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The study deals with the problem of estimating the accuracy and stability of 3D face models
obtained by a stereo pair. The problem of the conditionality of the fundamental matrix, which
is a mathematical stereo pair model, is considered. We prove that small changes of stereo
camera parameters result in small changes in the solution of the problem of reconstructing
three-dimensional coordinates. Several types of three-dimensional reconstruction optimization
problems that are based on quality criteria are formulated. The paper also considers the issues
of determining an object orientation in a three-dimensional space by position lines. A 3D
image coding system utilizing invariant moments is proposed and the theoretical sensitivity
of 3D invariants to geometric distortions is investigated. These results are used to obtain
scaling invariants. Designing and studying such models is the important step to solve the
analysis problem and determine the proximity of images, which is therefore necessary for their
clustering and recognition.
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1. Introduction

There are now many different methods and algorithms for face recognition related
both to the identification of local features (lips, nose, facial contours or profile) and
methods aimed at analyzing the entire image as a whole [1–3]. Neural networks, Markov
chains, elastic graphs, a wavelet analysis, a support vector method and other tools
are used as classifiers [4–7]. Almost all approaches have insufficient accuracy if images
contain brightness noises, color distortions or when objects move on video sequences.
Experiments show that 2D models have limited application, because it is difficult to use
them for face recognition if there are different head angles, natural facial expressions,
grimaces and other disturbances. Thereby, more and more attention is paid to 3D-models
obtained with the use of high-resolution cameras, which allow increasing the accuracy
and completeness of recognition [8–10]. 3D models can be adapted to existing images
to achieve the best similarity. A 3D image is a piecewise continuous three-variable
function 𝑓(𝑥, 𝑦, 𝑧) defined on a compact support 𝐷 ⊂ 𝑅 × 𝑅 × 𝑅 and having a finite
nonzero integral. An example of such a function is the brightness function also known
as a halftone image. The digital image typically results from the discretization of the
continuous brightness function 𝑓(𝑥, 𝑦, 𝑧) and is stored as a three-dimensional array
𝐼(𝑖, 𝑗, 𝑘), where 𝑖 = 0, 1, . . . , 𝑁𝑥 − 1, 𝑗 = 0, 1, . . . , 𝑁𝑦 − 1 and 𝑘 = 0, 1, . . . , 𝑁𝑧 − 1. Each
element of this array is a pixel with an intensity ranging from 0 to 𝐿− 1. The 𝐿 value
is typically a power of two (for example, 64, 256) and is called the image depth.

2. The problem of designing 3D face models

Let us consider the issue of designing a 3D model by reconstructing an image and
the problem of the conditionality of the fundamental matrix, which is a mathematical
stereopair model. The three-dimensional reconstruction reduces to solving the following
problem

𝐴 · 𝑥 = 𝑏, (1)

where:

𝑥 =

⎡
⎢⎣
𝑥

𝑦

𝑧

⎤
⎥⎦ , 𝐴 =

⎡
⎢⎢⎢⎣

𝑇 1
11 − 𝑇 1

14𝑥
1* 𝑇 1

21 − 𝑇 1
24𝑥

1* 𝑇 1
31 − 𝑇 1

34𝑥
1*

𝑇 1
12 − 𝑇 1

14𝑦
1* 𝑇 1

22 − 𝑇 1
24𝑦

1* 𝑇 1
32 − 𝑇 1

34𝑦
1*

𝑇 2
11 − 𝑇 2

14𝑥
2* 𝑇 2

21 − 𝑇 2
24𝑥

2* 𝑇 2
31 − 𝑇 2

34𝑥
2*

𝑇 2
12 − 𝑇 2

14𝑦
2* 𝑇 2

22 − 𝑇 2
24𝑦

2* 𝑇 2
32 − 𝑇 2

34𝑦
2*

⎤
⎥⎥⎥⎦ , 𝑏 =

⎡
⎢⎢⎢⎣

𝑇 1
44𝑥

1* − 𝑇 1
41

𝑇 1
44𝑦

1* − 𝑇 1
42

𝑇 2
44𝑥

2* − 𝑇 2
41

𝑇 2
44𝑦

2* − 𝑇 2
42

⎤
⎥⎥⎥⎦ .

Herein 𝑇𝑘
𝑖,𝑗 , is a coefficient of the mathematical 𝑘 camera model represented by a 4× 4

matrix. We call this matrix fundamental. It is necessary to calculate the condition
number to estimate the conditionality of the matrix. The maximum and minimum
changes in 𝐴𝑥 can be set with the following numbers:

𝑄 = max
𝑥̸=0

⃦⃦
⃦𝐴𝑥

⃦⃦
⃦

⃦⃦
⃦𝑥
⃦⃦
⃦

, 𝑞 = min
𝑥 ̸=0

⃦⃦
⃦𝐴𝑥

⃦⃦
⃦

⃦⃦
⃦𝑥
⃦⃦
⃦

,

where: ⃦⃦
⃦𝑥
⃦⃦
⃦
𝑙

=
𝑛∑︁

𝑖=1

⃒⃒
⃒𝑥𝑖

⃒⃒
⃒.

Matrix condition number 𝐴 is defined as 𝑐𝑜𝑛𝑑(𝐴) = 𝑄
𝑞

(cond stands for conditioned)
and shows how close the square matrix is to degeneracy. If matrix 𝐴 is almost degenerate,
then we can expect small changes in 𝐴 and 𝑏 to cause significant changes in 𝑥.
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Let us consider system 𝐴(𝑥+ ∆𝑥) = 𝑏+ ∆𝑏. With a relative change in the right-hand

side (

⃦⃦
⃦∆𝑏

⃦⃦
⃦

⃦⃦
⃦𝑏

⃦⃦
⃦

), relative error

⃦⃦
⃦∆𝑥

⃦⃦
⃦

⃦⃦
⃦𝑥

⃦⃦
⃦

can be 𝑐𝑜𝑛𝑑(𝐴)

⃦⃦
⃦∆𝑏

⃦⃦
⃦

⃦⃦
⃦𝑏

⃦⃦
⃦

. If 𝑞 = 0, then 𝑐𝑜𝑛𝑑(𝐴) = +∞,

that is a rank-deficient (degenerate) matrix. The bigger 𝑐𝑜𝑛𝑑(𝐴), the closer matrix
𝐴 to degeneracy and vice versa – the closer the matrix to the identity matrix, the
closer the 𝑐𝑜𝑛𝑑(𝐴) value to 1 and the matrix is far from degeneracy. The study of
conditionality is an important link in determining the stability of the solution to the
problem of reconstructing 3D information. From this point on, let us assume that the
matrix is well-conditioned.

Let fundamental matrix 𝐴 be well-conditioned.
Proposition 1. If coefficients of matrix 𝐴 and absolute term column 𝑏 in the

equation (1) are changed for small quantities 𝜀𝐴1 and 𝜀𝑏1, then the reconstruction
problem solution obtained by using a least-squares method will change for small value

∆ = 𝑂(𝜀) =
⃦⃦
⃦(𝐴0 + 𝜀𝐴1)𝑇 (𝐴0 + 𝜀𝐴1)

⃦⃦
⃦−

⃦⃦
⃦𝐴𝑇

0 𝐴0

⃦⃦
⃦ .

Let us show that if coefficients of matrix 𝐴 and absolute term column 𝑏 are changed
for small quantities, then the solution obtained by using a least-squares method will
change insignificantly. To do this, let us introduce disturbing matrix 𝐴1, disturbing
vector 𝑏1 and require singular numbers (i.e. square roots of the eigenvalues) of matrix
𝐴1 to be bounded from above by some constant. In addition to the system (1), let us
also consider the system

(𝐴0 + 𝜀𝐴1)𝑥𝜀 + 𝑏0 + 𝜀𝑏1,

where 𝜀 is a small parameter. Its solution is given by

𝑥𝜀 = ((𝐴𝑇
0 + 𝜀𝐴𝑇

1 )(𝐴0 + 𝜀𝐴1))−1(𝐴𝑇
0 + 𝜀𝐴𝑇

1 )(𝑏0 + 𝜀𝑏1).

Let us consider the expression

𝐽 = (𝐴𝑇
0 + 𝜀𝐴𝑇

1 )(𝐴0 + 𝜀𝐴1)∆,

where ∆ = |𝑥𝜀 − 𝑥0| is a deviation. Value 𝐽 can be written as

𝐽 = (𝐴𝑇
0 + 𝜀𝐴𝑇

1 )(𝑏0 + 𝜀𝑏1)− (𝐴𝑇
0 + 𝜀𝐴𝑇

1 )(𝐴0 + 𝜀𝐴1)(𝐴𝑇
0 𝐴0)−1𝐴𝑇

0 𝑏0 =

= 𝐴𝑇
0 𝑏0 + 𝜀(𝐴𝑇

0 𝑏1 + 𝐴𝑇
1 𝑏0) + 𝜀2𝐴𝑇

1 𝑏1 −𝐴𝑇
0 𝐴0(𝐴𝑇

0 𝐴0)−1𝐴𝑇
0 𝑏0−

−𝜀𝐴𝑇
1 𝐴0(𝐴𝑇

0 𝐴0)−1𝐴𝑇
0 𝑏0 − 𝜀𝐴𝑇

0 𝐴1(𝐴𝑇
0 𝐴0)−1𝐴𝑇

0 𝑏0 − 𝜀2𝐴𝑇
1 𝐴1(𝐴𝑇

0 𝐴0)−1𝐴𝑇
0 𝑏0 =

= 𝜀𝐴𝑇
1 (𝐸 −𝐴0(𝐴𝑇

0 𝐴0)−1𝐴0)𝑏0 + 𝜀𝐴𝑇
0 (𝑏1 −𝐴1(𝐴𝑇

0 𝐴0)−1𝐴𝑇
0 𝑏0) + 𝑂(𝜀2).

Herein, 𝐸 is an identity matrix. We shall now notice that matrix 𝐴𝑇
0 𝐴0 is well

determined. Consequently, matrix (𝐴𝑇
0 + 𝜀𝐴𝑇

1 )(𝐴0 + 𝜀𝐴1) is also well determined at
small values of 𝜀, with

∆ = 𝑂(𝜀) =
⃦⃦
⃦(𝐴0 + 𝜀𝐴1)𝑇 (𝐴0 + 𝜀𝐴1)

⃦⃦
⃦−

⃦⃦
⃦𝐴𝑇

0 𝐴0

⃦⃦
⃦ .

Thus, small changes in the parameters of the stereo camera (provided that the funda-
mental matrix is well-conditioned) lead to small changes in the solution to the problem
of reconstructing three-dimensional coordinates. Knowledge of the transforming char-
acteristics of the vision system allows forming a set of equations and reconstructing a
three-dimensional point with a certain degree of accuracy when pairs of pixels corre-
sponding to one point on the object surface are recognized on a stereo image. We can
suggest different criteria for finding recovered point 𝑁 = (𝑥, 𝑦, 𝑧) being an approximation
of the problem (1), as it can be seen in Table 1.
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Table 1
Types of three-dimensional reconstruction optimization problems

Problem type Problem setting Solution

Minimizing
root-mean-
square
deviation
𝑁 from the
solution
of system
equa-
tions (1)

𝐴0𝑥0 = 𝑏0 𝑥 =
(︀
𝐴𝑇𝐴

)︀−1
𝐴𝑇 𝑏

Minimizing
the largest
deviation

Minimizing the largest deviation
from the solution of the system⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑎𝑥1𝑥 + 𝑎𝑦1𝑦 + 𝑎𝑧1𝑧 + 𝑏1 = 0

𝑎𝑥2𝑥 + 𝑎𝑦2𝑦 + 𝑎𝑧2𝑧 + 𝑏2 = 0

𝑎𝑥3𝑥 + 𝑎𝑦3𝑦 + 𝑎𝑧3𝑧 + 𝑏3 = 0

𝑎𝑥4𝑥 + 𝑎𝑦4𝑦 + 𝑎𝑧4𝑧 + 𝑏4 = 0

(2)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑎𝑥1𝑥 + 𝑎𝑦1𝑦 + 𝑎𝑧1𝑧 + 𝑏1 = 𝜉

𝑎𝑥2𝑥 + 𝑎𝑦2𝑦 + 𝑎𝑧2𝑧 + 𝑏2 = 𝜉

𝑎𝑥3𝑥 + 𝑎𝑦3𝑦 + 𝑎𝑧3𝑧 + 𝑏3 = 𝜉

𝑎𝑥4𝑥 + 𝑎𝑦4𝑦 + 𝑎𝑧4𝑧 + 𝑏4 = 𝜉

where 𝜉 is a deviation from the
solution of the system.

Minimizing
root-mean-
square
deviation
𝑁 from
the tetrahe-
dron faces

𝛿2 =
∑︀

𝑖
(𝑎𝑥𝑖𝑥+𝑎𝑦𝑖𝑦+𝑎𝑧𝑖𝑧+𝑏𝑖)

2

𝑎2𝑥𝑖+𝑎2𝑦𝑖+𝑎2𝑧𝑖
→ min

𝑥,𝑦,𝑧

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥
∑︀

𝑖
𝑎2
𝑥𝑖

Δ2
𝑖

+ 𝑦
∑︀

𝑖
𝑎𝑥𝑖𝑎𝑦𝑖

Δ2
𝑖

+

+𝑧
∑︀

𝑖
𝑎𝑥𝑖𝑎𝑧𝑖

Δ2
𝑖

+
∑︀

𝑖
𝑎𝑥𝑖𝑏𝑖
Δ2

𝑖

= 0

𝑥
∑︀

𝑖
𝑎𝑥𝑖𝑎𝑦𝑖

Δ2
𝑖

+ 𝑦
∑︀

𝑖

𝑎2
𝑦𝑖

Δ2
𝑖

+

+𝑧
∑︀

𝑖
𝑎𝑦𝑖𝑎𝑧𝑖

Δ2
𝑖

+
∑︀

𝑖
𝑎𝑦𝑖𝑏𝑖
Δ2

𝑖

= 0

𝑥
∑︀

𝑖
𝑎𝑥𝑖𝑎𝑧𝑖

Δ2
𝑖

+ 𝑦
∑︀

𝑖
𝑎𝑦𝑖𝑎𝑧𝑖

Δ2
𝑖

+

+𝑧
∑︀

𝑖
𝑎2
𝑧𝑖

Δ2
𝑖

+
∑︀

𝑖
𝑎𝑧𝑖𝑏𝑖
Δ2

𝑖

= 0

where ∆2
𝑖 = ∆2

𝑥𝑖 + ∆2
𝑦𝑖 + ∆2

𝑧𝑖,
𝑖 ∈ {1, 2, 3, 4}.

Minimizing
the root-
mean-
square
deviation
of one
coordinate
of point 𝑁

For coordinate z:
𝜌2𝑧 =

∑︀
𝑖(𝑧 − 𝑧𝑖(𝑥, 𝑦))2 → min

𝑥0

𝑧𝑖(𝑥, 𝑦) is the lowest value calcu-
lated for each of the system equa-
tions (2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥
∑︀

𝑖
𝑎2
𝑥𝑖

𝑎2
𝑧𝑖

+ 𝑦
∑︀

𝑖
𝑎𝑥𝑖𝑎𝑦𝑖

𝑎2
𝑧𝑖

+

+𝑧
∑︀

𝑖
𝑎𝑥𝑖
𝑎𝑧𝑖

+
∑︀

𝑖
𝑎𝑥𝑖𝑏𝑖
𝑎2
𝑧𝑖

= 0

𝑥
∑︀

𝑖
𝑎𝑥𝑖𝑎𝑦𝑖

𝑎2
𝑧𝑖

+ 𝑦
∑︀

𝑖

𝑎2
𝑦𝑖

𝑎2
𝑧𝑖

+

+𝑧
∑︀

𝑖
𝑎𝑦𝑖

𝑎𝑧𝑖
+
∑︀

𝑖
𝑎𝑦𝑖𝑏𝑖
𝑎2
𝑧𝑖

= 0

𝑥
∑︀

𝑖
𝑎𝑥𝑖
𝑎𝑧𝑖

+ 𝑦
∑︀

𝑖
𝑎𝑦𝑖

𝑎𝑧𝑖
+ 4𝑧+

∑︀
𝑖

𝑏𝑖
𝑎𝑧𝑖

= 0
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3. Experimental designing and the 3D model orientation determinantion

Let the three-dimensional object be given by a set of 𝑁 points with coordinates
(𝑥𝑘, 𝑦𝑘, 𝑧𝑘), 𝑘 = 1, . . . , 𝑁 , to which weights 𝑓𝑘 corresponding, for example, to brightness
are assigned. A 3D human face model is exemplified in Figure 1

Figure 1. Variants of the face image orientation

Various affine transformations generally performed in homogeneous coordinates are
used to manipulate the model. The weights of points affect the object center of mass,
hence changing them may lead to an inordinary displacement trajectory of the center of
mass and a change in the orientation of the object. It is necessary to draw a straight
spatial line to determine the position and orientation of the 3D object [11–13]. Let the
position line go through the centroid of the object’s point system:

(𝑥̄, 𝑦, 𝑧) =

(︃∑︀𝑁
𝑖=1 𝑓𝑖𝑥𝑖∑︀𝑁
𝑖=1 𝑓𝑖

,

∑︀𝑁
𝑖=1 𝑓𝑖𝑦𝑖∑︀𝑁
𝑖=1 𝑓𝑖

,

∑︀𝑁
𝑖=1 𝑓𝑖𝑧𝑖∑︀𝑁
𝑖=1 𝑓𝑖

)︃
,

where (𝑥̄, 𝑦, 𝑧) are the object centroid coordinates. The position line forms angles 𝛼,𝛽,𝛾
with reference axes OX, OY, OZ and its equation can be written as 𝑥−𝑥̄

𝑙
= 𝑦−𝑦

𝑚
= 𝑧−𝑧

𝑛
,

where: 𝑙,𝑚, 𝑛 are the angular coefficients of a straight line in space to be determined as
a result of the problem solution; 𝑥, 𝑦, 𝑧 are the coordinates of an arbitrary object point.
The distance from the 𝑘 object point to the desired line is calculated by

𝑑2𝑘 =
[(𝑥𝑘 − 𝑥̄)𝑚− (𝑦𝑘 − 𝑦)𝑙]2 + [(𝑦𝑘 − 𝑦)𝑛− (𝑧𝑘 − 𝑧)𝑚]2 + [(𝑧𝑘 − 𝑧)𝑙 − (𝑥𝑘 − 𝑥̄)𝑛]2

𝑙2 + 𝑚2 + 𝑛2
.

We introduce

𝐴 =
∑︀𝑁

𝑖=1(𝑥𝑖 − 𝑥̄)2𝑓𝑖, 𝐵 =
∑︀𝑁

𝑖=1(𝑦𝑖 − 𝑦)2𝑓𝑖,

𝐶 =
∑︀𝑁

𝑖=1(𝑧𝑖 − 𝑧)2𝑓𝑖, 𝐷 =
∑︀𝑁

𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦)𝑓𝑖,

𝐸 =
∑︀𝑁

𝑖=1(𝑥𝑖 − 𝑥̄)(𝑧𝑖 − 𝑧)𝑓𝑖, 𝐹 =
∑︀𝑁

𝑖=1(𝑦𝑖 − 𝑦)(𝑧𝑖 − 𝑧)𝑓𝑖.

Let A, ..., F be called moments of inertia and be subsequently used as constant
coefficients.To solve the problem, we have to find partial derivatives of function S of
variables 𝑙,𝑚, 𝑛 and equate them to zero. After the necessary transformations we get
the following system:

⎧
⎪⎨
⎪⎩

((𝐵 + 𝐶)𝑙 −𝐷𝑚− 𝐶𝑛)𝑚 = ((𝐶 + 𝐴)𝑚−𝐷𝑙− 𝐹𝑛)𝑙,

((𝐶 + 𝐴)𝑚−𝐷𝑙 − 𝐹𝑛)𝑛 = ((𝐴 + 𝐵)𝑛− 𝐸𝑙 − 𝐹𝑚)𝑚,

((𝐴 + 𝐵)𝑛− 𝐸𝑙 − 𝐹𝑚)𝑙 = ((𝐵 + 𝐶)𝑙 −𝐷𝑚− 𝐶𝑛)𝑛.
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These equations can be rewritten as follows:
⃒⃒
⃒⃒
⃒⃒
⃒

𝑖 𝑗 𝑘

𝑙 𝑚 𝑛

𝐴𝑙 + 𝐷𝑚 + 𝐸𝑛 𝐷𝑙 + 𝐵𝑚 + 𝐹𝑛 𝐸𝑙 + 𝐹𝑚 + 𝐶𝑛

⃒⃒
⃒⃒
⃒⃒
⃒

=

=

⎛
⎜⎝

𝑙

𝑚

𝑛

⎞
⎟⎠×

⎛
⎜⎝

𝐴 𝐷 𝐸

𝐷 𝐵 𝐹

𝐸 𝐹 𝐶

⎞
⎟⎠ ·

⎛
⎜⎝

𝑙

𝑚

𝑛

⎞
⎟⎠ = 0.

Herein,(×), (·) are the signs of vector and scalar products. Thus, the system can be
rewritten as

𝑤 × 𝐼𝑤 = 0, |𝑤| = 1, (3)

where 𝑤 =
(︁
𝑙 𝑚 𝑛

)︁𝑇
, 𝐼 =

⎛
⎜⎝

𝐴 𝐷 𝐸

𝐷 𝐵 𝐹

𝐸 𝐹 𝐶

⎞
⎟⎠ .

Proposition 2. The system (3) has a solution if and only if 𝐼𝑤 = 𝜆𝑤, where 𝜆 is
some number.

The area of the parallelogram spanned by vectors 𝑤 and 𝐼𝑤 is equal to zero if and
only if these vectors are collinear. Equation 𝐼𝑤 = 𝜆𝑤 has a nonnegative solution if
and only if 𝜆 is an eigenvalue of matrix 𝐼. The matrix of the operator is symmetric
and well determined; consequently, its eigenvalues are real [14]. The eigenvectors are
orthogonal and correspond to the directing vectors of the ellipsoid determining the object
orientation in space. The lengths of the ellipsoid axes correspond to the eigenvalues.
Moreover, the maximum characteristic number corresponds to the desired direction of
the position line. The vector corresponding to the second largest eigenvalue determines
the object’s rotation direction; the third eigenvector determines the rotation by an angle
around the main axis.

4. 3D image coding utilizing invariant moments

Let 𝜌(𝑥, 𝑦, 𝑧) be the function describing the brightness value of points with coordinates
(𝑥, 𝑦, 𝑧) in a 3D space. It is required to build moments invariant to the group of affine
transformations for correct correlation of images [15, 16]. For a discrete case (a digital
image), the moments about mean can be calculated as follows:

𝜇𝑙𝑚𝑛 =
∑︁

𝑋

∑︁

𝑌

∑︁

𝑍

(𝑥− 𝑥̄)𝑙(𝑦 − 𝑦)𝑚(𝑧 − 𝑧)𝑛𝜌(𝑥, 𝑦, 𝑧),

where 𝑋,𝑌, 𝑍 is an image pixel coordinate determination area; (𝑥̄,𝑦,𝑧) is the object’s
centroid. In accordance with the analysis carried out by using different sources, the
following moments were selected [17–20]:

𝐼1 = 𝜇200 + 𝜇020 + 𝜇002,

𝐼2 = 𝜇200𝜇020 + 𝜇200𝜇002 + 𝜇020𝜇002 − 𝜇2
101 − 𝜇2

110 − 𝜇2
011,

𝐼3 = 𝜇200𝜇020𝜇002 − 𝜇002𝜇2
110 − 𝜇020𝜇2

101 − 𝜇200𝜇2
011+

+2𝜇110𝜇101𝜇011 − 𝜇2
011 − 𝜇2

101,
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𝐹1 = 𝜇2
003 + 6𝜇2

012 + 6𝜇2
021 + 6𝜇2

030 + 6𝜇2
102 + 15𝜇2

111 − 3𝜇2
102𝜇120 + 6𝜇2

120−
−3𝜇021𝜇201 + 6𝜇2

201 − 3𝜇003(𝜇021 + 𝜇201)− 3𝜇030𝜇210 + 6𝜇2
210−

−3𝜇012(𝜇030 + 𝜇210)− 3𝜇102𝜇300 − 3𝜇120𝜇300 + 𝜇2
300,

𝐹2 = 𝜇2
200 + 𝜇2

020 + 𝜇2
002 + 2𝜇2

110 + 2𝜇2
101 + 2𝜇2

011,

𝐹3 = 𝜇3
200 + 3𝜇200𝜇

2
110 + 3𝜇200𝜇

2
101 + 3𝜇2

110 + 3𝜇2
101𝜇020 + 3𝜇2

101𝜇002+

+𝜇3
020 + 3𝜇020𝜇

2
011 + 3𝜇2

011𝜇002 + 𝜇3
002 + 6𝜇110𝜇101𝜇011,

𝐹4 = 𝜇2
300 + 𝜇2

030 + 𝜇2
003 + 3𝜇2

210 + 3𝜇2
201 + 3𝜇2

120 + 3𝜇2
102 + 3𝜇2

021 + 3𝜇2
012 + 6𝜇2

111,

𝐹5 = 𝜇2
300 + 2𝜇300𝜇120 + 2𝜇300𝜇102 + 2𝜇210𝜇030 + 2𝜇201𝜇003 + 𝜇2

030+

+2𝜇030𝜇012 + 2𝜇021𝜇003 + 𝜇2
003 + 𝜇2

210 + 2𝜇210𝜇012 + 𝜇2
201+

+2𝜇201𝜇021 + 𝜇2
120 + 2𝜇120𝜇102 + 𝜇2

102 + 𝜇2
021 + 𝜇2

012.

Proposition 3. Moments 𝐼1, ..., 𝐹5 are 3D rotation and translation invariants.
The established limited set of 3D invariants can be directly applied to face recognition.

Table 2 shows the calculated values of the selected group of invariants for three positions
of the chosen mathematical 3D face surface model.

Table 2
An example of application of 3D invariants: rotation, shift

Variants of 3D face image orientation (shifts and rotations)

Moment

𝐼1 1 1 1
𝐼2 0.222 0.222 0.222
𝐼3 0.013 0.013 0.013
𝐹1 6.255e-06 6.255e-06 6.255e-06
𝐹2 0.555 0.555 0.555
𝐹3 0.371 0.371 0.371
𝐹4 5.525e-06 5.525e-06 5.525e-06
𝐹5 5.038e-06 5.038-06 5.038e-06

The sensitivity of 3D invariants to linear image distortions is established. An
evaluation of the theoretical sensitivity of 3D invariants to geometric distortions is
presented in Table 3

Table 3
The sensitivity of 3D invariants

Moment 𝐼1 𝐼2 𝐼3 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5

Sensitivity 𝛿2 𝛿4 𝛿6 𝛿6 𝛿4 𝛿6 𝛿6 𝛿6
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The results can be used to obtain invariants for scaling. To do this, we can use:
𝛿 =

√︀
𝜇200 + 𝜇020 + 𝜇002 and perform the valuation by dividing moments 𝐼1, ..., 𝐹5 by

the corresponding values of the coefficients from Table 3.
Proposition 4. Normalized moments 𝐼1, ..., 𝐹5 are 3D invariants of the operations

of rotate, tranlate and scale.
Table 4 exemplifies the sensitivity values of the invariants and the scaling coefficients for
the chosen 3D face model.

Table 4
An experimental study of 𝛿 as the scaling facto

Scaling coefficient Pre-scaling 𝛿 After-scaling 𝛿 𝛿ratio
2 10099.4 20198.8 2
3 10099.4 30298.2 3

0.5 10099.4 5049.69 0.5
0.25 10099.4 2524.85 0.25

All the calculations were carried out by using the software of the Matlab modeling
system. The study of the moments’ properties shows that it is possible to solve human
face recognition problems utilizing their geometric invariants.

5. Conclusions

Stereo pair-based evaluations of the stability of three-dimensional image reconstruc-
tion against fluctuations are obtained provided that the fundamental matrix is initially
well conditioned. The statements of various optimization problems of three-dimensional
reconstruction based on quality criteria are given. A system of 3D invariants is defined
and their stability against image fluctuations is investigated. The developed algorithms
are expedient for using as a part of systems searching for faces from photos.
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