
Multi-Core Allocation Model for Database Systems

Simone Dominico
Supervised by Eduardo Cunha de Almeida

Federal University of Paraná, Brazil

sdominico@inf.ufpr.br

ABSTRACT
Non-Uniform Memory Access (NUMA) architecture provides
a multi-task run in parallel with different access latency be-
tween the nodes. The emergence of multi-core hardware
offers high processing power for multi-threaded Database
Management Systems (DBMS). However, database threads
run across multiple NUMA cores without exploring the hard-
ware to its full potential. The impact of data movement be-
tween NUMA nodes is a major challenge for multi-threaded
DBMS. The goal of our thesis is to find out the efficient dis-
tribution of CPU-cores among the NUMA nodes in order to
mitigate the data movement. We propose an abstract core
allocation mechanism for query processing based on perfor-
mance metrics. In our preliminary results, our mechanism
is able to improve data traffic ratio between nodes in up to
3.87x with increased memory throughput in up to 27%.

1. INTRODUCTION
The burgeoning ingestion of data requires new hardware

to allow real-time data analysis. In our thesis we focus on
Non-Uniform Memory Access (NUMA) hardware to boost
throughput of multi-threaded Database Management Sys-
tems (DBMS) in Online Analytical Processing (OLAP). The
NUMA architecture is formed by multi-core nodes with pro-
cessors (or CPUs) attached to a memory bank. The memory
access latency varies according to the distance between the
node and the memory being accessed.

The varying memory access latency of NUMA impacts
the performance of multi-threaded query processing. We
observed the impact of NUMA in multi-threaded DBMS
executing the Volcano query parallelism model [4], like Mi-
crosoft SQLServer, and the materialization model, like Mon-
etDB. For instance, in the Volcano model, the parallelism
is encapsulated in “exchange” operators in the query exe-
cution: multiples threads execute the query plan and the
Operating System (OS) scheduler is in charge of manag-
ing data and thread locality. In both models, however, the
conventional approach is letting the OS do the mapping of

Proceedings of the VLDB 2018 Ph.D. Workshop, August 27, 2018. Rio de
Janeiro, Brazil.
Copyright (C) 2018 for this paper by its authors. Copying permitted for
private and academic purposes.

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

T
im

es
ta

m
p

(m
s)

Core
Number

0

50

100

150

200

250

T
9

T
5

T
6

T
7

T
8

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

T
1
9

T
2
0

OS/MonetDB

Threads

Figure 1: Evaluating the migration between cores of
the threads generated by the TPC-H Q6 in a single-
client execution in a 4x Quad-Core NUMA machine.

threads to as many nodes and cores as possible to keep load
balance, not considering the different access latencies in the
NUMA architecture. The result is the constant migration
of threads all over the nodes. Figure 1 shows the execution
of the TPC-H query 6 (Q6) in MonetDB: a multi-threaded
DBMS. Our NUMA architecture consists of 4-nodes with
a Quad-Core AMD Opteron 8387 each. The OS tries to
keep the load balancing between the cores causing many
migration of threads with more data movement between the
NUMA nodes. When running OLAP workloads, the current
load balancing approach can cause many problems: resource
contention, cache conflicts, cache invalidation and inefficient
data movement.

Many authors have investigated these problems by try-
ing to control the scheduling of threads and data movement
in NUMA nodes [8, 3, 11, 5, 12, 7, 13] from within the
DBMS kernel. Our thesis follows a different direction where
we manage the allocation of NUMA cores from an abstract
model-based mechanism, aiming to accommodate the cur-
rent workload and mitigate the data movement. Abstract
models allow supporting several underlying systems with-
out modifications in the source-code. Besides, an abstract
model allows different resources to be monitored, for exam-
ple: memory throughput and CPU load. Our mechanism in
a nutshell: a dynamic mechanism computes the local opti-
mum number of cores with a rule-condition-action pipeline
integrated with performance monitoring. This pipeline de-
fines the performance-invariant through performance thresh-
olds. If this performance-invariant holds, the local optimum
number of cores is set. The main challenges to present our
mechanism are, as follows:

1

1. Provide an elastic multi-core allocation mechanism for
the NUMA architecture.

2. Define an optimum number of cores based on the use
of computational resources to meet a workload.

3. Manage the allocation of cores for the execution of
mixed workloads.

In this paper, we discuss our approach to tackle these
three challenges, the contribution already published and cur-
rent work in progress.

2. RELATED WORK
Over the last years, many different approaches were pre-

sented to improve the performance of DBMS multi-core par-
allelism in NUMA architecture. [10] presents a study of the
NUMA effect when assigning threads to NUMA nodes in
OLTP. The authors present an approach of “hardware is-
lands” to execute different OLTP deployments. They im-
plement a prototype within the Shore-MT storage man-
ager that achieved robust OLTP throughput. However, the
“hardware islands” do not scale-out and the optimum size
of the island is yet undetermined.

[8] presents a NUMA-aware ring-based algorithm to coor-
dinate the movement of threads to catch up with data. The
algorithm uses two rings: an inner ring to represent the data
partitions and an outer ring to represent the threads. The
outer ring rotates clockwise for all threads to access specific
data partitions. The goal is to improve data placement and
thread placement. In [3], NUMA cores are allocated one by
one to mitigate access to remote memory when the OS tries
to keep data locality of MonetDB. Other storage and worker
placement approaches are presented to mitigate the NUMA
effect in SAP Hana [11] or to build the ERIS storage engine
from scratch [5].

All of these contributions show important efforts into mak-
ing the DBMSs explore multi-core CPUs to their full poten-
tial, but they differ from our goal as they allocate NUMA
cores statically to perform data and worker placement strate-
gies. Recently, [12] presented an adaptive NUMA-aware
data placement mechanism. The mechanism decides be-
tween data placement and thread stealing when load im-
balance is detected. The number of working threads changes
based on the core utilization, which differs from MonetDB [3]
and SQLServer [6] that statically define the number of threads
based on the number of available cores.

In [7] is presented a database scheduler to control the dis-
patching of query fragments, called “morsels”. The “morsels”
are statically pinned in specific cores to take advantage of
the data location and avoid data movement between the
nodes. However, this scheduler does not take into account
the optimum number of cores to tackle the current workload.

In contrast to the related work, we propose a dynamic
multi-core allocation mechanism to mitigate the data move-
ment providing to the OS the efficient sub-set of NUMA
cores to perform database thread mapping.

3. PROPOSED APPROACH
Our proposal involves an elastic multi-core allocation mech-

anism to define the optimum number of cores to treat the

S0 S1

S2

time

10

32

98

1110

1312

1514

54

76

S0 S1

S2

10

32

98

1110

S3

1312

1514

54

76

S3

(a) Sparse Mode

S0 S1

S2

time

10

32

98

1110

1312

1514

54

76

S3

S0 S1

S2

10

32

98

1110

1312

1514

54

76

S3

(b) Dense Mode

Figure 2: The Sparse and Dense modes over time.
Only the black boxes (i.e., cores) can be accessed by
the OS. The red boxes are the next cores to allocate.

current workload. We define that the allocation of CPU-
cores should be performed dynamically to satisfy the de-
mands of the workload and facilitate the OS thread schedul-
ing with the least possible negative impact on performance.
Our key idea is to consider data placement statistics from
the OS side to define on which node the cores will be allo-
cated.

3.1 Elastic Multi-core Allocation Mechanism
The full description of our multi-core allocation mecha-

nism is presented in [2]. Our mechanism is based on Predi-
cate/Transition PetriNets (PrT). Petri Nets are powerful ab-
stract models to design concurrent and distributed systems.
Our mechanism leverages Petri Nets to model general prop-
erties of DBMSs up against concurrent OLAP workloads.
Using the abstract model we have the flexibility to check
any resource usage by the database threads. The mecha-
nism monitors the resource usage of the worker threads on
top of OS kernel facilities to decide for the allocation of CPU
cores (e.g., cgroups, mpstat, numactl, likwid).

3.2 The Allocation of Cores
The challenge of the mechanism is to prevent both under-

utilization or overutilization of the system by finding out the
local optimum number of cores (LONC) to accommodate a
given workload. In this section, we define the LONC and
also the allocation modes explored by the mechanism.

3.2.1 The multi-core allocation modes
In the mechanism, we define resource usage thresholds

(e.g., CPU or data traffic in the memory controller) that
are used to decide when it is necessary to allocate or release
cores. An adaptive algorithm decides on which node to allo-
cate/release cores taking into account the accessed memory
addresses kept in a priority queue data structure.

Figure 2 shows the allocation of closed (Dense) and far
apart cores (Sparse). The adaptive allocation is a combi-
nation of both w.r.t. the efficient subset of cores. To find
the affinity between threads and data, our approach checks
misses in the Translation Lookaside Buffer (TLB). When
a TLB miss occurs, the OS maps the thread accessing the
missed address to a node keeping this information in a data
structure. Over time, new threads requesting the same ad-
dress range are mapped to the same node where data is
allocated. Therefore, we refer to as “the efficient subset of
cores” the processing cores in the nodes with the requested
address range.

2

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

T
im

es
ta

m
p

(m
s)

Core
Number

0

50

100

150

200

250

T
9

T
5

T
6

T
7

T
8

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

T
1
9

T
2
0

Threads

Adaptive

Figure 3: The migration of the threads spawn by
a single-client submitting the TPC-H Q6 supported
by the adaptive mode.

In our adaptive mode, each entry of the priority queue
keeps the PIDs of the active threads with their address
spaces and the number of pages per NUMA node. The cores
are allocated on nodes with more accessed pages and cores
with the least number of accessed pages are released. In the
implementation of the affinity between threads and data,
the data structure stores the node IDs used to pin threads
and allocate their address space.

3.2.2 The local optimum number of cores
The number of allocated cores takes into account the arith-

metic CPU-load average of the active database threads. For-
mally, we define how to compute the number of cores, as
follows:

∀ w ∃ nalloc|(thmin < u < thmax)∧p(nalloc) ≥ p(ntotal) (1)

To any OLAP workload w, there is a certain number of
CPU cores nalloc such that the load of each core are be-
tween the minimum and maximum thresholds, in which the
database performance p(nalloc) is equal or better than the
performance p(ntotal) with all the CPU cores available in the
hardware. The performance function p(x) relies on system
counters provided by the OS and the database.

3.3 Mixed Workload
In our initial efforts in this thesis, we focused on OLAP

due to the pressure to transfer and compute large volumes
of data scattered across multiple NUMA nodes [1, 2]. How-
ever, the elastic multi-core mechanism can designate under-
used cores or NUMA nodes to serve different types of work-
loads. Our next direction is to investigate how to designate
underused cores to perform different workloads on different
NUMA nodes. We expect the abstract nature of our mecha-
nism and the information of memory usage to facilitate the
choice of the optimal node to a different workload.

4. EXPERIMENTS
In a preliminary study, we ran the experiments with OLAP

workload on a NUMA machine formed by 4-node with a
QuadCore AMD Opteron 8387 each. Nodes are intercon-
nected by Hyper-Transport (HT) link 3.x achieving 41.6
GB/s maximum aggregate bandwidth. We implemented our
prototype in C language and we compare our mechanism to
the Linux Debian 8 “Jessie” OS scheduling of threads spawn
by the MonetDB (v11.25.5) DBMS. We let all the 16 cores
available to the DBMS when running without the support of

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

O
S/M

onetD
B

D
ense

Sparse

A
daptive

H
T
 t

ra
ffi

c
(M

B
/s

)
(1

0
2
)

 0

 5

 10

 15

 20

 25

O
S/M

onetD
B

D
ense

Sparse

A
daptive

L3
 l
o
a
d
 m

is
se

s
(1

0
5
)

S0 S1 S2 S3

Figure 4: Performance metrics of Q6 with a single
client in 1 GB database in MonetDB.

 0

 1

 2

 3

 4

M
e
m

 T
P
 (

G
B

/s
)

OS/MonetDB

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350

M
e
m

 T
P
 (

G
B

/s
)

Adaptive/MonetDB

S0 S1 S2 S3

Figure 5: Execution time (secs) and Memory
Throughput (GB/s) of the TPC-H execution with
256 concurrent clients in 1 GB database.

our mechanism. Inside the mechanism, we coded the thresh-
olds to thmin = 10 and thmax = 70 following the rules of
thumb in the literature [9] and they are kept in all the exper-
iments. We experimented different thresholds, but decreas-
ing thmin lets too many cores in idle state, while increasing
thmax leads to contention with too many busy cores.

4.1 Preliminary Results
Figure 3 shows the lifespan of threads of the TPC-H query

Q6 with a single client execution in a 1GB database. As
expected, our mechanism limited a subset of cores required
to execute the query. The threads were executed in a single
NUMA node, while the OS expanded the MonetDB threads
on all nodes.

Figure 4 shows performance metrics to understand the
impact of our mechanism in the migration of threads. The
result shows 2× more L3 cache misses and 9× more HT
traffic in the OS scheduling than our adaptive mode. With
less cores available for thread scheduling, the OS made good
scheduling choices resulting in less remote access, less inter-
connection traffic and improved memory throughput.

Figure 5 shows the result of the 22 queries of the TPC-
H with 256 concurrent clients executing the queries in the
sequence of the TPC-H in 1GB database. We present the
impact of our mechanism in the core allocation when the
data access pattern changes. In the memory throughput
results, our adaptive mechanism was 41% faster than the
OS/MonetDB. We observe that the system does not use all
the nodes all the time. For instance, initially the system

3

 0

 0.2

 0.4

 0.6

 0.8

 1

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1

1

Q
1

2

Q
1

3

Q
1

4

Q
1

5

Q
1

6

Q
1

7

Q
1

8

Q
1

9

Q
2

0

Q
2

1

Q
2

2

H
T
/I
M

C
 r

a
ti

o

Queries

Execution Speedup (Adaptive Mode)

1
.1

6

1
.3

9

1
.1

5

1
.4

1

1
.1

1

1
.4

0

1
.4

8

1
.1

7

1
.4

3

1
.1

8

1
.2

2

1
.3

3

1
.5

3

1
.3

3

1
.1

7

1
.3

5

1
.1

0

1
.3

5

1
.2

9

1
.3

4

1
.3

7

1
.3

2

OS/MonetDB Dense Sparse Adaptive

Figure 6: Performance results for 1 GB TPC-H
queries with 256 concurrent clients. On the left,
the ratio HT/IMC shows how NUMA-friendly is the
system (the smaller, the better). On the top is the
performance speedup for adaptive mode.

used only the nodes S0 and S2.
Figure 6 shows the results of interconnection traffic in re-

lation with traffic HT/IMC ratio. In this experiment the
256 concurrent clients execute the 22 queries in random or-
der. The results show the reduction in the local/remote
per-query data traffic ratio of up 3.87x (2.47x on average).
Overall, the adaptive mode presented the best results. For
instance, we observed 2x smaller HT/IMC ratio than the
OS/MonetDB for queries such as Q9 that have the largest
number of joins operations. With less cores available, threads
locate data in the local node more often than the current ap-
proach of letting all the cores available to the OS scheduler
(i.e., OS/MonetDB).

5. CURRENT STATUS & FUTURE WORK
This paper describes the motivation and challenges to our

approach in the allocation of NUMA CPU-cores for paral-
lel execution of OLAP. In our first evaluations, we discuss
the impact of data movement between NUMA nodes for
multi-threaded DBMS that hand over the mapping of query
threads to the OS. We show the difficulty faced by the OS
scheduler to keep load balance, generating a vast amount of
data movement, interconnection traffic and cache invalida-
tion. In the initial contribution of this thesis [2], we present
an abstract model-based mechanism to support the thread
scheduling and data allocation across NUMA sockets. The
mechanism is the first part of our approach to mitigate the
data movement in NUMA nodes. The preliminary results
showed performance improvements when our mechanism of-
fered to the OS only the local optimum CPU-cores, instead
of the traditional approach of making all the cores visible to
the OS all the time, like in current multi-threaded DBMSs:
MonetDB, SQL Server, SAP Hana and Hyper.

As future directions, we plan to explore mixed workloads
as we observed that OLAP not always need the entire setup
of CPU-cores. Therefore, our agenda includes redesigning
our abstract model to accommodate concurrent OLTP and
OLAP. In particular, we plan to study the multi-core alloca-
tion in cloud computing environments that can particularly
benefit from our model.

6. ACKNOWLEDGMENTS
This work was partly funded by CAPES and CNPQ.

7. REFERENCES
[1] S. Dominico, E. C. de Almeida, and J. A. Meira. A

petrinet mechanism for OLAP in NUMA. In DaMoN,
2017.

[2] S. Dominico, E. C. de Almeida, J. A. Meira, and
M. A. Z. Alves. An elastic multi-core allocation
mechanism for database systems. In ICDE, 2018.

[3] M. Gawade and M. L. Kersten. NUMA obliviousness
through memory mapping. In DaMoN, 2015.

[4] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. In SIGMOD., pages 102–111,
1990.

[5] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich,
D. Molka, and W. Lehner. ERIS: A NUMA-aware
in-memory storage engine for analytical workload. In
ADMS, 2014.

[6] P. Larson, C. Clinciu, C. Fraser, E. N. Hanson,
M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L.
Price, S. Rangarajan, R. Rusanu, and M. Saubhasik.
Enhancements to SQL server column stores. In
SIGMOD, pages 1159–1168, 2013.

[7] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In
SIGMOD, pages 743–754, 2014.

[8] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. M.
Lohman. NUMA-aware algorithms: the case of data
shuffling. In CIDR, 2013.

[9] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng,
and S. Robertson. Elastic scale-out for partition-based
database systems. ICDEW12.

[10] D. Porobic, I. Pandis, M. Branco, P. Tözün, and
A. Ailamaki. OLTP on hardware islands. PVLDB,
(11), 2012.

[11] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and
A. Ailamaki. Scaling up concurrent main-memory
column-store scans: Towards adaptive NUMA-aware
data and task placement. PVLDB, (12), 2015.

[12] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and
A. Ailamaki. Adaptive NUMA-aware data placement
and task scheduling for analytical workloads in
main-memory column-stores. PVLDB, (2), 2016.

[13] V. Raman, G. K. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Müller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. J. Storm, and L. Zhang. DB2 with BLU
acceleration: So much more than just a column store.
PVLDB, 6(11):1080–1091, 2013.

4

