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Abstract. The theory and practice of satisfiability solvers has expe-
rienced dramatic advances [1] in the past couple of decades. This fact
attracted the attention of researchers that work with hard combinato-
rial problems [2, 6, 9–11, 5] with the hope that if suitable and efficient
SAT encodings of these problems can be constructed, then SAT solvers
can be used to solve large instances of such problems effectively. On the
other hand, researchers working in the area of SAT and SMT solvers
observed that by combining the combinatorial search capabilities of SAT
solvers with mathematical reasoning abilities of computer algebra sys-
tems (CAS), one could attack combinatorial problems in a way that
either of these approaches by themselves may not be able to [2]. Further,
SAT researchers have been interested in hard combinatorial problems
and produced significant breakthroughs [7, 8, 3, 4] using either custom-
tailored highly-tuned SAT solvers implementations or by combining the
SAT and CAS paradigms. In our own work, we are using SAT solvers
to solve hard combinatorial problems, such as Williamson Hadamard
matrices, D-optimal matrices, complex Golay pairs and so forth. These
problems are defined via the fundamental concept of autocorrelation [12].
It turns out that both these approaches (namely hand-tuned SAT solvers
and SAT+CAS combinations) have had a number of successes already
and it is safe to assume that a lot more successes are to be expected in
the near future. Combinatorics is a vast source of very hard and chal-
lenging problems, often containing thousands of discrete variables, and I
firmly believe that the interaction between SAT researchers and combi-
natorialists will continue to be very fruitful.
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