
Towards Flexible
Object and Class Modeling Tools:

An Experience Report

Andreas Kästner1, Martin Gogolla1, and Bran Selic2

1 University of Bremen, Bremen, Germany, {andreask|gogolla}@cs.uni-bremen.de
2 Malina Software Corp., Ottawa, Canada, selic@acm.org

Abstract. Recently, we have proposed an approach for class model-
ing starting from imperfect object models. The underlying process puts
emphasis on the free expression of ideas of the developer through al-
lowing to formulate incomplete and even inconsistent object diagrams.
From these object diagrams, class diagrams are deduced. This paper re-
ports on experiences with a supporting tool grouped into two categories.
One category involves students at a university and how they get along
with the general concept and the tool. The other category shows how
researchers work with our proposed ideas.

Keywords: Experience report, Evaluation, UML object diagram, UML
class diagram, Incremental transformation by example, Tool support

1 Introduction

To allow for more flexibility in modeling, it would be beneficial to have modeling
tools which are not very restrictive with their syntax and in their development
processes. To come closer to diagrams informally sketched on paper with a pencil,
we proposed a lenient modeling approach [5,8]. Starting with object diagrams
that can leave parts empty, we developed an automatic transformation to class
diagrams as a plugin for the USE tool [3,4]. Both the object diagrams as well
as the class diagrams use a flexible syntax which comes close to a drawing tool
while still following an internal meta-model. Developers are given the option to
incrementally develop the object diagram while receiving feedback from the class
diagram. Similar approaches for developing specifications of system states in a
very flexible way include [6,9,10].

This work is still in development and we try to get as much feedback as
possible from potential users to incorporate their ideas. For this reason, we did
two studies with two different potential user groups. First, we used the tool
in a modeling course at university. Since one of the reasons of our work is to
reduce the barrier to get started with modeling, it would be interesting to see
how people with little modeling experience use our tool. Secondly, the approach
should also help experts to sketch their ideas in an informal manner. For this
reason, we developed a specific task for a group of people who already have some

A. Kästner, M. Gogolla, B. Selic

experience in the modeling field. The task included a text in natural language
and the experts were asked to use the tool to create an object diagram based on
the described circumstances.

The main goal of these two studies is to gather ideas and see how different
people work with the current state of our tool. This feedback can, and at the
time of this writing was already, used for immediate improvements that focus
on the needs of potential users. More formal and extensive studies that also test
these improvements can then be done in the future.

The structure of the rest of this paper is as follows. Section 2 describes our
previous work on this topic. Section 3 describes how the students worked with
the tool. Section 4 explains the approach that the experts used to solve their
task. Section 5 explains what was learned from our experiments and how it will
influence future work. Finally, a conclusion is given in Sect. 6.

2 Context: From (Imperfect) Object Diagrams to
(Imperfect) Class Diagrams

The basic idea of our approach is to consider UML object diagrams and extract
as much information as possible during an automatic transformation to UML
class diagrams. Or formulated more generally: we aim at a transformation from
the instance level to the generic level of a model. However, since instances are just
specific scenarios, the general case can not be perfectly described. To fill the gap,
we introduced the concept of special markers to highlight where information is
still missing <?> or even conflicting with other information <!>. We also allow
incomplete input on the object side. To highlight optional parts that can be
refined further, e.g. attributes or role names, we use the <+> marker.

An important part of this work is to allow for leniency during the devel-
opment. The syntax should not force the user to do specific things, but more
resemble drawing diagrams on paper. Because of this approach, there can be in-
consistencies and missing information in the diagrams. In Fig. 1 for example, not
every role name or association name is written in the “Input object diagram”.
The “Output class diagram” however shows as much information as possible.

A much more in-depth description of our work can be found in [8]. While
that paper explains the concept in general, this contribution focuses on potential
users and possible directions in which our research may go.

3 O2C in Practice: How Students Worked with the
Concept

In this section, we present two examples created by two different students of
the modeling course “Design of Information Systems”1. The students had the
task to model a system in a context they could choose themselves. To help them
achieve that goal, we introduced them to our object to class concept. Our idea

1 http://www.db.informatik.uni-bremen.de/teaching/courses/ss2018_eis/

http://www.db.informatik.uni-bremen.de/teaching/courses/ss2018_eis/

Towards Flexible Object and Class Modeling Tools: An Experience Report

Input object diagram

 : Person

name='ada'

bob : Person

age
 : Person

 : Person

father

Fatherhood

<+>

mother

<+>

child

<+>

Motherhood

mother

Output class diagram

Person

age

name : String

father Fatherhood

<?>

mother Motherhood

child

Fig. 1. An imperfect object diagram and the resulting imperfect class diagram.

that modeling may be easier when you start by looking at concrete instances
was thus tested in a practical setting. The complete created diagrams are listed
in [7].

3.1 Driving School Example

One student modeled a system for driving schools. The idea is to have a general
approach, suitable for cars, planes, and boats. He created two specific scenarios
in the form of object diagrams. The first one depicts an aviation academy and
the second one depicts a driving school for cars. After the transformation, the
two resulting class diagrams do not have a lot in common. Out of the 7 classes
in the first diagram and the 6 classes in the second diagram, only three classes
are identical. While the attributes of those classes match perfectly, in the one
diagram, there is an association between them, while there is none in the other
one. The student continued to merge the two automatically created diagrams
into one final class diagram.

Another observation is that the student tried to fill out as much information
as possible in the object diagram, while he could have left some parts empty.

The student also wrote a bit of criticism. While the general approach was
deemed “a useful method for approaching a universal model”, the student did
not like the usability of the tool. The main points of negative criticism involve
the layout of the diagram and a missing feature for automatic saving.

3.2 Parachuting Example

Another student modeled a system for a drop zone in the parachuting context.
The model revolves around groups of people who enter an aircraft to jump with

A. Kästner, M. Gogolla, B. Selic

the help of a parachute. He created two scenarios in the form of two object
diagrams. The focus of the first one lies in the administrative side of the drop
zone. It includes aircrafts, their manufacturers and persons working for the drop
zone. The second object diagram revolves around an actual jumping process, it
includes groups of participating persons. The transformation of these two object
diagrams results in two class diagrams. Like in the previous example, the student
tried to merge these two diagrams into one large diagram.

After using the plugin, the student also gave some criticism. He said that the
way the plugin shows incomplete parts in the form of dashed lines can be hard
to see for larger diagrams. He proposed to use different colors, like red, instead.
He also said that even for small models, like the one in this example, there are
already large object diagrams necessary. It would be preferable to allow multiple
object diagrams (for sub-scenarios) as input and merge them all into one class
diagram during the transformation. He criticized that multiple objects can have
the same identifier, for example after cloning an object, and that the plugin
allowed that without error messages. Finally, there was some minor criticism
that is specific to the implementation and not to the concept in general. He said
that newly created objects are hard to find in the GUI because they can be
covered by other objects. He said the button to delete attributes should only be
available when an attribute is selected and that there should be a possibility to
delete multiple objects at once.

4 O2C in Practice: How Experts Worked with the
Concept

In this section we explain the task that was given to modeling experts and the
results.

4.1 The Task

The idea was to give a modeling task to experts and see how they handle it
with the help of the O2C plugin. A general idea of our procedure can be seen in
Fig. 2.

The complete diagrams are listed in [7]. First, a class diagram was developed
(Fig. 3). This diagram shows a simplified version of a traveling scenario where
routes exist between buildings. From this class diagram, an object diagram was
instantiated in which some of the traveling opportunities for the MODELS 2018
conference are listed. Then we described the object diagram in natural language
as listed below:

MODELS 2018 takes place at the “IT University of Copenhagen”.
This building is in the town of “Copenhagen” in the country of “Den-
mark”.

There are many ways to get to the conference. For example, you
can take a plane to get from the building “Toronto Pearson Interna-
tional Airport” in the town of “Toronto” in the country of “Canada”

Towards Flexible Object and Class Modeling Tools: An Experience Report

Fig. 2. The procedure of creating and executing the experiment.

Route

length : Integer

vehicle : String

price : Integer

Town

name : String

Country

name : String

Building

name : String

isConfBuilding : Booleanending1
endsAt

endOf*

country*

liesIn

town*

town1

standsIn

building*

start1
startsAt

startOf*

Fig. 3. The author intended model behind the task.

to the building “Copenhagen Airport”. This route is 6200km long and
costs $500. You can also reach “Copenhagen” by train. If you are in the
country “Germany”, you can start at the building “Hamburg Railway
Station” in the town of “Hamburg” and take a direct train to the build-
ing “Copenhagen Railway Station”. This Route is 300km long and costs
$100.

There are two official conference hotel buildings, the “Imperial Copen-
hagen” and the “Wakeup Copenhagen”.

The route from the “Copenhagen Railway Station” to the “Imperial
Copenhagen” is 2km long and if you walk, it is also free. The route from
the “Copenhagen Railway Station” to the “Wakeup Copenhagen” has
the same length and you can walk as well. The route from the “Copen-
hagen Airport” to the “Imperial Copenhagen” is 10km long and costs

A. Kästner, M. Gogolla, B. Selic

$50 if you take a taxi. The route from the “Copenhagen Airport” to the
“Wakeup Copenhagen” is 9km long and costs $45 if you take a taxi.

Finally, to reach the conference building from one of these hotels, you
can use public transport. The route from the “Imperial Copenhagen” to
the “IT University of Copenhagen” is 3km long and costs 3$ with the
bus. The route from the “Wakeup Copenhagen” to the “IT University
of Copenhagen” is 3km long and costs $3 with the metro.

The participants had to read this text and create an object diagram, based on
this text, with the help of our O2C plugin. After that, they also had to answer
some questions concerning the usability of the plugin, based on the “System
Usability Scale”[1],[2]. The full instructions were and are available online2.

To evaluate what the participants have done, we compared our original object
diagram with the diagram that the participants have created. We also compared
our original class diagram with the class diagram that gets created by using our
automatic transformation, as shown in Fig. 2.

4.2 First Solution

The first thing to notice when looking at this solution is that the participant
used 5 classes instead of 4. The solution includes an additional “Conference” class
instead of an attribute “isConfBuilding” in the “Building” class. The participant
utilized the possibilities of the tool to leave role names empty but filled in every
association name. Instead of using identifiers for the objects, this participant
used anonymous objects. There are also some name differences for the same
concept, like “cost” instead of “price”.

4.3 Second Solution

This solution also includes 5 classes instead of 4. The 5th class is also a “Confer-
ence” class. There are also no “name” attributes used, this information is moved
to the object identifier. The information which vehicle is used is also moved to
the object identifier. In some cases, that leads to duplicate identifiers like two
“Taxi” objects. The units “$” and “km” are handled differently. While they are
not mentioned in the original object diagram, they are listed by this solution.
That also leads to the attributes “distance” and “cost” to be of the type “String”
instead of “Integer” after the O2C transformation. This participant completely
labeled every association and every role name.

4.4 Third Solution

The first notable difference is that, in this solution, there are 3 associations
between “Route” and “Building” in the class diagram instead of 2. The reason
for that is actually a spelling mistake in the “startBuilding” role name. The

2 https://goo.gl/forms/fiQUwmZUhZsUXRhS2

https://goo.gl/forms/fiQUwmZUhZsUXRhS2

Towards Flexible Object and Class Modeling Tools: An Experience Report

transformation identifies a new association this way that was not intended. This
solution makes use of the functionality to leave parts empty but leaves so many
parts empty that there is no association name for some of the associations. This
solution also includes the units of length and cost in the attributes, which leads
to “String” attributes after the transformation.

4.5 Results of the System Usability Scale

The System Usability Scale (SUS) is a simple, but well proven and valid method
to measure usability [1]. One reason the SUS was used, is the easy comparability
of the score. The SUS score results in a single number, which can be compared
to thousands of other evaluations that were done before. The result of the calcu-
lation is a value between 0 and 100. In a meta-analysis [11], data was collected
from over 5000 users across 500 different evaluations. It was found out, that an
average score is 68 and a score of 80.3 puts the result into the top 10%. The
average score for this evaluation was 75.

It has to be noted though that the participation rate was rather low with
only four answers (the three solutions plus one student answer). Even though
the results of the SUS are robust with a small number of participants [12], four is
probably still too low and the results are just listed for completeness. However,
the result of 75 comes really close to the result from our previous evaluation,
which was 75.7 [8].

5 Lessons Learned

The results from our experiments lead to many topics of discussion. Many of
those were only discovered through those experiments and were not clear to
us before. The topics range from general discussions about modeling to minor
implementation details of the tool.

5.1 General Discussion Topics

Newly identified future tasks One of the requested features involves getting
help from the already existing class diagram while creating the object diagram.
One could, for example, imagine partially labeled links during the creation pro-
cess, that get their labels from the class side.

One interesting point of discussion is whether multiple object diagrams, ex-
plaining different scenarios, should be merged into a single class diagram or if
there should be one class diagram for each object diagram. The conflicting ideas
here are, on the one hand, a class diagram should cover a lot of cases. On the
other hand, concrete scenarios seem to be a way some people think, so why
shouldn’t there be a class diagram for different cases? The downside, of course,
would be that some classes would be in multiple diagrams, but that could be
prevented with an appropriate class package architecture.

A. Kästner, M. Gogolla, B. Selic

Something that a lot of participants tended to do was to fill out every possible
label for every object and link. Our approach, however, allows leaving redundant
parts empty. It might be necessary to better communicate this approach to users
of the tool.

Another interesting topic is how to handle the object identifiers. Right now,
these identifiers have no influence on the transformation and therefore the re-
sulting class diagram. This means that right now, it is absolutely allowed to have
duplicate object identifiers without any form of error message. This is already
not a perfect approach, but once we allow object-valued attributes, it will lead
to errors. One could imagine that in the future, the tool detects similar names
when doing the merge and asks the modeler if they are meant to be the same.

One thing that became apparent during the experiment with experts, was
that there are always multiple possibilities to model a given textual specification.
For example, some participants used an additional “Conference” class, while in
the prepared example, there was an attribute “isConferenceBuilding” that had
roughly the same semantic. With future concepts like association classes, there
will be similar occurrences where the same concept can be modeled in different
ways.

Another limitation of UML came into focus during the experiment. When a
numerical attribute also has a unit (e.g. price=$12), would that be an attribute
of type string? A monetary data item is more than just numbers, so that would
probably the best solution.

Known future tasks Some of the proposed ideas by participants were already
known to us but were not yet implemented. This includes support for further
concepts like association classes, part-whole relationships, and n-ary associations.
It would also be good to improve the functionality to allow for object-valued
attributes and enumeration-valued attributes.

The order of attributes also has to be addressed in the future. The order
on the object side (e.g. first name and last name next to each other) should be
retained on the class side. Right now, the order of the object attributes does not
influence the order of the attributes in the classes. Depending on the input, this
is a non-trivial problem, because there may also be conflicts within the order.

5.2 Layout Issues

There are some issues that do not clearly fit into the categories of either general
approaches or tool specific problems. The most important one would be layout.
Of course diagram layout is strongly connected to the specific tool, but it is also
a very interesting research topic with many possible approaches.

One participant noticed that it helps to hide parts of the diagram when trying
to develop a good layout. This could be the possibility to hide things like role
names or association names, but also objects. To not overwhelm users with too
many options, there could be an order like only showing association names and
only later showing the role names. Another approach could be to not fully hide

Towards Flexible Object and Class Modeling Tools: An Experience Report

parts of the diagram, but use a different color to grey-out parts and remove
them from the main focus. A more radical approach to hide parts would be to
work with multiple object diagrams for different contexts. This way complete
diagrams would be hidden and the user can focus on one specific context at a
time.

Right now we use dashed lines to highlight incomplete objects or links. A
participant made the remark that it would be more obvious to use colors like red
instead. That was actually done by us in a previous version of the tool but then
removed in favor of the dashed lines. This shows that not every implementation
detail is favored by all users. Different users with different expectations, expect
different implementations. Also, in the interest of not discriminating against
individuals who do not perceive the full range of colors (i.e., color blind people),
the use of color as a primary differentiator is discouraged. Furthermore, support
for mainstream black and white printouts is most common.

5.3 Topics Regarding the Implementation of the Tool

There was also a lot of feedback regarding the implementation of the tool itself
that has little to do with the general concept. We categorized these ideas into the
standard software improvement issues “usability improvements” and “bugs”. We
list these topics in a short way, without much discussion, since the other lessons
learned from this chapter are more important and require more space.

Usability improvements: (a) The possibility to clone links or at least use
existing labels in the same context as suggestions to improve the input process,
(b) Aligning objects and classes, a functionality that is possible in the basic
USE tool, but not in our plugin, (c) The possibility to edit multiple objects
or links at the same time (e.g. selecting multiple objects and when they share
an attribute, making it possible to edit all attributes at once), (d) Creating
empty link “elements” that can exist on their own and only later connecting
them to adjacent objects, (e) More key bindings (e.g. ctrl+c ctrl+v for creating
clones and ctrl+x/del for removing elements), (f) The possibility to load .soil
files through the GUI, (g) Automatic saving of the object diagram to lower the
chance of losing progress, (h) Making it more clear where newly created objects
are positioned by somehow highlighting them, and (i) The possibility to delete
multiple objects at once.

Bugs: (a) A bug leads to the problem that once a link is destroyed, it always
gets destroyed three times, which can also be seen in the soil script, (b) On the
object side, it is only possible to save the position of the objects in the layout
file. It would be preferable to also save the position of links and their labels. On
the class side, the layout saving functionality does not work at all and has to be
corrected, (c) The undo/redo function does not work as expected, and (d) The
instruction readme file that comes with the plugin is unclear about how loading
data from SOIL files works.

A. Kästner, M. Gogolla, B. Selic

6 Conclusion

Our ongoing work on this topic was supported by an evaluation. Both the answers
from the students, as well as the answers from the experts led to new ideas
about what areas should be improved first. A major category that became again
apparent to us is the need for good layout possibilities. Layout is an important
part of understanding diagrams and needs to be given more attention in future
work.

Usability is a crucial topic. However, as builders of an academic prototype,
it is not our primary focus. We see our task as giving triggers to commercial
or open source tool builders once the theoretical work is done. Until then, the
features may change frequently and thus we will focus on getting the features
done first and polish the usability later.

Acknowledgements

We would like to thank Nisha Desai, Khanh-Hoang Doan, Julian Stoick and
Moritz Weinig for their fruitful contributions to our work.

References

1. Brooke, J.: SUS-A Quick and Dirty Usability Scale. Usability Evaluation in In-
dustry (1996) 189–194

2. Finstad, K.: The System Usability Scale and Non-Native English Speakers. Journal
of Usability Studies 1(4) (2006) 185–188

3. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69 (2007)
27–34

4. Gogolla, M., Hilken, F., Doan, K.H.: Achieving Model Quality through Model Val-
idation, Verification and Exploration. Journal on Computer Languages, Systems
and Structures, Elsevier, NL (2017) Online 2017-12-02.

5. Gogolla, M., Hilken, F., Kästner, A.: Some Narrow and Broad Challenges in MDD.
In Seidl, M., Zschaler, S., eds.: Software Technologies: Applications and Founda-
tions, Cham, Springer International Publishing (2018) 172–177

6. GSD Lab at University of Waterloo, MODELS group at IT University of Copen-
hagen: Clafer - Lightweight Modeling Language. http://www.clafer.org

7. Kästner, A., Gogolla, M.: Additional Material: Towards Flexible Object and Class
Modeling Tools. http://www.db.informatik.uni-bremen.de/publications/

intern/o2c-casestudy-addon.pdf (2018)
8. Kästner, A., Gogolla, M., Selic, B.: From (Imperfect) Object Diagrams to (Imper-

fect) Class Diagrams. Accepted for publication: MODELS 2018 (2018)
9. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.: Example-driven

meta-model development. Software & Systems Modeling 14(4) (2015) 1323–1347
10. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A Methodology for Verifying

Refinements of Partial Models. Journal of Object Technology 14(3) (2015)
11. Sauro, J.: A practical guide to the system usability scale: Background, benchmarks

& best practices. Measuring Usability LLC (2011)
12. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website

usability. In: Usability professional association conference. Volume 1. (2004)

http://www.clafer.org
http://www.db.informatik.uni-bremen.de/publications/intern/o2c-casestudy-addon.pdf
http://www.db.informatik.uni-bremen.de/publications/intern/o2c-casestudy-addon.pdf

	Towards FlexibleObject and Class Modeling Tools:An Experience Report

