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Abstract. As the Linked Open Data Cloud is constantly evolving, both
at schema and instance level, there is a need for systems that efficiently
support storing and querying of such data. However, there is a limited
number of such systems and even fewer benchmarks that test their per-
formance. In this paper, we describe in detail the Semantic Publishing
Versioning Benchmark (SPVB) that aims to test the ability of versioning
systems to efficiently manage versioned Linked Data datasets and queries
evaluated on top of these datasets. We discuss the benchmark data and
SPARQL query generation process, as well as the evaluation methodol-
ogy we followed for assessing the performance of a benchmarked system.
Finally, we describe a set of experiments conducted with the R43ples
and Virtuoso systems using SPVB.
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1 Introduction

A key step towards abolishing the barriers to the adoption and deployment of Big
Data is to provide companies with open benchmarking reports that allow them
to assess the fitness of existing solutions for their purposes. For this reason, there
exist a number of benchmarks that test the ability of Linked Data systems to
store and query data in an efficient way. However, to the best of our knowledge,
only a limited number of systems (mostly academic) and benchmarks exist for
handling versioned datasets, and testing the proposed solutions respectively.

However, the existence of such systems and benchmarks is of utmost impor-
tance, as dynamicity is an indispensable part of the Linked Open Data (LOD)
initiative [1, 2]. In particular, both the data and the schema of LOD datasets are
constantly evolving for several reasons, such as the inclusion of new experimental
evidence or observations, or the correction of erroneous conceptualizations [3].
The open nature of the Web implies that these changes typically happen with-
out any warning, centralized monitoring, or reliable notification mechanism; this
raises the need to keep track of the different versions of the datasets and intro-
duces new challenges related to assuring the quality and traceability of Web data
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over time. The tracking of frequent changes is called versioning, and the systems
that can handle such versioned data, versioning systems. Note here, that data
versioning slightly differs from data archiving, since the later refers to inactive
and rarely modified data that needs to be retained for long periods of time.

In this paper, we discuss the Semantic Publishing Versioning Benchmark
(SPVB) developed in the context of the H2020 European HOBBIT project1 for
testing the ability of versioning systems to efficiently manage versioned datasets.
SPVB acts like a Benchmark Generator, as it generates both the data and the
queries needed to test the performance of the versioning systems. The main com-
ponent of the benchmark is theData Generator that is highly configurable. SPVB
is not tailored to any versioning strategy (see Section 2.1) and can produce data
of different sizes that can be altered in order to create arbitrary numbers of ver-
sions using configurable insertion and deletion ratios. It uses the data generator
of Linked Data Benchmark Council’s (LDBC)2 Semantic Publishing Benchmark
(SPB) as well as DBpedia [4] data. LDBC–SPB leverages the scenario of the
BBC media organization, which makes extensive use of Linked Data Technolo-
gies, such as RDF and SPARQL. SPVB’s Data Generator, is also responsible for
producing the SPARQL queries (the so-called tasks) that have to be executed by
the system under test. Such queries are of different types (see Section 2.2) and
are partially based on a subset of the 25 query templates defined in the context
of DBpedia SPARQL Benchmark (DBPSB) [5]. SPVB evaluates the correctness
and performance of the tested system via the following Key Performance Indi-
cators (KPIs): i) Query failures ii) Initial version ingestion speed iii) Applied
changes speed iv) Storage space cost v) Average Query Execution Time and vi)
Throughput.

The outline of the paper is the following. In Section 2, we discuss the back-
ground information regarding the versioning strategies and query types. We
present the already proposed benchmarks for systems handling versioned RDF
data in Section 3. In Sections 4 and 5 we describe the versioning benchmark
SPVB and the experiments conducted with it, respectively. Finally, Section 6
concludes and outlines future work.

2 Background

2.1 Versioning Strategies

Three alternative RDF versioning strategies have been proposed in the litera-
ture. The first one is full materialization, where all different versions are explicitly
stored [6]. Next, there is the delta-based strategy, where one full version of the
dataset needs to be stored, and, for each new version, only the set of changes
with respect to the previous/next version (also known as the delta) has to be
kept [7–11]. Finally, the annotated triples strategy, is based on the idea of aug-
menting each triple with its temporal validity, which is usually composed of two
1 https://project-hobbit.eu/
2 ldbc.council.org
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timestamps that determine when the triple was created and deleted [12]. Hybrid
strategies [13] that combine the above, have also been considered. Such strate-
gies try to enjoy most of the advantages of each approach, while avoiding many
of their respective drawbacks.

2.2 Query Types

An important novel challenge imposed by the management of multiple versions
is the generation of different types of queries (e.g., queries that access multiple
versions and/or deltas). There have been some attempts in the literature [14, 13,
15, 16] to identify and categorize these types of queries. Our suggestion, which
is a combination of such efforts and was presented in [17], is shown in Figure 1.

Fig. 1: Different queries organized by focus and type (see also [17])

Firstly, queries are distinguished by focus (i.e., target), in version and delta
queries. Version queries consider complete versions, whereas delta queries con-
sider deltas. Version queries can be further classified to modern and historical,
depending on whether they require access to the latest version (the most common
case) or a previous one. Obviously, the latter categorization cannot be applied
to delta queries, as they refer to time changes between versions (i.e., intervals),
which have no specific characteristics that are related to time.

In addition, queries can be further classified according to type, tomaterializa-
tion, single-version and cross-version queries. Materialization queries essentially
request the entire respective data (a full version, or a full delta); single-version
queries can be answered by imposing appropriate restrictions and filters over a
single dataset version or a single delta; whereas cross-version queries request data
related to multiple dataset versions (or deltas). Of course, the above categories
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are not exhaustive; one could easily imagine queries that belong to multiple cat-
egories, e.g., a query requesting access to a delta, as well as multiple versions.
These types of queries are called hybrid queries. More specifically the types of
queries that we consider in SPVB are:
– QT1 - Modern version materialization queries ask for a full current

version to be retrieved.
– QT2 - Modern single-version structured queries are performed in the

current version of the data.
– QT3 - Historical version materialization queries on the other hand ask

for a full past version.
– QT4 - Historical single-version structured queries are performed in a

past version of the data.
– QT5 - Delta materialization queries ask for a full delta to be retrieved

from the repository.
– QT6 - Single-delta structured queries are performed on the delta of two

consecutive versions.
– QT7 - Cross-delta structured queries are evaluated on changes of several

versions of the dataset.
– QT8 - Cross-version structured queries are evaluated on several versions

of the dataset.

3 Related Work

A benchmark is a set of tests against which the performance of a system is
evaluated. A benchmark helps computer systems compare and assess their per-
formance in order to become more efficient and competitive. To the best of our
knowledge, there have been only two proposed benchmarks for versioning sys-
tems in the literature, which are described below (see [17] for more details).

The bear [18, 14] benchmark is an implementation and evaluation of a set
of operators that cover crucial aspects of querying and versioning Semantic Web
data for the three versioning strategies (Full Materialization, Delta-Based and
Annotated Triples) described in Section 2.1. As a basis for comparing the differ-
ent strategies, the bear benchmark introduces some features that describe the
dataset configuration. Such features are i) the data dynamicity that measures
the number of changes between versions, ii) the data static core that contains
the triples that exist in all dataset versions, iii) the total version-oblivious triples
that compute the total number of different triples in a version, and, finally iv)
the RDF vocabulary that describes the different subjects, predicates and objects
in a single version. Regarding the generation of the queries of the benchmark,
the result cardinality and selectivity of the queries are considered to guarantee
that retrieval differences in query response times are attributed to the versioning
strategy. In order to be able to judge the different strategies, bear introduces
five foundational query atoms to cover the broad spectrum of emerging retrieval
demands in RDF archiving. In particular, the authors propose i) queries on ver-
sions (QT2, QT4 from our categorization), ii) on deltas (QT5, QT6, QT7), iii)
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the Version queries that return the results of the query Q annotated with the
version label in which each of them exists, iv) the Cross-version join queries
that serves the join between the results of some Q1 in Vi, and some Q2 in Vj and
v) the Change materialisation queries that provide those consecutive versions in
which the given query Q produces different results.

Even though bear provides a detailed theoretical analysis of the features
that are useful for designing a benchmark, it lacks configurability and scalability
as its data workload is composed of a static, non configurable dataset. Also, it
is focusing on the evaluation of the versioning strategies instead of the systems
that implement them, which is the main objective of SPVB.

evogen[16] is a generator for versioned RDF data used for benchmarking
versioning and change detection systems. evogen is based on the LUBM gen-
erator [19], by extending its schema with 10 RDF classes and 19 properties to
support schema evolution. Its benchmarking methodology is based on a set of
requirements and parameters that affect the data generation process, the context
of the tested application and the query workload, as required by the nature of the
evolving data. evogen is an extensible and configurable Benchmark Generator
in terms of the number of generated versions and the number of changes occur-
ring from version to version. The query workload produced by evogen leverages
the 14 LUBM queries, appropriately adapted to apply on versions. In particu-
lar, the following six types of queries are generated: i) Retrieval of a diachronic
dataset, ii) Retrieval of a specific version (QT1, QT3 from our categorization),
iii) Snapshot queries (QT2, QT4), iv) Longitudinal (temporal) queries (QT8),
v) Queries on changes (QT5, QT6) and vi) Mixed queries.

evogen is a more complete benchmark, as it is a highly configurable and ex-
tensible benchmark generator. However, its query workload seems to be approach-
dependent, in the sense that the delta-based queries require that the bench-
marked systems store metadata about underlying deltas (addition/deletion of
classes, class instances etc.) in order to be answered. Moreover, to successfully
answer 11 of the 14 original LUBM queries, the benchmarked systems must
support RDFS reasoning (forward or backward).

4 Semantic Publishing Versioning Benchmark

Here, we present the second version of SPVB (the first version was presented
in [20]), developed in the context of the HOBBIT H2020 project. The benchmark
is built on top of the HOBBIT platform which is available online3, but it can
be locally deployed as well4. The source code of the benchmark can be found in
the project’s github repository5. SPVB is the first benchmark for versioned RDF
data that uses both realistic synthetic data and real DBpedia data, while at the
same time its query workload is mainly based on real DBpedia queries.

3 https://master.project-hobbit.eu/
4 https://github.com/hobbit-project/platform
5 https://github.com/hobbit-project/versioning-benchmark
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The new version of SPVB, when compared to its previous version, has been
improved in various aspects. First, its older version supported only additions
from one version to another, and the generated data was split into different ver-
sions of equal size according to their creation date. As a result, the benchmark
was not useful for systems that had to be tested for versioned datasets of in-
creasing or decreasing size. On the contrary, the new version of SPVB allows one
to configure the number of additions and deletions for the different versions. his
is a critical feature, that allows one to produce benchmarks that can be used to
test a broad spectrum of situations regarding versioned datasets, a feature that
reveals the benefits or pitfalls of systems under test.

A second improvement is related to the form of the data. In the previous
version the benchmark, each data version was sent to the system only as an
independent copy whereas now, the data generator can send data in different
forms (independent copies, change-sets or both). As a result, systems do not
need to post-process the data in order to load them, since they can choose the
appropriate form to receive the data, according to the versioning strategy they
implement.

Finally, the generated queries were exclusively synthetic. Conversely, in the
current version, the use of DBpedia data allows us to use real DBpedia queries
that arise from real world situations making the benchmark more realistic.

SPVB consists of the following four main components: the Data Generator,
the Task Provider, the Evaluation Storage and the Evaluation Module. Each
of these components is described in detail in the following Sections and their
architecture is shown graphically in Figure 2.

4.1 Data Generation

The Data Generator, as shown in Figure 2, is the main component of SPVB. It is
responsible for creating both the versions and the SPARQL queries, as well as to
compute the expected results (gold standard) for the benchmark queries. SPVB’s
data generator is highly configurable, since it allows the user to generate data
with different characteristics and of different forms. In particular, the following
parameters can be set to configure the data generation process:

1. Number of versions: defines the number of versions to produce.
2. Size: defines the size of the initial version of the dataset in terms of triples.
3. Version insertion ratio: defines the proportion of added triples between

two consecutive versions (originally proposed in [18]). In particular, given
two versions Vi and Vi+i, the version insertion ratio δ+i,i+1 is computed by
the formula δ+i,i+1 = |∆+

i,i+1|/|Vi|, where |∆
+
i,i+i| is the number of added

triples from version i to version i+ 1, and |Vi| is the total number of triples
of version i (in which triples are added).

4. Version deletion ratio: defines the proportion of deleted triples between
two consecutive versions (also proposed in [18]). Given two versions Vi and
Vi+i, the version deletion ratio δ−i,i+i is computed by the formula δ−i,i+i =

|∆−
i,i+i|/|Vi|, where |∆

−
i,i+i| is the number of deleted triples from version i to
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Fig. 2: Architecutre of SPVB

version i+ i, and |Vi| is the total number of triples of version i (from which
the triples are deleted).

5. Generated data form: each system implements a different versioning strat-
egy, so it requires the generated data in a specific form. SPVB’s data genera-
tor can output the data of each version as i) an Independent Copy (suitable
for systems implementing the full materialization strategy), ii) as a Change-
set − set of added and deleted triples (suitable for systems implementing the
delta-based or annotated triples strategies) or iii) both as an independent
copy and changeset (suitable for systems implementing a hybrid strategy).

6. Generator seed: used to set the random seed for the data generator. This
seed is used to control all random data generation happening in SPVB.

Based on these parameters the generator can produce a version of the orig-
inal dataset that contains both realistic synthetic data and real DBpedia data.
Regarding the generation of synthetic data, the data generator of SPVB uses the
data generator of LDBC–SPB [21] for producing the initial version of the dataset
as well as the triples that will be added from one version to another. To do so,
it uses seven core and three domain RDF ontologies (as those described in [21])
and a reference dataset of DBpedia for producing the data.

The data generator of LDBC–SPB produces RDF descriptions of creative
works that are valid instances of the BBC Creative Work core ontology. A cre-
ative work can be defined as metadata about a real entity (or entities) that exist
in the reference dataset of DBpedia. A creative work has a number of properties
such as title, shortTitle, description, dateCreated, audience and format ; it has
a category and can be about or mention any entity from the DBpedia reference
dataset. Thus, a creative work provides metadata about one or more entities and
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defines relations between them. The data generator of LDBC–SPB models three
types of relations in the data, and for each one produces 1/3 of the number of
creative works. Such relations are the following ones:

– Correlations of entities. The correlation effect is produced by generating
creative works about two or three entities from reference data in a fixed period
of time.

– Clustering of data. The clustering effect is produced by generating creative
works about a single entity from the reference dataset and for a fixed period
of time. The number of creative works referencing an entity starts with a
high peak at the beginning of the clustering period and follows a smooth
decay towards its end.

– Random tagging of entities. Random data distributions are defined with
a bias towards popular entities created when the tagging is performed.

For producing the initial version of the dataset the data generator of LDBC–SPB
runs with the Size configuration parameter as input. For producing the triples
to add, we first compute the number of triples to be added using the version
insertion ratio, and then run the data generator with this number as input. As
a result, the set of creative works that have to be added are produced. At this
point we let the generator produce random data distributions, as we do not want
to “break” the existing relations among creative works and entities (clustering
or the correlation of entities) of the initial version.

For producing the triples that will be deleted, we first compute the number
of triples to be deleted based on the version deletion ratio. Then, we take as
input the triples that were produced randomly in the previous versions, and we
choose creative works in a random manner until we reach the targeted number of
triples to delete. The reason we only choose creative works that were previously
produced randomly, is the same as in case of additions (we do not want to
“break” the clustering or correlations for the already existing entities). Recall
that in the initial version of the dataset, the maximum number of triples that
can be produced randomly equals the 1/3 of the total number of triples. So, if the
generator is configured to delete more than 1/3 of the number of triples for each
version, that is, the triples to be deleted exceeds the triples that were randomly
produced, we impose the threshold of 33% for δ−i,i+1.

As we mentioned earlier, except for creating the versioned dataset for creative
works, SPVB’s data generator supports the versioning of the reference dataset of
DBpedia employed by LDBC–SPB to annotate the creative works. In particular,
we maintain 5 different versions of DBpedia, from year 2012 to year 2016 (one
for each year). Such versions contain the subgraph of each entity used by the
data generator of LDBC–SPB to annotate creative works through the about and
mentions properties. In practice, all DBpedia triples in which the entity URI is
in the subject position are maintained. However, LDBC–SPB is using about 1
million entities for the annotation of creative works. Obviously, it is not possible
to burden the generated creative works with such volume of data. So, from
those 1 million entities we keep the 1000 most popular ones, based on the score
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provided by LDBC–SPB, and we extract their RDF graph from the 5 different
versions of DBpedia. By doing so, we ended up with 5 DBpedia subgraphs (one
for each version) containing 40K, 35K, 65K, 60K and 71K triples respectively.
These versions enhance the generated creative works and are evenly distributed
to the total number of versions that the data generator is configured to produce.
E.g., assuming that 10 versions are produced by the data generator, the triples of
the 5 versions of DBpedia will be added to versions 0, 2, 5, 7 and 9 respectively.
In cases that the data generator is configured to produce less than 5 versions
(say N), we only keep the first N DBpedia versions.

After the generation of both creative works and DBpedia data has finished,
they are loaded into a Virtuoso triplestore6. This way, we can later evaluate the
produced SPARQL queries and compute the expected results that are required
by the Evaluation Module (Section 4.3) to assess the correctness of the results
reported by the benchmarked system.

4.2 Tasks Generation

As shown in Figure 2, the generation of the SPARQL queries that have to be
executed by the systems under test is a process that is also taking place in the
Data Generator component. Given that there is neither a standard language, nor
an official SPARQL extension for querying RDF versioned data, the generated
queries of SPVB assume that each version is stored in its own named graph.
Each benchmarked system should express these queries in the query language
that it supports in order to be able to execute them.

The queries produced by the Data Generator are based on a set of query
templates. In particular, for each one of the eight versioning query types (Sec-
tion 2.2), we have defined one or more query templates. We show an example
in Listing 1.1 that retrieves creative works that are about different topics, along
with the topics type from a past version. The full list of the query templates
can be found online7. Such query templates contain placeholders of the form
{{{placeholder}}} which may refer either to the queried version ({{{historicalVersion}}})
or an IRI from the reference dataset of DBpedia ({{{cwAboutUri}}}). The place-
holders are replaced with concrete values, in order to produce a set of similar
queries.

1 SELECT DISTINCT ? creativeWork ?v1
2 FROM {{{ h i s t o r i c a lV e r s i o n }}}
3 WHERE {
4 ? creativeWork cwork : about {{{cwAboutUri }}} .
5 {{{cwAboutUri }}} rd f : type ?v1 .
6 }

Listing 1.1: Historical single-version structured query template

6 http://vos.openlinksw.com
7 https://hobbitdata.informatik.uni-leipzig.de/MOCHA_ESWC2018/Task3/
query_templates/
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For the query types that refer to structured queries on one or more versions
(QT2, QT4 and QT8), we use 6 of the 25 query templates proposed by the
DBpedia SPARQL Benchmark (DBPSB) [5] which are based on real DBpedia
queries. The reason we chose those 6 templates was that if they are evaluated
on top of the 5 versions of the reference dataset of DBpedia, with their corre-
sponding placeholder replaced with a variable, will always return results. At the
same time, they comprise most of the SPARQL features (FILTERs, OPTIONALs,
UNIONs, etc.). Note here that the DBPSB query templates were generated to
be executed on top of DBpedia data only. On the other hand, SPVB generates
data that combine DBpedia and creative works. So, in order for the 6 DBPSB
query templates to be applicable to the data generated by SPVB we added an
extra triple pattern to them that “connects” the creative works with DBpedia
through the about or mentions properties, as shown in line 4 of Listing 1.1.

As we mentioned earlier, the placeholders may refer either to the queried
version or an IRI from the reference dataset of DBpedia. The ones that refer to
the queried version, are replaced in such a way that a wide range of available
versions is covered. For example, assume that we have the query template shown
in Listing 1.1 and the generator is configured to produce n versions in total. The
{{{historicalVersion}}} placeholder will be replaced with the graph names denot-
ing i) the initial version, ii) an intermediate version and iii) the n − 1 version.
The placeholders that refer to an IRI, are the same placeholders used in the
DBPSB query templates. To replace them with concrete values we use a tech-
nique similar to the one used by DBPSB. We run offline on top of the 5 different
versions of DBpedia each of the 6 DBPSB query templates, having replaced their
placeholder with a variable, and keep at most 1000 possible concrete values that
each placeholder may be replaced with. So, according to the queried version we
can randomly pick one of those values. Such a technique guarantees that the
produced query will always return results.

After replacing all the placeholders of each query template, a set of similar
queries is generated (a complete set of such queries for a specific configuration
can be found online8). As shown in Figure 2, such queries are evaluated on top of
Virtuoso9, where the already generated versions have been loaded into, in order
to calculate the expected results. After the expected results have been computed,
the Data Generator sends the queries along with the expected results to the Task
Provider component and the generated data to the system under test. The job
of the Task Provider is to sequentially send the SPARQL queries to the system
under test and the expected results to the Evaluation Storage component. So, the
system under test evaluates the queries on top of the data (after the appropriate
rewritings, if necessary) and reports the results to the Evaluation Storage.

8 https://hobbitdata.informatik.uni-leipzig.de/MOCHA_ESWC2018/Task3/
queries

9 http://vos.openlinksw.com
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4.3 Evaluation Module

The final component of the benchmark is the Evaluation Module. The Evaluation
Module receives from the Evaluation Storage component the results that are sent
by the system under test, as well as the expected results sent by the Task Provider
and evaluates the performance of the system under test. To do so, it calculates
the following Key Performance Indicators (KPIs), covering a high spectrum of
aspects that one needs for assessing the performance of a versioning system:
– Query failures: The number of queries that failed to execute. Failure refers

to the fact that the system under test returns a result set (RSsys) that is not
equal to the expected one (RSexp). This means that i) RSsys has equal size
to RSexp and ii) every row in RSsys has one matching row in RSexp, and
vice versa (a row is only matched once). If the size of the result set is larger
than 50.000 rows, only condition i) is checked for performance reasons.

– Initial version ingestion speed (triples/second): the total triples of the
initial version that can be loaded per second. We distinguish this from the
ingestion speed of the other versions because the loading of the initial version
greatly differs in relation to the loading of the following ones, where under-
lying processes such as, computing deltas, reconstructing versions, storing
duplicate information between versions etc., may take place.

– Applied changes speed (changes/second): tries to quantify the overhead
of the underlying processes that take place when a set of changes is applied
to a previous version. To do so, this KPI measures the average number of
changes that could be stored by the benchmarked systems per second after
the loading of all new versions.

– Storage space cost (MB): This KPI measures the total storage space re-
quired to store all versions measured in MB.

– Average Query Execution Time (ms): The average execution time, in
milliseconds for each one of the eight versioning query types, as those de-
scribed in Section 2.2.

– Throughput (queries/second): The execution rate per second for all queries.

5 Experiments

In order to test the implementation of SPVB on top of the HOBBIT platform
for the different versioning systems described in [17], we were able to conduct
experiments only for R43ples (Revision for triples) [8], which uses Jena TDB
as an underlying storage/querying layer. For the rest, since most of them are
academic products, we encountered various difficulties related to the installation
and use (e.g., no documentation on how to use a given API, no way to contact
with developers for further instructions, no access to the versioning extensions,
or no option for a local deployment to be tested). In order to have a baseline
system we decided to implement the full materialization versioning strategy,
by assuming that each version is stored in its own named graph, on top of
Virtuoso10 triplestore that does not handle versioned data.
10 https://virtuoso.openlinksw.com/
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The online instance of the HOBBIT platform is deployed on a server clus-
ter. Each of the Data Generator, Task Provider, Evaluation Module and System
components is created and runs on its own node having 32 threads in total (2
sockets, each with 8 cores with hyper-threading) and a total of 256GB of RAM.
For our experiments, we produced 3 datasets of different initial sizes that corre-
spond to 100K, 500K and 1M triples. For each dataset, we produced 5 different
versions following a version insertion and deletion ratio of 15% and 10% respec-
tively. As a result, for each one of the initial datasets of 100K, 500K and 1M
triples, we produced a final version of 141K, 627K and 1.235M triples respec-
tively. The number of triples in the final versions includes the versioned data of
the reference dataset of DBpedia as well. For fairness, we ran three experiments
per dataset size and computed the average values for all reported results. The
experiment timeout was set to 1 hour for both R43ples and Virtuoso systems.
This was necessary, in order to have a good use of the HOBBIT platform, since
the submitted experiments run sequentially for more than twenty benchmarks.

Regarding the full materialization strategy that we implemented on top of
Virtuoso, for the datasets of 100K, 500K and 1M triples, the queries were
executed at a rate of 1.4, 0.3 and 0.16 queries per second respectively and all
of them returned the expected results. For the rest of the KPIs we graphically
report the results.

Fig. 3: Ingestion speeds Fig. 4: Storage space overhead

In the left bar chart of Figure 3 we can see for all datasets the initial version
ingestion speed. For the ingestion of new triples we used the bulk loading process
offered, with 12 RDF loaders so that we can parallelize the data load and hence
maximize loading speed. As we can see, the speed ranges from 24K to 140K
triples per second and increases with the dataset size, and consequently with
the size of its initial version. This is an expected result, as Virtuoso bulk loads
files containing much more triples, as the dataset size increases. The same holds
for the applied changes speed, shown in the right side of the same figure, which
increases from 14K to 53K changes per second. We can observe here that the
initial version ingestion speed outperforms the applied changes speed. This is an
overhead of the chosen versioning strategy i.e., full materialization. Recall that
the unchanged information between versions is duplicated when a new version
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is coming, so the time required for applying the changes of a new version is
significantly increased as it includes the loading of data from previous versions.

In Figure 4 we can see the storage space required for storing the data for
all different datasets. The space requirements as expected increase as the total
number of triples increases from 80MB to 800MB. This significant overhead on
storage space is due to the archiving strategy used (i.e., Full Materialization).

In Figures 5, 6, 7, 8 and 9 we present the average execution time (in ms) for
the queries of each versioning query type, and for each dataset size.

Fig. 5: Execution times for materialization queries

In Figure 5 we can see the time required for materializing i) the modern
(current) version; ii) a historical (past) one; and iii) the difference between two
versions (delta). In the left and middle bars the times required for materializing
the modern and a historical version are presented respectively. As expected, the
execution time increases as the dataset size increases and the time required for
materializing a historical version is quite smaller than the modern one, as it
contains less triples. In both cases, we observe that execution times are small
enough, as all the versions are already materialized in the triple store. In the right
side of the same Figure we can see the time required for materializing a delta.
Since deltas have to be computed on the fly when the queries are evaluated, we
see a significant overhead in the time required for evaluation.

In Figures 6, 7 , 8 and 9 we can see the execution times for all types of
structured queries. In all of the cases, similarly to materialization queries, the
execution time increases as the number of triples increases. Although someone
would expect that delta-based queries were to be slower than the version-based
ones, as deltas have to be computed on the fly, this does not seem to be the case.
This is happening as the version-based queries (that are based on DBPSB query
templates) are much harder regarding query evaluation than the delta-based
ones.

Regarding the R43ples system, we only managed to run experiments for the
first dataset, of 100K triples, since for the remaining ones the experiment time
exceed the timeout of 1 hour. In most of the cases the response times are order(s)

13

57



Fig. 6: Execution times for single
version structured queries

Fig. 7: Execution times for
cross-version structured queries

Fig. 8: Execution times for single
delta structured queries

Fig. 9: Execution times for
cross-delta structured queries

of magnitude slower, so we do not report and compare the results graphically
with the corresponding ones of Virtuoso. At first, in the left table of Table 1 we
can see the initial version ingestion speed and applied changes speed. The changes
are applied in a slower rate than the triples of the initial version are loaded, as
the version that is materialized is always the current one, so for every new delta,
the current version has to be computed. Compared to Virtuoso, R43ples is
1 order of magnitude slower even in the case of applied changes speed where
we would expect it to be faster. The storage space overhead, as shown in the
same Tables, is double the storage space for Virtuoso. Someone would expect
R43ples to outperform Virtuoso as in Virtuoso we implemented the Full
Materialization strategy, but that seems not to be the case, as the underlying
storage strategies of Virtuoso and Jena TDB seem to be very different.

Next, regarding the execution of queries, with a quick glance, we can see
that queries are executed at a much lower rate and many of them failed to re-
turn the correct results. Such failures are possibly due to the fact that R43ples
failed to correctly load all the versioned data. E.g. in the final version R43ples
maintained a total of 140.447 triples instead of 141.783. Concerning the queries
execution time, for materializing the current version (QT1) or executing a struc-
tured query on it (QT2), R43ples (although in some cases returned slightly less
results) required similar time compared to Virtuoso. This is something that we
expected, as the current version is kept materialized just like in Virtuoso. This
is not happening for the rest of the query types as R43ples is 1 to 3 orders of
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magnitude slower than Virtuoso. This is also an expected result as R43ples
needs to reconstruct the queried version on-the-fly.

Metric Result
V0 Ingestion speed (triples/sec) 3502.39
Changes speed (changes/sec) 2767.56
Storage cost (MB) 197378
Throughput (queries/second) 0.09
Queries failed 25

Metric Result Succeeded
queries

QT1 (ms) 13887.33 0/1
QT2 (ms) 146.28 25/30
QT3 (ms) 18265.78 0/3
QT4 (ms) 11681.49 13/18
QT5 (ms) 31294.00 0/4
QT6 (ms) 12299.58 4/4
QT7 (ms) 35294.33 2/3
QT8 (ms) 19177.33 30/36

Table 1: Results for R43ples system

6 Conclusions and Future work

In this paper we described the state-of-the-art approaches for managing and
benchmarking evolving RDF data, and described in detail SPVB, a novel bench-
mark for versioning systems, along with a set of experimental results.

We plan to keep SPVB an evolving benchmark, so that we can attract more
versioning systems to use it, as well as to try to asses the performance of more
versioning systems on ourselves. To achieve this, we plan to add some extra
functionalities or improve the existing ones. In particular, we want to move
the expected results computation out of the Data Generator component. By
doing so, SPVB will be able to generate data in parallel through multiple Data
Generators. Also, we want to make the query workload more configurable, by
giving the ability to the benchmarked system to include or exclude specific query
types. Moreover, we want to optimize the responses evaluation taking place in
the Evaluation Module component, as for dozens of thousands of results the
evaluation may become very costly. Finally, we plan to add functionalities that
the second version of the HOBBIT platform offers, such as graphical visualisation
of the KPIs.
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