
Domain Model-Based Data Stream Validation
for Internet of Things Applications

Simon Pizonka
Humboldt-Universität zu Berlin

Berlin, Germany
simon.pizonka@hu-berlin.de

Timo Kehrer
Humboldt-Universität zu Berlin

Berlin, Germany
timo.kehrer@informatik.hu-berlin.de

Matthias Weidlich
Humboldt-Universität zu Berlin

Berlin, Germany
matthias.weidlich@hu-berlin.de

ABSTRACT
The Internet of Things (IoT) has become ubiquitous, connecting an
ever increasing amount of devices, many of which are online 24/7
and send data continuously. The quality of these data plays a pivotal
role for many IoT applications, which demands for continuous
monitoring and validation of streaming data in order to spot and
react to potential errors. Yet, implementing such validation facilities
requires a deep understanding of the processed data. IoT developers
are often bothered with technical details such as the data structure
and format, which is not only tedious but also prone to errors.

In this paper, we advocate a model-based approach to this prob-
lem, deriving validation facilities from models written in the Vorto
modeling language, an emerging domain-specific modeling lan-
guage for declaratively describing basic characteristics of IoT de-
vices. We evaluate our approach and prototypical implementation
using the so-called Intel Lab Data as experimental subject.While the
experiment showcases the feasibility of our approach, we also iden-
tify limitations to be addressed in future work to fully realize our
vision of domain model-based data validation for IoT applications.

KEYWORDS
Model-driven Engineering, Internet of Things, sensor devices, stream
processing, data validation

1 INTRODUCTION
The Internet of Things (IoT) has become reality and is constantly
growing. There are several forecasts of how many IoT devices we
will have in the future. One frequently cited source is the analyst
company Gartner Inc., which expects around 20.4 billion IoT devices
by 2020 1. All these devices will be connected to the internet, many
of them will be online 24/7 and will send continuous streams of data
which need to be processed and stored. The quality of these data
plays a pivotal role for many IoT applications, which demands for
continuous monitoring and validation of streaming data in order
to spot and react to potential errors.

To date, data validation facilities are often implemented ad-hoc
and in a manual fashion. This is a tedious task, prone to errors,
which not only requires expert knowledge in the respective appli-
cation domain, but also a deep understanding of various technical
details, such as the format and structure of the processed data, how
to plug-in the validation routines into a suitable stream processing
framework, etc. Approaches towards more automated data valida-
tion solutions have started to be developed, yet, are still in their
infancy. One common idea is to detect anomalies in data streams
by using a learning approach where a statistical reference model is

1http://www.gartner.com/newsroom/id/3598917

created based on historical data representing normal behavior, e.g.,
as presented in [21].

In this paper, we propose a complementary approach to data
stream validation for IoT applications, in which validation rules
are derived from pre-defined domain models which are being inter-
preted in a stream processing framework at run-time. Following ba-
sic principles of Model-Driven Engineering (MDE) [2], our goal is to
specify device properties in a high-level and platform-independent
fashion, while the validation itself is achieved in a fully automatic
way without requiring the need for manual development efforts on
the technical level. We present a reference implementation of our
approach, referred to as VortoFlow, in which IoT device informa-
tion is modeled using the Vorto DSL2, an emerging domain-specific
modeling language for declaratively describing basic characteris-
tics of IoT devices, and these device models are interpreted within
Apache Beam3, serving as an abstraction layer over a set of widely
used stream processing frameworks. We evaluate our approach and
prototypical implementation using the so-called Intel Lab Data [13]
as experimental subject.

While the experiment showcases the feasibility of our approach,
we also identify limitations which need to be addressed in future
work in order to fully realize our vision of domain model-based
data validation for IoT applications. However, we believe that the
automated derivation of data validation facilities from domain mod-
els is another consequent step in leveraging MDE principles for the
development of IoT applications [3, 4, 14].

The remainder of the paper is structured as follows. Section 2
introduces a running example which motivates our approach, an
overview of which is presented in Section 3 and whose applicability
is evaluated in Section 4. Related work will be studied in Section 5,
before we conclude and outline future work in Section 6.

2 MOTIVATING EXAMPLE
With the IoT, many objects of our daily life get connected and
controllable via the internet.Wewould like to pick-up here a kitchen
blender serving as running example. Traditionally, a kitchen blender
has a physical interface, comprising a rotary knob to turn on and
off the device and to control its speed, and additional buttons to
enable advanced features, e.g., for crushing ice cubes or preparing
smoothies. Now, imagine there is a mobile application to monitor
the kitchen blender. This application can show, e.g., whether the
blender is active, the rotation speed, and which of the advanced
features are enabled.

The kitchen blender periodically sends messages comprising
variousmeta-data (e.g., a timestamp) as well as information about its
2https://www.eclipse.org/vorto/
3https://beam.apache.org/

http://www.gartner.com/newsroom/id/3598917
https://www.eclipse.org/vorto/
https://beam.apache.org/


MDE4IoT’18, October 2018, Copenhagen, Denmark Simon Pizonka, Timo Kehrer, and Matthias Weidlich

1 @ProcessElement
2 public void processElement(ProcessContext c) {
3 String entry = "";
4 try {
5 entry = c.element();
6 String [] elms = entry.split(";");
7 // parse values
8 int rotations = Integer.parseInt(elms[0]);
9 long runTime = Long.parseLong(elms[1]);
10 Date dateTime = dateTimeFormat.parse(elms[2]);
11 // new data structure
12 ObjectNode root = mapper.createObjectNode();
13 root.put("rotations", rotations);
14 root.put("runtime", runTime);
15 root.put("datetime", dateTimeFmt.format(dateTime));
16 // output
17 c.output(dataOK, mapper.writeValueAsString(root));
18
19 } catch (Exception e) {
20 LOG.error("Processing failed for: " + entry, e);
21 c.output(dataError, entry);
22 }
23 }

Listing 1: Apache Beam user-defined function implement-
ing a message data conversion.

current state (activity, rotation speed etc.). Messages are transmitted
in a device-specific message format. In our example, in a comma-
separated string encoding in which single values are separated by
a semicolon. Each value represents a dedicated part of the message,
depending on its position. A recurring problem is to convert such
a native message format into some other data structure, e.g., a
structured JSON object with is better suited for further processing
in the cloud. Here, we use Apache Beam as a software abstraction
layer over a concrete stream processing engine. Our exemplary
data transformation of incoming messages may be plugged-in into
Apache Beam by providing a so-called user-defined function, a Java
implementation of which is shown in Listing 1. As we can see in
lines 8 to 10, dedicated data values may be accessed via their fixed
position within the comma-separated message string, while the
type-specific parsing of values is delegated to built-in Java functions.
If parsing of an input value fails, the parsing exception is caught
and the message is marked as invalid (lines 19 to 21). Otherwise,
a simple JSON object representing the message is constructed in
lines 12 to 15.

In addition to the pure syntactic validation of the message string,
we would now like to progress towards a more semantic data val-
idation by incorporating domain knowledge. For example, from
the data sheet of the kitchen blender, we know that it has has a
maximum rotation speed of 12.000 rounds per minute, which means
that the value range for rotation speed is between 0 and 12.000.
Listing 2 shows the code we need to add to validate the value range
of the rotation property. The code snippet is to be inserted after
parsing the input values and before creating the JSON object. This
additional code is required for each property to validate the value
range. Typically this code is handwritten. Similar checks may be
added for other properties of the blender.

As we can see, even for our small example, developers of IoT
applications are typically confronted with multiple technical details
such as message protocols, data formats, etc. Moreover, a lot of

1 if(rotations < 0) {
2 throw new
3 MinConstraintViolation("Rotations < 0");
4 }
5 else if(rotations > 12000) {
6 throw new
7 MaxConstraintViolation("Rotations > 12000");
8 }

Listing 2: Implementation of additional check routines vali-
dating the value range of the rotation property.

repetitive yet very schematic code needs to be produced in order
to implement data validation facilities such as the rather simple
checks used in our running example. Finally, the hand-crafted vali-
dation routines are highly technology-specific and cannot be easily
transferred to other platforms and frameworks.

3 APPROACH AND PROTOTYPICAL
IMPLEMENTATION

In this section, we present our approach and prototypical imple-
mentation to combining a domain model with a stream process-
ing system in order to validate data streams in IoT applications.
Specifically, as illustrated in Section 3.1, we use the Vorto DSL to
declaratively describe the capabilities of IoT devices, which includes
the platform-independent specification of message structures and
further data integrity constraints such as the measurement range
of a sensor device. Such a model can be used in a stream process-
ing system to validate incoming data streams. To easily adapt to
multiple stream processing systems, we use Apache Beam as an ab-
straction layer over several standard stream processing engines for
that purpose. An overview of our integration with Vorto, referred
to as VortoFlow, is presented in Section 3.2.

3.1 Device Information Modeling in Vorto
The Vorto project, which serves as a basis for our approach and
prototypical implementation, aims at achieving interoperability
among IoT device manufacturers, platform providers and applica-
tion developers through the generation of platform adapters (aka.
stubs) from domain models. Therefore, Vorto provides a high-level
domain-specific modeling language, the Vorto DSL, to describe
the functionality and characteristics of IoT devices in terms of so-
called Information Models. An information model contains one or
multiple Function Blocks. These function blocks are structured into
five Sections. The Configuration section defines read- and writable
properties to configure a device, while the Status, Fault and Events
sections define readable properties that define the device’s current
status, fault states, and publishable messages, respectively. Proper-
ties are typed, and a type may be a primitive type or a complex type.
The latter can contain further complex types, primitive types and
enumerations. Finally, the Operations section defines operations
that can be invoked on the device from, e.g., external applications.

Listing 3 shows a function block describing the kitchen blender
of our running example. In the event section (lines 14 to 20), we
declaratively describe the structure of a message called speed
which is periodically published by the device. In contains the same
properties (rotations, runTime and dateTime) as used in



Domain Model-Based Data Stream Validation for IoT Applications MDE4IoT’18, October 2018, Copenhagen, Denmark

1 namespace de.hu_berlin.blender
2 version 1.0.0
3 displayname "Blender Function Block"
4 functionblock Blender {
5 configuration {
6 mandatory firmwareVersion as int
7 }
8 status {
9 mandatory speed as int <MIN 0, MAX 100>
10 mandatory powerOn as boolean
11 optional iceCrushActive as boolean
12 optional smoothieActive as boolean
13 }
14 events {
15 speed {
16 mandatory rotations as int <MIN 0, MAX 12000>
17 mandatory runTime as long <MIN 0>
18 optional dateTime as dateTime
19 }
20 }
21 operations {
22 mandatory updateFirmware()
23 }
24 }

Listing 3: Vorto informationmodel describing the character-
istics of a kitchen blender.

our manual implementation in Section 2. However, note that we
can now use the MIN and MAX constraints of the Vorto DSL to
define the value range of the rotations property.

3.2 Data Stream Validation through Model
Interpretation in Apache Beam

Figure 1 illustrates how a Vortomodel can be used in an IoT scenario.
Specific code generators, collectively referred to as Vorto Generator
in Figure 1, enable the generation of platform adapters supporting
communication and message exchange between components on
different platforms. Receiving the measurements and readings from
sensor devices, the platform adapter is capable of transforming
the incoming data to a format which the IoT platform can process.
In our prototypical implementation, device-specific messages are
converted into a structured JSON object, which is passed to the IoT
platform running in the cloud. The platform receives the incoming
data stream and forwards it for data validation which, in our case,
takes place in Apache Beam on some concrete stream processing
engine. The validation itself is performed in a fully automated way
by the Data Validation component contributed by VortoFlow. The
validation rules which are to be executed on the data stream are
obtained from the domain model. If the validation fails, the message
is marked and equipped with details about the validation error.

CloudIoT Device

Model

describes 
capabilities, 
restrictions 
e.g. min, max 

Platform 
Adapter

Vorto Generator

generates

IoT Platform

uses 
to validate
data

data

uses to
generate code

Sensors Data validation ...

Figure 1: Using VortoFlow in an IoT pipeline.

Technically, the realization of VortoFlow is based on the follow-
ing design decisions. First, instead of generating data validation
components from domain models, we choose an interpretative ap-
proach in which a generic data validation component interprets
the domain model at run-time. This enables a flexible deployment
process when the domain model changes. Second, this generic data
validation component is implemented as a Java library which can
be included in an Apache Beam project. The idea is that, besides
model validation, further processing steps can be included in the
final project. This is resource-efficient because the messages are al-
ready loaded. Finally, the current processing function in VortoFlow
is stateless, and thus can be included without much effort.

The implementation of the generic data validation component
is rather straightforward. To date, VortoFlow supports syntactical
conformance checking w.r.t. the message structure defined by the
domain model, and to check value ranges constrained by lower and
upper bounds as the one used in our running example. Furthermore,
due to the stateless functioning of VortoFlow, only a single message
is processed at the same time. Please note that, as positive side-
effect of this simplicity, VortoFlow can be operated in stream and
batch mode. While the classical use case is to process a stream of
incoming real-time data and to give instant feedback, VortoFlow
also supports the validation of existing data. This can be helpful
for multiple reasons. First of all, data that already exists can be
validated and a Vorto model can be created afterwards. Secondly, it
allows the user to re-evaluate data if the model has changed.

4 EVALUATION
We evaluate the applicability of our approach and prototypical
implementation with respect to two research questions:

• RQ.1 (Error Detection): Is it possible in principle to find
errors in real-world IoT streaming data using our model-
based validation approach?

• RQ.2 (Scalability): Does the validation by model interpre-
tation scale up to realistic IoT applications, which process
streaming data of high volume and veracity?

4.1 Experimental Subject and Setup
Intel Lab Data. In the Intel Berkeley Research Lab, 54 Mica2Dot

Mote4 boards equipped with weather boards were deployed and
operated from February 28 to April 5 2004, measuring the tem-
perature, humidity and light through environment sensors [13].
The collected dataset contains several obvious errors which makes

4 https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2dot.pdf



MDE4IoT’18, October 2018, Copenhagen, Denmark Simon Pizonka, Timo Kehrer, and Matthias Weidlich

1 functionblock MICA2DOTWeatherSensor {
2 status {
3 // yyyy-mm-dd
4 mandatory date as string
5 <REGEX "[0-9]{4}-[0-9]{2}-[0-9]{2}">
6 // hh:mm:ss.xxxxxx
7 mandatory time as string
8 <REGEX "[0-9]{2}:[0-9]{2}:[0-9]{2}.[0-9]{1,6}">
9 mandatory epoch as int <MIN 0>
10 mandatory moteid as int <MIN 1, MAX 54>
11 mandatory temperature as float
12 <MIN -40, MAX 123.8, NULLABLE true>
13 mandatory humidity as float
14 <MIN 0, MAX 100, NULLABLE true>
15 mandatory light as float
16 <MIN 0, MAX 1847.36, NULLABLE true>
17 mandatory voltage as float
18 <MIN 0, MAX 3.2, NULLABLE true>
19 }
20 }

Listing 4: Information model: Mica2Dot weather board.

it an ideal experimental subject for our study. To validate the In-
tel dataset with VortoFlow, we developed a domain model of the
weather board using the Vorto DSL, and a test program processing
the dataset in Apache Beam.

DomainModel. The domainmodel of the weather board is shown
in Listing 4, its properties are described in the Function Block’s sta-
tus section. Here, we used domain knowledge such as the provided
sensor data sheets [15] to derive the respective boundaries. For ex-
ample, the temperature and humidity sensor have a measurement
range from -40°C to 123.8°C and 0% to 100%, respectively.

Test Program. The test program comprises the processing pipeline
shown in Figure 2. First, the Intel Lab dataset is loaded as a ZIP file
from a Google Cloud Storage Bucket5. The file is extracted into a
CSV file being processed line by line, each line represents a message
which is to be validated. Therefore, each line of the CSV input is
transformed to a JSON object which is compatible with our Vorto
domain model of the weather board. The JSON object is passed to
the generic validation function of VortoFlow and validated w.r.t.
the constraints defined by the domain model. All messages which
contain an error are written to a text file on a Google Cloud Storage
Bucket. The experiments are run on Google Cloud Dataflow6 and
using the latest version of the Apache Beam SDK (2.4.0) for Java.

Load Transform Validate Write

Figure 2: Apache Beam pipeline for processing the Intel
dataset used as experimental subject.

4.2 Results
RQ.1 (Error Detection). On the one hand, when validating the

dataset, multiple violations of the humidity constraints were de-
tected. Figure 3 shows an example of such a violation. Here, starting

5https://cloud.google.com/storage/docs/json_api/v1/buckets
6https://cloud.google.com/dataflow/

at 26th March 2004 00:30:05, the humidity dropped below zero, the
respective values are marked by the dotted line. These are val-
ues which violate the MIN constraint of the humidity property
defined by our domain model.

On the other hand, some errors passed the validation undetected.
For instance, when considering the graph in Figure 4 depicting
temperature values recorded by one of the temperature sensors, it
is obvious that there is something wrong with the data. However,
the exceptional increase in the temperature was not spotted as an
error by VortoFlow since all values are still in the valid range of
[−40, 123.8] as defined by the weather board model.

Nonetheless, the first example shows that the general approach
works and that errors can be detected in principle, which lets us
formulate a positive answer for RQ.1.

RQ.2 (Scalability). Table 1 lists the execution times of three inde-
pendent runs of the pipeline shown in Figure 2 for processing the
Intel dataset. For each step, the wall-clock time is given along with
the average over all runs. The wall time represents the approximate
time taken from initialization to termination. There are multiple
reasons why the results are varying from run to run. The read and
write tasks require the system to access the network. Here, the

2004-03-02 2004-03-09 2004-03-16 2004-03-23 2004-03-30
Time

0

10

20

30

40

50

%

humidity - moteid 1
ok
error

Figure 3: Errors in humidity readings (Mote with id 1).

2004-03-02 2004-03-09 2004-03-16 2004-03-23 2004-03-30
Time

20

40

60

80

100

120

°C

temperature - moteid 1

ok

Figure 4: Temperature readings (Mote with id 1).

https://cloud.google.com/storage/docs/json_api/v1/buckets
https://cloud.google.com/dataflow/


Domain Model-Based Data Stream Validation for IoT Applications MDE4IoT’18, October 2018, Copenhagen, Denmark

Read Transform Validate Write

Run 1 19 sec. 26 sec. 1 min. 31 sec. 12 sec.
Run 2 17 sec. 24 sec. 1 min. 14 sec. 10 sec.
Run 3 14 sec. 26 sec. 1 min. 22 sec. 10 sec.

Avg.: ~17 sec. ~25 sec. ~1 min. 22 sec. ~11 sec.

Table 1: Execution times of three independent runs of pro-
cessing the Intel Lab dataset with VortoFlow running on
Google Cloud Dataflow.

available bandwidth may vary. Furthermore, the processing of the
data requires memory and CPU time, which may be affected by the
fact that the hardware is potentially shared with other users.

Although VortoFlow is not optimized for performance at the
moment, the experiment with the Intel dataset shows that the vali-
dation can be done in a reasonable time. As expected, the validation
step needs most of the time with around 1 min 22 sec, about three
times as long as reading and writing the dataset, which we consider
to be acceptable. The dataset contains 2,313,682 elements which
means, per run, around 28,216 messages were validated per second.
Thus, RQ.2 can be answered positively as well.

4.3 Discussion
Using the Vorto DSL, it was possible to create a simple yet con-
cise domain model for the considered domain of our experimental
subject. This model, in turn, could be used in VortoFlow to detect
elements that violate the constraints defined by the domain model.
Using a model-driven approach saved us from writing plenty of
repetitive code compared to a manual implementation of the same
data validation facilities.

However, as indicated by the second example, checking the range
of values can be only seen as a first indication for errors. Not very
surprisingly, not all the errors comprised by the Intel Lab dataset
could be detected using VortoFlow. Therefore, the expressiveness of
the Vorto DSL needs to be extended by further kinds of constraints
which then need to be checked by the generic validation compo-
nent. A starting point for inspiration are classical data description
languages. JSON-Schema, for instance, has many more features to
validate a JSON document compared to the Vorto DSL [20]. More-
over, to address the detection of data errors, outliers and anomalies
over time, like the exceptional increase of the temperature value
shown in Figure 4, the current stateless processing of single mes-
sages is no longer appropriate.

From a technical point of view, there is much room for improve-
ment w.r.t. optimizing the performance of our prototypical imple-
mentation. The internal structure is not optimized for a quick ac-
cess of all property values. For example, each time a validation of a
REGEX constraint is executed, the regular expression is recompiled.
A better approach would be to cache the compiled expressions.

5 RELATEDWORK
In this section, we review related work from two different per-
spectives. First, in Section 5.1, we will have a look at approaches
leveraging MDE for the development of IoT applications, before

Section 5.2 gives an overview of the state-of-the-art in the field of
data stream validation.

5.1 Model-Driven Engineering for the IoT
Both industry and academia have recognized the need for research
on a consolidated set of best practices that will guide developers
through the manifold challenges of software engineering for the
IoT [11]. Model-driven Engineering has been mentioned as one of
the key paradigms that bear the potential to tackle these challenges.

One of the predominant challenges addressed by adopting MDE
principles are distribution and heterogeneity in the IoT. An example
for this is the ThingML (Internet of Things Modeling Language)
approach [8, 14]. It supports the modeling of IoT applications from
different viewpoints (from the architectural level to the behavior
of individual devices) through a modeling language which com-
bines well-established visual modeling constructs (such as state
charts and component diagrams) and an imperative yet platform-
independent action language. The generation of platform-specific
code and adapters is supported through a set of readily available yet
customizable code generators for popular programming languages
and open IoT platforms (e.g., Arduino, Raspberry Pi, Intel Edison).
As mentioned, the Vorto project follows a similar motivation and
goal. The Vorto DSL has been used, e.g., to specify manufacturer-
independent abstraction layers describing the functions and proper-
ties of vehicles on different levels of granularity [12, 19].We selected
Vorto as a technological basis for our work since it is actively de-
veloped, maintained and continuously evolved (cf. commit logs on
GitHub7. Moreover, Vorto is supported as an integral part of the
Bosch IoT Suite8 and based on the widely used Eclipse Modeling9
technology stack.

Besides heterogeneity and distribution, other values supported
by MDE principles such as separation of concerns for collaborative
development, automation for enabling self-adaptation at run-time,
or reusability of development artifacts have been addressed, e.g.,
in [4]. More recently, the same group of authors has put a specific
focus on the engineering of mission-critical IoT systems [3]. These
systems expose further challenges w.r.t. dependability requirements
such as reliability, safety and security which may be tackled by
exploiting models for the sake of verification.

A domain-specific MDE framework that targets IoT-based man-
ufacturing systems in an Industry 4.0 context has been presented
in [17]. Following other approaches to MDE in this domain (see, e.g.,
the research roadmap presented in [18]), the methodology exploits
the UML profiling mechanism [9] to tailor a set of popular UML
diagrams towards the specific needs of manufacturing engineers.

However, none of the existing approaches to leveraging MDE
for the development of IoT applications exploits domain models for
the automated derivation of data stream validation facilities.

5.2 Data Stream Validation
Aiming at scalability of stream validation, it has been suggested
to rely on concepts of data stream processing [5]. In that case,
languages for data stream processing enable the formalization of

7https://github.com/eclipse/vorto
8https://www.bosch-iot-suite.com
9https://www.eclipse.org/modeling

https://github.com/eclipse/vorto
https://www.bosch-iot-suite.com
https://www.eclipse.org/modeling


MDE4IoT’18, October 2018, Copenhagen, Denmark Simon Pizonka, Timo Kehrer, and Matthias Weidlich

validation requirements using a well-defined set of streaming oper-
ators, including stateless ones such as filters and transformations,
as well as stateful operators, e.g., to detect sequential patterns. Data
stream management systems then enable the distributed execution
of these operators in a compute cluster [6].

The application of these concepts has been illustrated in SVALI
(Stream VALIdator) [21], a system that supports two data stream
validation modes: In a model-and-validate mode, users directly for-
malize validation requirements as a function over streaming data,
which is then continuously evaluated. In a learn-and-validate mode,
a statistical reference model is learned from samples of normal
behavior, which is then used as basis for validation. Either way,
validation requirements are defined on the technical level, not con-
nected to conceptual models of the application domain.

In a broader context, a plethora of techniques for the detection of
anomalies in data streams has been presented in recent years. They
have in common that they assess the characteristics of a stream
to detect data that deviate significantly from expected values and,
hence, can be thought of as a continuous variant of traditional
outlier detection. Common techniques for anomaly detection in
data streams are distance-based [1, 7, 10]. Here, a stream element
is considered abnormal, if it is far from a pre-defined number of
neighboring streaming elements according to some distance func-
tion. Moreover, anomaly detection may also exploit the ideas of
density-based clustering to flag abnormal stream elements [16] or
be based on the angles of data elements in a high-dimensional value
space [22]. However, all such techniques characterize anomalies by
means of a mathematical model over streaming data and are, there-
fore, completely disconnected from domain models that describe
data sources and the context of a specific IoT application.

6 CONCLUSION
In this paper, we demonstrated how MDE principles can be em-
ployed in the development of IoT applications. Specifically, we
focused on the question of how to validate data streams emitted
by IoT sources through a model-driven approach. We proposed
VortoFlow, which builds upon the Vorto DSL for the specification
of IoT devices. It enables users to capture validity requirements in
terms of value ranges as part of an information model. This mod-
els then serves as the basis for online validation of data streams:
A generic data validation component, prototypically realized in
Apache Beam, interprets the model at run-time and flags invalid
data accordingly. We demonstrated the general feasibility and ap-
plicability of VortoFlow using the case of a weather board.

In order to fully exploit the potential of model-driven validation
of data streams, we intend to extend VortoFlow to support the spec-
ification of more expressive validity requirements, along several
dimensions. First, the temporal context of data stream elements may
be worth to consider, e.g., by validating a sliding average of data
stream values over a 1 minute window. Second, information models
are specified per device, whereas the Vorto DSL currently does
not support the specification of relations between the models of
different devices. Enabling the definition of such relations, however,
would be useful to capture validity requirements in terms of causal
relations of data produced by different devices (e.g., activation of
an electric device should be correlated with load measurements at

a smart meter). Third, constraint languages commonly adopted in
MDE, such as OCL, provide another angle to increase expressive-
ness of information models w.r.t. to validity requirements.

REFERENCES
[1] Fabrizio Angiulli and Fabio Fassetti. 2010. Distance-based outlier queries in data

streams: the novel task and algorithms. Data Min. Knowl. Discov. 20, 2 (2010),
290–324.

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-driven software
engineering in practice. Synthesis Lectures on Software Engineering 1, 1 (2012),
1–182.

[3] Federico Ciccozzi, Ivica Crnkovic, Davide Di Ruscio, Ivano Malavolta, Patrizio
Pelliccione, and Romina Spalazzese. 2017. Model-driven engineering for mission-
critical iot systems. IEEE Software 34, 1 (2017), 46–53.

[4] Federico Ciccozzi and Romina Spalazzese. 2016. MDE4IoT: supporting the in-
ternet of things with model-driven engineering. In International Symposium on
Intelligent and Distributed Computing. Springer, 67–76.

[5] Gianpaolo Cugola andAlessandroMargara. 2012. Processing flows of information:
From data stream to complex event processing. ACM Comput. Surv. 44, 3 (2012),
15:1–15:62.

[6] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2016. Data Stream
Management: Processing High-Speed Data Streams. Springer.

[7] Dimitrios Georgiadis, Maria Kontaki, Anastasios Gounaris, Apostolos N. Pa-
padopoulos, Kostas Tsichlas, and Yannis Manolopoulos. 2013. Continuous outlier
detection in data streams: an extensible framework and state-of-the-art algo-
rithms. In Proceedings of the Intl. Conference on Management of Data. 1061–1064.

[8] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. 2016. Thingml:
a language and code generation framework for heterogeneous targets. In Proceed-
ings of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems. ACM, 125–135.

[9] Timo Kehrer, Michaela Rindt, Pit Pietsch, and Udo Kelter. 2013. Generating
Edit Operations for Profiled UML Models. In ME@MoDELS (CEUR Workshop
Proceedings), Vol. 1090. CEUR-WS.org, 30–39.

[10] Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas Tsich-
las, and Yannis Manolopoulos. 2011. Continuous monitoring of distance-based
outliers over data streams. In Proceedings of the 27th International Conference on
Data Engineering. 135–146.

[11] Xabier Larrucea, Annie Combelles, John Favaro, and Kunal Taneja. 2017. Software
engineering for the internet of things. IEEE Software 34, 1 (2017), 24–28.

[12] Jeroen Laverman, Dennis Grewe, Olaf Weinmann, Marco Wagner, and Sebastian
Schildt. 2016. Integrating Vehicular Data into Smart Home IoT Systems Using
Eclipse Vorto. In IEEE 84th Vehicular Technology Conference. 1–5.

[13] Samuel Madden et al. 2004. Intel Lab Data. http://db.csail.mit.edu/labdata/
labdata.html

[14] Brice Morin, Nicolas Harrand, and Franck Fleurey. 2017. Model-based software
engineering to tame the iot jungle. IEEE Software 34, 1 (2017), 30–36.

[15] Sensirion Inc. 2011. Datasheet SHT1x (SHT10, SHT11, SHT15) Humidity
and Temperature Sensor IC. https://www.sensirion.com/fileadmin/user_
upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_
Humidity_Sensors_SHT1x_Datasheet.pdf

[16] Sharmila Subramaniam, Themis Palpanas, Dimitris Papadopoulos, Vana Kaloger-
aki, and Dimitrios Gunopulos. 2006. Online Outlier Detection in Sensor Data
Using Non-Parametric Models. In Proceedings of the 32nd International Conference
on Very Large Data Bases. 187–198.

[17] Kleanthis Thramboulidis and Foivos Christoulakis. 2016. UML4IoT: A UML-based
approach to exploit IoT in cyber-physical manufacturing systems. Computers in
Industry 82 (2016), 259–272.

[18] Birgit Vogel-Heuser, Stefan Feldmann, Jens Folmer, Jan Ladiges, Alexander Fay,
Sascha Lity, Matthias Tichy, Matthias Kowal, Ina Schaefer, Christopher Haubeck,
et al. 2015. Selected challenges of software evolution for automated production
systems. In 13th IEEE International Conference on Industrial Informatics (INDIN).
IEEE, 314–321.

[19] Marco Wagner, Jeroen Laverman, Dennis Grewe, and Sebastian Schildt. 2016.
Introducing a harmonized and generic cross-platform interface between a Vehicle
and the Cloud. In 17th IEEE International Symposium on A World of Wireless,
Mobile and Multimedia Networks. 1–6.

[20] Austin Wright, Henry Andrews, and Geraint Luff. 2018. JSON Schema Validation:
A Vocabulary for Structural Validation of JSON. Working Draft. IETF Secretariat.
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

[21] Cheng Xu, Daniel Wedlund, Martin Helgoson, and Tore Risch. 2013. Model-based
validation of streaming data: (industry article). In The 7th ACM International
Conference on Distributed Event-Based Systems. 107–114.

[22] Hao Ye, Hiroyuki Kitagawa, and Jun Xiao. 2015. Continuous Angle-based Out-
lier Detection on High-dimensional Data Streams. In Proceedings of the 19th
International Database Engineering & Applications Symposium. 162–167.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_Humidity_Sensors_SHT1x_Datasheet.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_Humidity_Sensors_SHT1x_Datasheet.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_Humidity_Sensors_SHT1x_Datasheet.pdf
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach and Prototypical Implementation
	3.1 Device Information Modeling in Vorto
	3.2 Data Stream Validation through Model Interpretation in Apache Beam

	4 Evaluation
	4.1 Experimental Subject and Setup
	4.2 Results
	4.3 Discussion

	5 Related Work
	5.1 Model-Driven Engineering for the IoT
	5.2 Data Stream Validation

	6 Conclusion
	References

