
A study design template for identifying usability
issues in graphical modeling tools

Jakob Pietron1, Alexander Raschke1, Michael Stegmaier1, Matthias Tichy1,
and Enrico Rukzio2

1 Institute of Software Engineering and Programming Languages
2 Institute of Media Informatics,

Ulm University, 89081 Ulm, Germany
{jakob.pietron, alexander.raschke, michael-1.stegmaier, matthias.tichy,

enrico.rukzio}@uni-ulm.de

Abstract. Model-driven engineering aims at increasing the productiv-
ity of software engineering and the quality of the software. These positive
results have been confirmed in several empirical studies. However, those
studies also report that usability of model-driven engineering tools is
generally considered to be poor. This is also the prevalent opinion on us-
ability expressed in discussions in academica as well as in our collabora-
tions with practitioners. Unfortunately, there are scarcely any empirical
studies on identifying usability issues nor papers reporting on systemat-
ically evaluated usability improvements in model-driven engineering. In
this paper, we present a study design template for identifying usability
issues specifically in graphical editors. This template is grounded in us-
ability research as well as empirical research methods. We illustrate the
proposed study design on the example of identifying usability issues in
a graphical editor for developing state machines.

Keywords: Usability · Graphical Modeling Tools · Model-driven Engi-
neering · Study Design.

1 Motivation & Problem Statement

The abstraction introduced by model-driven engineering (MDE) aims for build-
ing complex systems with high quality in a shorter time. Unfortunately, MDE is
still not widely used in industry due to several drawbacks [8]. Condori-Fernández
et al. [10] even conclude that most of these drawbacks share the same problem:
a lack of usability in the MDE tools. It seems that MDE tool developers are
focused on providing frameworks that make it easy to develop domain-specific
languages while end-user usability seems to be neglected.

A common argument for less focus on usability is that these tools are only
used by experts. This aspect should not count because better usability can also
improve the efficiency of experts.

Another problem is that common usability guidelines are not easy to apply,
since MDE tools are more than just a means of drawing models. MDE tools



should support an analyst in developing a system [21]. Therefore, our research
focus is on analyzing and improving the usability of MDE tools.

Before the usability of MDE tools can be improved, the actual usability
issues must be identified. In this paper, we propose a study design template to
systematically evaluate the usability of graphical modeling tools. The aim of this
study design template is to identify deficits in usability by generating qualitative
data instead of quantitative data. While quantitative data, as collected by e. g.
Condori-Fernández et al. [10], can indicate problems, make them measurable and
enable the comparison of solutions, the actual problems are not identified.

Since we are interested in the real causes of poor usability, we propose a
qualitative study design. In our study design template we focus on the creation
and modification of graphical representations of models. All graphical model-
ing tools have this functionality in common whereas other functionality such as
debugging or model checking is editor and language specific. We suggest per-
forming the evaluations in terms of efficiency, effectiveness and satisfaction, the
main aspects of usability as proposed by ISO 9241-11 [13]. Our study design
template is meant to form the basis for a family of experiments as advocated by
Basili [6] and as such should enable a simple replication of collected data.

We suggest a think-aloud observation after which participants are interviewed
and asked to fill in questionnaires. The questionnaires serve to collect experience
level, demographic data, and contains questions for the calculation of the System
Usability Score (SUS) [9] and the Technology Affinity (TA-EG) [15]. To enable a
qualitative analysis of the collected data, coding techniques are used to annotate
captured screen recordings.

After discussing the related work in Section 2, we describe our study design
template in Section 3 and finally conclude this paper in Section 4.

2 Related Work

There is a lot of literature discussing good practices in conducting usability stud-
ies in general (see, e. g., [17] or the literature survey in [12]). In all this scientific
work different methods for measuring usability or identifying usability problems
are introduced and discussed. However, the composition of these methods to a
result-oriented study design is often left to the reader. As proposed by Basili
[6], especially for the repeatability of experiments guidelines or frameworks are
indispensable. In [1], for example, such a framework for measuring the usability
of websites is proposed. Similarly, [2] introduces a more general framework, but
based on very low-level interactions and therefore difficult to apply in a given
context. Moreover, both works aim at usability measurement, not at identifying
concrete usability problems.

In the field of modeling tools, which in this context also includes UML tools
or domain-specific languages (DSL), the following three different areas can be
distinguished:

The first one includes work that focuses on the usability of modeling lan-
guages themselves (for an overview, see [20]), but not the usability of the used



tools. In the study conducted by Cuenca et al. [11] similar methods are used
as we propose (SUS, observations, and questionnaires, see below), but only the
usability of (textual) DSLs is measured and not the usability of the used tools.
This also happens in [5] where the authors present ”a way to systematize the
evaluation process” of DSLs. They introduce a generic process for evaluating
DSLs as a user interface of a developer using a DSL. Poltronieri et al. go one
step further and define a more precise framework Usa-DSL [19] for this activity
in order to carry out replicated usability studies of DSLs. Both papers try to
evaluate the DSL itself, but not the (graphical) tools for working with (graphical)
DSLs as we do.

In the second area, the usability of tools is considered, but with the focus on
tool selection. For example, the work of Safdar et al. [24] is about comparing the
usability of different tools in several diagram types. Rouly et al. [23] describe a
method for understanding usability of Visual Integrated Development Environ-
ments (IDE) used by non-programmers. The considered tools are mostly used for
interactive editing of graphical models, yet not necessarily models in the sense
of MDE. The usability is measured by analyzing their interface characteristics
according to a proposed model. The main goal of this work is the comparison of
the tools’ usability in an abstract way.

The third area, which is also addressed by us, considers the usability of mod-
eling tools per se. In [7] the authors conduct an experiment to measure the
usability of six UML modeling tools. They captured the time each of the 58
participants needed to fulfill several tasks under the assumption, that ”the time
of performing tasks is one of the usability indicators”. The results were con-
firmed by an analysis with GOMS [14]. GOMS is a formal usability method that
tries to measure the usability of an interface by decomposing typical user tasks
into simple basic actions. For each task, the needed time based on estimations
per basic user action is calculated and valuated. Besides this simple time com-
parison, the authors collected participants’ comments and suggestions, but not
systematically. Interestingly, most of the reported problems obviously have not
been improved in the last 13 years.

In [10] Condori-Fernández et al. introduce an evaluation model for identify-
ing the usability of MDE tools by measuring the completeness of user performed
tasks in relation to the number of steps needed to finish them. Their framework
is defined in a very abstract way by an evaluation model and a generic process.
When applying the framework to a tool, the authors propose exemplary methods
to be used. Concrete usability problems are discovered by classification of obser-
vations against ergonomic criteria. In contrast, our proposed qualitative study
design template, which is explained in detail in the following sections, allows
usability problems to be discovered on a fine-grained level.

3 Study Design Template

Our study design template can be seen as a generic guideline for how to con-
duct a case study to identify fundamental usability-related problems of graphical



modeling tools. The study design template focuses on usability problems that
occur while users are creating and editing a graphical representation of a model
with the functionality provided by a specific modeling tool and not usability
problems that are related to a particular DSL.

Yin defines a case study as “an empirical inquiry that investigates a contem-
porary phenomenon within its real-life context” [26]. Furthermore, we can define
the type of case study more precisely: it should be an exploratory and explana-
tory single-case case study. Exploratory to identify the actual usability problems
in graphical modeling tools in general and the parts, features, and components
of an editor that are responsible for the usability problems in particular. By
investigating the reasons why these problems occur the case study additionally
becomes explanatory.

As required by Yin [26], in this section, we describe the requirements to the
objects of study (editor and graphical modeling language), how tasks should
be designed, how to find the right participants, and how to analyze the col-
lected data. For each aspect we discuss the requirements, introduce the solution
suggested by our study design template and illustrate it by an example. The
example given is based on a study we conducted to evaluate the usability of the
graphical modeling tool Yakindu Statechart Tools.

3.1 Objects of Study

The choice of the right editor for a problem discovery study depends on the used
graphical language. The chosen graphical language should offer the possibility to
define real-world tasks with different levels of complexity. The chosen language
should be well known by participants to have no negative effect on the internal
validity.

If there is no specific domain specific language (DSL) predefined, we suggest
state machines as the graphical language for our study design template; state ma-
chines are well known to students as well as developers. Therefore, participants
can be recruited from a university as well as industrial context. Participants do
not have to learn a new graphical language. State machines support a wide range
of complexity. It is possible to create very simple state machines but also very
complex ones. This makes it easy to create different kinds of tasks for the study.
Furthermore, you can choose from a wide range of different graphical modeling
editors that support state machines.

On the other hand, if the editor to be evaluated supports exactly one graph-
ical modeling language and no real users are available for participating in the
study, the participants, e.g., students, require a training for that DSL. Regard-
less of whether real users or just test users participate, for later analysis, it is
important to distinguish between problems related to the tool and problems
related to the used language.

Example The Eclipse community provides with Eclipse Modeling Frame-
work (EMF), Graphical Editing Framework (GEF), and Graphical Modeling
Framework (GMF) a rich toolbox to create graphical model-driven DSLs and



corresponding graphical tools. Many graphical tools such as Papyrus3, Graphiti4,
and Yakindu Statechart Tools5 are based on these frameworks. We choose Yakindu
as an editor based on GEF to be evaluated. We prefer Yakindu for the following
two reasons: first, it supports state machines (see above). Second, it is the tool
which focuses the most on graphical editing. It hides a lot of complexity by al-
lowing the user to manipulate and create elements directly in the graphical view.
In contrast to, e.g., Papyrus, no dialog windows must be filled in. Most inter-
actions take place inside the graphical view. This in turn supports the internal
validity of a study.

3.2 Tasks

As mentioned before, our study design template focuses on the interaction with
the graphical representation of a model which is a diagram in most cases. We
suggest to define tasks that let participants recreate a given graphically modeled
system, e.g., handed out on the printed task description, or edit and refactor
a prepared diagram by using the tool to be evaluated. A participant’s result
does not have to look exactly the same as in the task description, but it must
be functionally equivalent. Setting the task to just create a diagram similar to
the one shown on a screenshot ensures that all observed problems are related to
the editor and not influenced by a problem in understanding the task or textual
system description. Overall, this supports the internal validity.

The tasks to develop should cover a wide range of scenarios and function-
ality of the chosen graphical DSL and modeling tool. Furthermore, the tasks
should become more and more complex in order to support the users’ learning
curve [17]. On the one hand, the complexity of a task depends on the number of
objects, connections and language concepts used; on the other hand, the more
objects that need to be managed, the more it becomes difficult to keep the mod-
eled diagram readable and understandable. Therefore, the layout of the diagram
created by a participant should be readable and comprehensible. We provide a
set of rules with the intention to make the participants change a default layouted
diagram to improve its readability and comprehensibility. Some of our rules are
adopted from the work of Purchase [22]:

– Objects do not overlap

– Edges do not overlap and have a distinguishable margin in between [22]

– Prevent crossing edges [22]

– A label has a clear relation to its edge

– Prevent bends in edge’s path [22]

– All labels, names, titles, and descriptions are displayed completely without
abridging points

3 https://www.eclipse.org/papyrus/
4 https://www.eclipse.org/graphiti/
5 https://www.itemis.com/en/yakindu/state-machine/



The defined rules are a minimum set of rules that should be fulfilled by a par-
ticipant’s diagram to complete a task. This enforces users to adapt the layout of
their diagram by using the tools provided by the evaluated editor. These rules
can be extended depending on the chosen graphical modeling language and eval-
uated editor.

Example A study can consist of different state machine tasks: state machines
should be created from scratch, but also existing ones should be edited, and
refactored. The tasks should cover a wide range of state machine functionality
such as hierarchy, nested states, parallel states, transition with guards in different
levels of complexity. Simple state machines consist of only a few connected states
without any hierarchy or parallelism. Complex state machines can consist of more
than 20 states with up to 50 transitions, hierarchy and parallelism.

All participants receive a prepared Yakindu workspace (following the example
from the previous subsection), and for each task, a printed screenshot of a state
machine. This state machine has to be previously modeled by the researchers,
with the tool of which the usability is to be evaluated. All required events,
variables, and if necessary incomplete state machines are prepared a priori in
the workspace.

3.3 Participants

At best, real users of the tool can participate in a study. In most cases, however,
this will not be the case. Therefore, in this chapter we describe the requirements
that the participants must fulfill in order to meet the characteristics of the real
users as much as possible.

We assume that users of graphical modeling tools are expert users. Expert
users (in contrast to casual users) use a tool regularly for a long period of time. In
order to achieve a sufficient external validity, the recruited participants should
be at least well experienced in working with computers and software in gen-
eral, and with graphical modeling tools in particular. The graphical modeling
language must also be well known, if not, participants should complete a train-
ing beforehand. It is not required that participants have prior experience with
the specific editor to be evaluated but they should have experience with any
graphical modeling tool for at least six months to increase internal validity. To
check whether participants fulfill all requirements, the TA-EG questionnaire [15]
should be used. Additionally, in a questionnaire participants should be explicitly
asked for experience in graphical modeling tools, see following Subsection 3.4.

The TA-EG questionnaire (original German title: Technikaffintät – Elektro-
nische Geräte, translated: Technology Affinity – Electronic Devices) can be used
to measure affinity to technical devices like computers, mobile phones, or naviga-
tion systems [15]. TA-EG consists of 19 Likert-scale questions grouped into the
four categories enthusiasm, competence, negative attitudes, and positive attitudes.
By using TA-EG, we assess the characteristics of our participants regarding each
category. In this way, we can ensure that the participants have a positive atti-
tude towards technology, which we assume corresponds to that of expert users
in the context of modeling tools.



Nielsen and Landauer [18] describe the number of participants that are re-
quired for problem discovery studies as depending on two factors. First, it de-
pends on the percentage of all usability problems that should at least be found.
Second, it should take into consideration the probability of a single problem
being found by a participant. Across eleven usability studies, Nielsen and Lan-
dauer found the average probability of a problem being found ranges from 0.16
to 0.60 with an average of 0.31. Following the authors’ formulation, to detect
90 % of all problems, we require at least nine participants with a problem de-
tection probability of 0.31 (average case). To discover 90 % of all problems with
a problem detection probability of only 0.16 (worst case), we require at least
15 participants. Additionally, we require at least one informal participant for a
pilot test to fix possible errors in the concrete study design.

3.4 Data Sources

Our study design template benefits from multiple measures that generate quali-
tative as well as quantitative data: think-aloud observation, a questionnaire, and
a semi-structured interview. The three methodologies should be conducted one
after the other as listed above.

Using several data sources limits the effects of a possible wrong interpretation
of one single data source. Triangulation can be used to increase the validity of
observed problems [26].

During the think-aloud observation the participants have to use the system
while continuously thinking out loud, and being observed by an experimenter.
Thinking out loud means that participants have to verbalize their thoughts,
describe what they actually expect and what happens instead. During an obser-
vation session, audio and video are recorded. It should be noted that users might
give false impressions or own theories of the cause of usability problems. The
experimenter should focus on what users actually do instead of what users say
they do. For example, a participant might criticize a missing button even though
the participant just has not seen it. The real problem is therefore the visibility of
the button and not its absence. Later analysis is needed to abstract the observed
problems from the participants and identify the underlying usability problems.
On the other hand, users’ comments on user interface elements, what they like
and do not like, can be useful input for later improvements [17].

Directly after finishing the think-aloud observation, participants are asked
to fill in a questionnaire. The questionnaire consists of three parts: the System
Usability Score (SUS) for measuring the usability of the evaluated tool by a
quantitative score, TA-EG questionnaire, and questions about previous experi-
ence and demographic data.

SUS [9] is a well established tool to measure usability with a quantitative
scale. SUS is used to get a first impression of the usability of the evaluated tool.
Furthermore, this score can be compared to possible improvements in the future
or other evaluated tools. Our study design contains SUS because it consists of
only ten Likert-scale questions. After a possible long lasting think-aloud obser-
vation, participants do not want to fill in an extensive usability questionnaire.



Although SUS is a short questionnaire, the resulting score, a value between 0
and 100, is meaningful and valid [4]. The numerical SUS score is not a percent-
age, despite its appearance. To interpret the numerical score, we use adjective
and grade rating scales developed by Bangor et al. [3]. Their work is based on
analysis of 1,000 SUS surveys. The average score of the examined SUS-surveys
is 68. For example, this numerical SUS score corresponds to ok on the adjective
rating scale and to D on the grade scale.

As introduced before in Subsection 3.2, the TA-EG questionnaire and asking
for prior experience are used to validate the sample against the previously defined
requirements. Beside just asking for prior experience in general, we recommend
to ask explicitly for graphical modeling tools that participants are experienced
with and for how long they already use them. This data helps to identify a
possible bias that participants might have.

Finally, a semi-structured interview should be used to explore what the users
have in mind when working with the editor and to get an understanding of inter-
esting observations during the think-aloud phase [16]. Each participant has to an-
swer pre-determined questions about the overall experience, what was good, and
what was bad when they worked with an editor. Aside from the pre-determined
questions, some of the interview questions should be based on the observations
during the think-aloud phase to get a deeper understanding of the users’ behavior
in specific situations, e.g., error situations.

Example The researcher noted a participant had problems clicking at a
specific node. In the course of the semi-structured interview, the researcher may
ask the participant to explain that situation in her or his own words, explain
the actual goal and what happened instead. The researcher could also ask for
possible improvements.

3.5 Qualitative Analysis

Our study design mainly generates qualitative data. Coding is our proposed way
to analyze and structure this data. A code is a short phrase or sentence. It is
assigned to a text phrase of the transcribed interviews or video snippet recorded
during the think-aloud observation. The code should be the essence or meaning
of the coded data [25].

As initially defined, our study design addresses discovery of problems and the
context in which these problems occur. We suggest the open coding technique to
identify problems in the collected data. Open coding breaks down the data into
first provisional, comparative codes [25]. Afterwards, we suggest to build up a
category system with the focus on affected elements and performed actions by
users. The category system should emerge from the coded data.

Example A problem is observed when a participant tries to click at a small
connection with the intention to change its position. Instead of clicking at the
connection, the participant clicks at the underlying box and moves the box
instead. One way to code the described problem might be connection (category
context) and click hit (performed action).



4 Conclusion

Although MDE has a vital research community, its ideas and results are still
not well established in the field. One reason might be the poor usability of
provided tools and/or provided frameworks to build tools. While there are several
studies that quantitatively measure the usability of MDE tools, we try to discover
concrete problems in order to work on their improvement.

In this paper, we introduce a study design template that allows for conducting
qualitative usability studies more easily. We describe the different aspects of
such a study in detail (objects, tasks, participants, data sources, and qualitative
analysis) and discuss our suggested methods.

This more abstract description is supplemented by an ongoing example in
which the usability of the GEF-based tool Yakindu was examined during the
creation or modification of statecharts. We have actually conducted this study
and are currently working to fully evaluate the results.

References

1. Al-Wabil, A., Al-Khalifa, H.: A framework for integrating usability evaluations
methods: The Mawhiba web portal case study. In: 2009 International Conference
on the Current Trends in Information Technology (CTIT). pp. 1–6 (Dec 2009)

2. Andre, T.S., Hartson, H.R., Belz, S.M., McCreary, F.A.: The user action frame-
work: a reliable foundation for usability engineering support tools. International
Journal of Human-Computer Studies 54(1), 107–136 (2001)

3. Bangor, A., Kortum, P., Miller, J.: Determining What Individual SUS Scores Mean:
Adding an Adjective Rating Scale 4(3), 114–123 (2009)

4. Bangor, A., Kortum, P.T., Miller, J.T.: An Empirical Evaluation of the System
Usability Scale 24(6), 574–594 (2008)

5. Barǐsic, A., Amaral, V., Goulão, M., Barroca, B.: Evaluating the Usability of
Domain-Specific Languages. In: Software Design and Development: Concepts,
Methodologies, Tools, and Applications, pp. 2120–2141. IGI Global, Hershey, PA,
USA (2014)

6. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of exper-
iments. IEEE Transactions on Software Engineering 25(4), 456–473 (Jul 1999)

7. Bobkowska, A., Reszke, K.: Usability of UML Modeling Tools. In: Proceedings of
the 2005 Conference on Software Engineering: Evolution and Emerging Technolo-
gies. pp. 75–86. IOS Press, Amsterdam, The Netherlands (2005)

8. Bordeleau, F., Liebel, G., Raschke, A., Stieglbauer, G., Tichy, M.: Challenges
and research directions for successfully applying MBE tools in practice. In: Pro-
ceedings of MODELS 2017 Satellite Event: Workshops (ModComp, ME, EXE,
COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa, MDETools, FlexMDE, MDE-
bug), Posters, Doctoral Symposium, Educator Symposium, ACM Student Re-
search Competition, and Tools and Demonstrations. CEUR Workshop Proceed-
ings, vol. 2019, pp. 338–343. CEUR-WS.org (2017)

9. Brooke, J.: SUS: A ”quick and dirty” usability scale. In: Usability Evaluation in
Industry. Taylor and Francis (1986)

10. Condori-Fernández, N., Panach, J.I., Baars, A.I., Vos, T., Pastor, Ó.: An empirical
approach for evaluating the usability of model-driven tools. Science of Computer
Programming 78(11), 2245–2258 (2013)



11. Cuenca, F., Bergh, J.V.d., Luyten, K., Coninx, K.: A User Study for Comparing
the Programming Efficiency of Modifying Executable Multimodal Interaction De-
scriptions: A Domain-specific Language Versus Equivalent Event-callback Code.
In: Proceedings of the 6th Workshop on Evaluation and Usability of Programming
Languages and Tools. pp. 31–38. PLATEAU 2015, ACM, New York, NY, USA
(2015)

12. Hornbæk, K.: Current practice in measuring usability: Challenges to usability stud-
ies and research. International Journal of Human-Computer Studies 64(2), 79–102
(2006)

13. ISO: ISO 9241-11:1998 Ergonomic requirements for office work with visual dis-
play terminals (VDTs) – Part 11: Guidance on usability. Tech. rep., International
Organization for Standardization (1998)

14. John, B.E., Kieras, D.E.: The GOMS Family of User Interface Analysis Techniques:
Comparison and Contrast. ACM Trans. Comput.-Hum. Interact. 3(4), 320–351
(Dec 1996)

15. Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen–der
Fragebogen TA-EG. pp. 196–201. No. 8 in Der Mensch im Mittelpunkt technis-
cher Systeme (2009)

16. Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer In-
teraction. Wiley (2010)

17. Nielsen, J.: Usability Engineering. Academic Press (1993)
18. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability

problems. pp. 206–213. ACM Press (1993)
19. Poltronieri, I., Zorzo, A.F., Bernardino, M., de Borba Campos, M.: Usa-dsl: Us-

ability evaluation framework for domain-specific languages. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing. pp. 2013–2021. SAC ’18,
ACM, New York, NY, USA (2018)

20. Poltronieri Rodrigues, I., Campos, M.d.B., Zorzo, A.F.: Usability Evaluation
of Domain-Specific Languages: A Systematic Literature Review. In: Human-
Computer Interaction. User Interface Design, Development and Multimodality,
LNCS, vol. 10271, pp. 522–534. Springer (2017)

21. Post, G., Kagan, A.: User requirements for OO CASE tools. Information and Soft-
ware Technology 43(8), 509–517 (2001)

22. Purchase, H.: Which aesthetic has the greatest effect on human understanding?
In: Graph Drawing. pp. 248–261. Springer (1997)

23. Rouly, J.M., Orbeck, J.D., Syriani, E.: Usability and Suitability Survey of Features
in Visual Ides for Non-Programmers. In: Proceedings of the 5th Workshop on Eval-
uation and Usability of Programming Languages and Tools. pp. 31–42. PLATEAU
’14, ACM, New York, NY, USA (2014)

24. Safdar, S.A., Iqbal, M.Z., Khan, M.U.: Empirical Evaluation of UML Modeling
Tools–A Controlled Experiment. In: Modelling foundations and applications, Lec-
ture Notes in Computer Science, vol. 9153, pp. 33–44. Springer, Cham (2015)

25. Saldaña, J.: The Coding Manual for Qualitative Researchers. SAGE, 3rd edn.
(2016)

26. Yin, R.K.: Case Study Research: Design and Methods. SAGE, 5th edn. (2014)


