0, Con (Pre False 0 [0]) (Pre False (Suc 0) [0])),
(0, Exi (Pre True (Suc 0) [0])), (0, Exi (Pre True 0 [0]))]]

prover
[[(0, Exi (Pre True (Suc 0) [0])), (0, Exi (Pre True 0 [0])),
(0, Pre False 0 [0])],
[(0, Exi (Pre True (Suc 0) [0])), (0, Exi (Pre True 0 [0])),
(0, Pre False (Suc 0) [0])]]

prover
[[(0, Exi (Pre True 0 [0])), (0, Pre False 0 [0]),
(0, Pre True (Suc 0) [0]),
(Suc 0, Exi (Pre True (Suc 0) [0]))],
[(0, Exi (Pre True 0 [0])), (0, Pre False (Suc 0) [0]),
(0, Pre True (Suc 0) [0]),
(Suc 0, Exi (Pre True (Suc 0) [0]))]]

prover
[[(0, Pre False 0 [0]), (0, Pre True (Suc 0) [0]),
(Suc 0, Exi (Pre True (Suc 0) [0])), (0, Pre True 0 [0]),
(Suc 0, Exi (Pre True 0 [0]))],
[(0, Pre False (Suc 0) [0]), (0, Pre True (Suc 0) [0]),
(Suc 0, Exi (Pre True (Suc 0) [0])), (0, Pre True 0 [0]),
(Suc 0, Exi (Pre True 0 [0]))]]

True

Fig. 2. Prover steps for the test example
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Derivations are modeled as an inductive set of derived sequents. We call such
a set the calculation:

inductive-set calculation :: 〈sequent ⇒ (nat × sequent) set〉 for s where
〈(0 ,s) ∈ calculation s〉 |
〈(n,k) ∈ calculation s =⇒ l ∈ set (solve k) =⇒ (Suc n,l) ∈ calculation s〉

Each sequent is labeled with the level at which it is added to the set, making
it simpler to prove properties of the proof system inductively. Note that it rep-
resents the derivation backwards, adding the leaves as the final step, and that
calculation tracks all branches simultaneously.

Our corollary finite-calculation-check states that check, which represents a
terminating execution of the prover, is true exactly for those formulas whose
derivations are finite:

corollary finite-calculation-check : 〈finite (calculation (make-sequent [p])) = check p〉

Its proof establishes a connection between the labels in a calculation and the
number of iterations of the solver, showing that if the calculation is finite, the
solver will at one point stop producing new goals and terminate, and vice versa.

The soundness theorem for derivations is

lemma soundness:
assumes 〈finite (calculation (make-sequent s))〉
shows 〈valid s〉

In its proof we show that every derived sequent is valid by considering them
in opposite order of how they were added. The calculation is finite, so there
must exist some largest label m. Any sequent labeled m is a leaf, as otherwise
it would have been derived from a new sequent (the premise) with higher label.
Thus it must be valid since leaves in the proof system are trivially valid. In the
cases where the label is smaller than m we can assume by induction that the
premises of the added sequent are valid, as these are one step closer to the leaves.
We then prove validity for each case of the considered formula in the sequent
in a similar fashion to a soundness proof for natural deduction rules. Take for
instance the case for conjunction where we break Con p q # s down to two
new branches, p # s and q # s. These new sequents have higher labels so we
can assume the validity of those and have to prove the validity of the sequent
with the conjunction. Finally, by induction, only valid sequents appear in a finite
calculation.

Together with the lemma above, this gives us the soundness direction of the
correctness theorem at the end of section 3.
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5 Completeness

For completeness we still consider the calculation described above, this time
focusing on infinite derivation attempts. We extract a counter-model to the ini-
tial formula from an infinite, so-called failing, path in the attempted derivation,
proving its invalidness. By contraposition, any valid formula has a finite deriva-
tion which the prover will find, and thus the prover is complete. The existence of
a failing path follows from König’s lemma, but we follow the same approach as
Ridge [5,6] and do not explicitly invoke the lemma, but instead define a function
failing-path which given an infinite calculation finds an infinite path in it, and
then when given a natural number returns the nth node in the infinite path. The
function uses Hilbert’s choice operator to pick nodes in the infinite part of the
derivation tree.

For an example of a failing path consider the following derivation which also
constitutes a failing path:

...
` q(v1),¬p(v0),¬p(v1), (∃x. ¬p(x))2 ∃

` (∃x. ¬p(x))1, q(v1),¬p(v0)
NoAx` ¬p(v0), (∃x. ¬p(x))1, q(v1)
NoAx

` q(v1),¬p(v0), (∃x. ¬p(x))1 ∃
` (∃x. ¬p(x))0, q(v1) ∨
` (∃x. ¬p(x)) ∨ q(v1)

We model failing paths as functions from natural numbers into sequents, i.e.
if f is a failing path in derivation d then f 0 is the first sequent on the infinite
path, f 1 is the second and so on. The function failing-path therefore takes a
derivation and returns a failing path in it.

We say that a (failing) path contains a formula at label n if the formula
appears in a sequent at level n on the path, and that it considers the formula at
label n if it appears at the head of the sequent on level n on the path. Since a
failing path is infinite and our proof system always removes a formula from the
front of a sequent and adds new premises to the end, any formula contained on
the path will eventually be considered on the path because it is rotated to the
front. Next we describe how each type of formula is propagated along a failing
path. For all types it is the case that if the formula is contained in a failing path,
then a set of instances of its subformulas is eventually added and contained in all
the following levels of the path. For predicates the instance of a subformula is the
formula itself, but for all other types instances of proper subformulas are added:
Conjunctions have one of their conjuncts added, disjunctions have both their
disjuncts added and quantified formulas have instances of the formula quantified
over added. Any existential must initially have been tagged with zero, as none
of the other rules increment the superscript. This allows us to disregard the
superscript when considering propagation.
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Our counter-model consists of a universe and predicate denotation and is
constructed from a failing path in the following way: The universe is the universe
of unit lists as above and an atom is true if and only if it does not appear on a
failing path. In the above example, the counter-model therefore considers q(v1)
false and any other atom true. We show by induction on the size of a formula that
any formula contained on the path is falsified by the model given the propagation
properties sketched above. Finally the initial formula is falsified since this is the
first formula on the path and thus our counter-model is actually a counter-model.
By reusing the connection between the prover and a calculation established in
section 4, we can transfer this result to the prover, giving us the completeness
part of the correctness theorem at the end of section 3.

6 Code Generation

As mentioned, the prover can be exported to a number of functional languages
using code generation. Isabelle allows exporting a large subset of its higher-order
logic to code and thus in general it was easy to keep our prover functions within
this subset. The possibility of code generation means that the prover can be
integrated into other developments.

Our prover is expressed in terms of a certain iterator function for which we
prove the following lemma:

iterator g f c = (if g c then True else iterator g f (f c))

It is then possible to execute the prover in the Isabelle formalization using the
Standard ML extension Isabelle/ML and the value command:

value (check test)

Alternatively the generated code can be exported to Haskell, OCaml, Scala and
Standard ML. We first discussed these possibilities in our preliminary informal
paper entitled “Code Generation for a Simple First-Order Prover” presented at
the Isabelle Workshop 2016.

Isabelle itself includes automated theorem provers integrated as tactics (called
proof methods in Isabelle-lingo) which can automatically prove subgoals. It could
be interesting to make such a tactic with formally verified completeness, how-
ever, it is not straight forward to do from our prover since any logical operation
in Isabelle should then be made by calls into Isabelle’s kernel.

7 Related Work

As mentioned, our starting point is the formalizations by Ridge and others [5,6].
The inspiration is clear, but we have totally rewritten the prover.

In particular, Ridge’s formalization uses higher-order functions while we
avoid these entirely. This is clearest in the definitions of substitution. Ridge
does substitution by recursing on the formula datatype and passing down a
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function from variables to variables. Whenever the recursion passes a quantifier,
the function is adjusted to account for this, and when a predicate is reached
the function is applied as is to the variables. We instead pass down exactly two
variables (where one is to be replaced by the other) and then when a predicate is
reached all the necessary adjustments to variables are made on the spot. Passing
a quantifier in our recursion amounts to increasing the two variables by one.

Likewise, for the soundness and completeness proofs our starting point was
the formalization by Ridge, but the proofs have been rewritten. That is, while the
big picture of the proof is the same and many auxiliary definitions, lemmas and
theorems are essentially the same, we have made many changes — the biggest
one being that the proofs are now written in the structured, declarative Isar-style
[8] instead of a procedural style with consecutive applications of tactics.

Except for the line of work by Ridge and others [5,6], we are not aware of
formally verified, sound and complete, provers for first-order logic, cf. [7] and [1]
(the latter reference does hint at a prover but the code is not provided as far as
we can see).

Various proof systems have formally been proved sound and complete, cf.
again [7] and [1], and recently even a higher-order prover has formally been
proved sound [2] (but so far not complete).

8 Conclusion

We have presented a simple prover for first-order logic with certified soundness
and completeness in Isabelle/HOL. We have taken the formalizations by Tom
Ridge and others [5,6] as the starting point, but we have totally rewritten the
program as well as the soundness and completeness proof. The formalization —
with a couple of examples and extra features — is about 1900 lines including
blank lines but excluding comments. All in all it takes around 5 seconds real
time to verify on a fairly standard computer.

We have used the approach for teaching logic and verification to selected
mathematics and computer science students at the bachelor level. The student
can study and modify the formalization in Isabelle but we do not always consider
the details in the soundness and completeness proofs. As a substantial project
assignment we have asked the students to reduce the simple prover from first-
order logic to just propositional logic.

Concerning regular courses, we intend to teach the prover to BSc students
in software technology who do not necessarily have a very strong background
in logic or discrete mathematics. The very simple approach to fairness and the
lack of unification means that these students have a better chance of grasping
the completeness proof. Furthermore, the proof is in spirit very similar to more
advanced and abstract approaches to completeness such as the formalization
of abstract soundness and completeness theorems due to Blanchette, Popescu
and Traytel [1]. The most ambitious students could use our development as a
springboard to understanding the abstract results.
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The students can perform rewriting steps by hand or using Isabelle. The
prover uses no higher-order functions. Code generation to a number of functional
programming languages is also possible, and using Isabelle’s code reflection to
Standard ML, in particular the extension Isabelle/ML, it is fully integrated in
the Isabelle formalization. Future work includes further polishing the proofs of
soundness and completeness in order to make them easier to understand for
students and researchers. Future work also includes experiments with a stand-
alone tool for illustrating the unfolding rules.
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Appendix: Data and Library Rewrite Rules

The following data rewrite rules state equalities and inequalities based on the
datatypes for the formulas.

lemma Pre b i v = Con p q ≡ False
lemma Con p q = Pre b i v ≡ False

lemma Pre b i v = Dis p q ≡ False
lemma Dis p q = Pre b i v ≡ False

lemma Pre b i v = Uni p ≡ False
lemma Uni p = Pre b i v ≡ False

lemma Pre b i v = Exi p ≡ False
lemma Exi p = Pre b i v ≡ False

lemma Con p q = Dis p ′ q ′ ≡ False
lemma Dis p ′ q ′ = Con p q ≡ False

lemma Con p q = Uni p ′ ≡ False
lemma Uni p ′ = Con p q ≡ False

lemma Con p q = Exi p ′ ≡ False
lemma Exi p ′ = Con p q ≡ False

lemma Dis p q = Uni p ′ ≡ False
lemma Uni p ′ = Dis p q ≡ False

lemma Dis p q = Exi p ′ ≡ False
lemma Exi p ′ = Dis p q ≡ False

lemma Uni p = Exi p ′ ≡ False
lemma Exi p ′ = Uni p ≡ False
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lemma Pre b i v = Pre b ′ i ′ v ′ ≡ b = b ′ ∧ i = i ′ ∧ v = v ′

lemma Con p q = Con p ′ q ′ ≡ p = p ′ ∧ q = q ′

lemma Dis p q = Dis p ′ q ′ ≡ p = p ′ ∧ q = q ′

lemma Uni p = Uni p ′ ≡ p = p ′

lemma Exi p = Exi p ′ ≡ p = p ′

The following library rewriting rules state properties of auxiliary concepts such
as if-then-else as well as lists and natural numbers. They also state equalities
and inequalities based on the datatypes of lists and natural numbers, among
others.

lemma add x 0 ≡ x
lemma add x (Suc n) ≡ Suc (add x n)

lemma sub x 0 ≡ x
lemma sub x (Suc n) ≡ dec (sub x n)

lemma dec 0 ≡ 0
lemma dec (Suc n) ≡ n

lemma [] @ l ≡ l
lemma (h # t) @ l ≡ h # t @ l

lemma if True then x else y ≡ x
lemma if False then x else y ≡ y

lemma ¬ True ≡ False
lemma ¬ False ≡ True

lemma fst (x ,y) ≡ x
lemma snd (x ,y) ≡ y

lemma 0 = 0 ≡ True
lemma [] = [] ≡ True

lemma True = True ≡ True
lemma False = False ≡ True

lemma True ∧ b ≡ b
lemma False ∧ b ≡ False

lemma 0 = Suc n ≡ False
lemma Suc n = 0 ≡ False

lemma [] = h # t ≡ False
lemma h # t = [] ≡ False

lemma True = False ≡ False
lemma False = True ≡ False

lemma (x ,y) = (x ′,y ′) ≡ x = x ′ ∧ y = y ′

lemma Suc n = Suc n ′ ≡ n = n ′

lemma h # t = h ′ # t ′ ≡ h = h ′ ∧ t = t ′
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