
A text model - Use your favourite M2M for M2T

Edward D. Willink

Willink Transformations Ltd, Reading, England,
ed_at_willink.me.uk

Abstract. Models provide a disciplined representation of information.
Model-to-Model (M2M) transformations convert between model struc-
tures. When a more readable representation is required, Model-to-Text
(M2T) transformations convert a model structure to a concatenation of
character sequences. We ignore the obvious conversion di�erences and
demonstrate that an unmodi�ed M2M tool can be used for M2T. We
achieve this with a standard Text model that post-processes the M2M
model output to yield formatted text.

1 Introduction

For model enthusiasts, everything is a model and every change is a model-to-
model transformation. Models are persisted in a form that is suitable for auto-
mated use, often involving XMI �les or model databases. Unfortunately, in the
real world there are many occasions where a practical representation of a model
is required. If the information is to be maintained by humans, something more
readable than XML is required. If the information is to be consumed by a tool,
such as a C compiler that has no knowledge of models, the information must be
provided in the tool-speci�c language, such as C. A model-to-text transformation
is therefore required to provide the model in the required form.

An M2T destroys models whereas an M2M preserves models; consequently
there is an orthodoxy that M2T and M2M are di�erent technologies. An M2T
language is designed around string template expressions, whereas an M2M lan-
guage is designed around model mappings. This orthodoxy is endorsed by the
Object Management Group (OMG) where M2T is speci�ed by MOFM2T [11]
and M2M by Query/View/Transformation (QVT) [13]. Acceleo [14] is the only
(partial) implementation of MOFM2T. There are a variety of correspondingly
named implementations of the QVT languages [16], [17].

In Section 2 we examine the distinctive characteristics of M2T, which we
realize using an M2M in Section 3. In Section 4 we evaluate the solution before
outlining future work in Section 5. We consider related work in Section 6 and
conclude in Section 7.

2 Is M2T necessarily distinct?

At this point I must thank Toni Siljamaki for his obstinate persistence in asking
why Eclipse QVTo couldn't be used to perform M2T [7]. My initial instinctive

reaction was to fall back on orthodoxy; OMG provide distinct speci�cations and
anyway M2M and M2T are obviously di�erent. However after some re�ection,
it is clear that the "M2" facilities such as metamodels, loading, navigation, ex-
pressions, queries and rules are the same for both M2M and M2T. Only the �nal
"2M" or "2T" need be di�erent. Requiring the use of distinct M2M and M2T
tools is not justi�able.

How might an M2M support text? Only one change and one enhancement
appear to be necessary:

� change: output to a text �le rather than model �le
� enhancement: better facilities for creating strings / character sequences

2.1 Text Output

In MOFM2T, the rules (templates) conspire to concatenate and return Strings.
M2M tools can already do this since the underlying language, typically OCL
[12], has a String type and String operations. It is just necessary to amend
the output model declaration to identify that the overall String result is to be
emitted directly as a text File, rather than encoded as an XML �le.

2.2 Text Facilities

Considering the following example output text:

The name is "computedName".

Typical M2T tools such as Acceleo or Xtend provide a forward escape to
embed a control expression within literal text.

The name is "[self.name/]". -- MOFM2T/Acceleo with escaped OCL

The name is "�this.name�". -- Xtend with escaped Java

A backwards escape may de�ne a multi-line text expression that concatenates
with its siblings and may have nested forward escapes.

'The name is "[self.name/]".' -- MOFM2T

'''The name is "�this.name�".''' -- Xtend

An OCL-based M2M without escapes may only concatenate explicitly.

'The name is "'+ self.name +'".' -- OCL

OCL provides a fairly modest String library and an overall expression eval-
uation capability that allows complex String results to be computed. No change
is therefore mandated to enable an OCL-based M2M to be used as an M2T al-
though enhanced String capabilities could well be helpful for applications with
a high proportion of literal text.

Considering the following example output with a repeated computation:

{ "firstComputedName", "secondComputedName" }

A for loop facility with optional before/pre�x, separator and after/su�x texts
is helpful. The examples below show Acceleo and then Xtend.

{ [for (p : P | somePs) separator(', ')]"[p.name/]"[/for] }

{ �FOR p : somePs SEPARATOR ', '�"�p.name�"�ENDFOR� }

An OCL-based M2M may use collect() for the content iteration, but the
separator splicing is verbose.

'{ '+ somePs->collect(p | '"'+ p.name +'"')

->iterate(s; acc : String = '' |

if acc = '' then s else acc +', '+ s endif

) +' }'

3 M2M solution

Figure 1 shows the typical components of an M2M transformation and associated
environment that we re-use for M2T. The core M2M transforms between input
and output models, each of which conforms to its corresponding metamodel,
which in turn conforms to a universal metametamodel such as Ecore. The input
model is loaded from an input �le by an XMI load facility, and the output model
is saved by a corresponding XMI save facility.

Fig. 1. M2M for models

After many years re�ection, the solution to using an M2M for M2T arose
from another longstanding problem; how can an M2M be used to perform an
XML2XML transformation?

3.1 XML2XML

The need for an XML2XML transformation arises when there is a need to ma-
nipulate some aspect of the XMI serialization of a model in a way that is not
accessible to a regular M2M. Typically there may be a need to impose some
policy on the xmi:ids that are a serialization rather than model artefact. There
is no xmi:id within the model technology space and so any solution that tries to
expose an xmi:id is messy.

Fig. 2. ATL injector and extractor for XML M2M

Bézevin [3] identi�ed distinct model, grammar and XSD technology spaces
and the early versions of ATL [15] supported XML2XML transformation through
the use of custom injectors and extractors as shown in Figure 2. ATL's weak
metamodel typing allowed the XML metamodel to remain a little vague. Unfor-
tunately these custom load and save functionalities have su�ered from bit rot
and are no longer available; XML2XML is no longer supported by ATL.

The proprietary ATL injector and extractor are not necessary when using
EMF since the variant loading and saving functionality can be encapsulated
by a custom XML Resource allowing it to be used by any M2M tool. We may
therefore use the structure shown in Figure 3.

The main di�culty in implementing this approach lies in the absence of
a good metamodel for XML. After examining a few candidates, it was clear
that none was suitable as a standard against which users could write their
XML transformations. The SAX parser [2] is the de facto standard and so the
http://www.eclipse.org/qvt/2018/XML metamodel was de�ned to closely cor-
respond to the familiar SAX parsing events; startElement() creates an Element
and starts to populate it; endElement() completes population. The model vo-
cabulary of the XML metamodel is therefore obvious to anyone familiar with
the vocabulary of the SAX parser events.

Migrating the functionality from proprietary ATL injector/extractor to EMF
Resources enables the XML technology space to be used whenever *.xmlmodel
is used as the �le extension of an input/output model. No modi�cation to tools
is required.

Fig. 3. Variant EMF loader and saver for XML Model M2M

3.2 Text Model

The same approach can be used to provide a much simpler and tool-independent
solution for using M2M for M2T. This is shown in Figure 4. The M2M transforms
to a Text output model which the Text save serializes as a conventional text �le.

Fig. 4. Use of M2M for M2T

The main challenge is to design a suitable Text metamodel.

3.3 Text Structure

Language parsers such as lex and yacc [1] and their many successors discover the
structure of source text by successively aggregating to more powerful concepts:

� 8 bit bytes in a source �le/stream
� Multi-byte characters corresponding to Unicode `letters'
� Multi-character tokens corresponding to `words'
� Multi-token rules/productions corresponding to `clauses' and `sentences'

This conversion sequence is very successful for Text-to-Model conversion but
the rules/productions are not appropriate for Model-to-Text conversion since
the details of the whitespace formatting are typically discarded once the tokens
have been identi�ed. For Model-to-Text purposes, some form of pretty printing
is necessary to make the result acceptable to a human reader. We would also like
to avoid the language-speci�c limitations of a typical Text-to-Model grammar.

Traditional M2T tools just concatenate Character Sequences and so we might
consider that their text metamodel is just a Sequence of Character. Reifying
such a metamodel for M2M usage is easy but the need to assign each character
as a distinct model element is pretty unacceptable. Perhaps in QVTo:

... -- 'The name is'

characters += object text::Character { value := ' '; };

characters += object text::Character { value := '"'; };

forEach (c : self.name.characters()) {

characters += object text::Character { value := c; };

}

characters += object text::Character { value := '"'; };

We should therefore look to some form of multi-Character model.
A signi�cant challenge for practical M2T tools is providing satisfactory inden-

tation and inter-element separation for hierarchical and iterated text structures.
The challenge arises because indentation is used within string templates both to
indent the output text and to make the control expressions readable.

For Acceleo, the con�ict between template and control characters can require
empirical iteration to get a satisfactory result. The documentation recommends
use of a separate pretty formatting pass if non-trivial formatting is needed.

The Xtend UI uses a grey background to distinguish template characters.
This is helpful but not always perfect since the grey background is omitted from
new-line characters. Empirical programming cannot always solve the problem.

3.4 Text Metamodel

With a Text metamodel, we can separate the concerns.

� The M2M transformation language statements provide a readable exposition.
� The Text Model declarations control pretty printing.

The Text metamodel shown in Figure 5 compromises a tree of StringNode
elements organized by the ordered parent/children relationship. Additional
attributes control the pretty printing performed by the Text Saver.

Fig. 5. Metamodel for Text

3.5 Text Saver

The result text is formed as the concatenation of a depth-�rst traversal of the
value of the text property of each StringNode.

The detailed formatting of groups of children is facilitated by a prefix before
the �rst, a separator between each child and a suffix after the last child.
Additionally an endText may follow the children even if there are no children.

The indent speci�es an indentation increment for this node. The cumulative
indentation of a node and its parents starts every non-empty line.

An M2M transforms to create the StringNode tree comprising the important
text segments and formatting declarations that in�uence the �nal serialization.
No characters are provided that are not directed by the StringNode.

The Text Saver is implemented by a custom EMF TextResource that replaces
the conventional XML serialization by the pretty printed text resulting from the
depth �rst tree traversal and formatting declarations.

A corresponding Text Loader is also implemented, mainly for test purposes.
The serialization during a Text Save is not fully reversible and so the correspond-
ing replacement functionality when loading is limited to identifying whitespace
indentation hierarchies and punctuation separators for matching indentations.
Any serious Text-to-Model application probably needs a more powerful approach
such as an Xtext parser [18].

4 Evaluation

The Text Model has been used in conjunction with Eclipse QVTo to generate
C, H, Lex (Flex) and Y (Bison) �les from an Ecore �le for an auto-generated
XMI loader.

No changes were required to Eclipse QVTo and only a couple of minor bug
reports were raised. Problems were easily circumvented. Overall there seemed to
be fewer problems than when using Acceleo or Xtend. All approaches share the
pleasant characteristic of M2T development that problems are clearly visualized
in the textual output. Additional debug output can provide helpful insights.

Development time was focussed on the correct content of the Flex and Bison
declarations to be generated rather than struggling with their formatting.

Execution of the M2M for text is fast. The 2000 lines of the four XMI loader
�les are generated in less than a second.

4.1 Example

The utility of this approach can be assessed by examining a very simple example
that is arti�cially elaborated to demonstrate important facilities. The target
output is the textile snippet shown in Figure 6. The snippet comprises a heading,
a blank line then a list of separated formatted elements.

Fig. 6. Target Textile Output

The Acceleo solution in Figure 7 formats the heading and blank line as lit-
eral text at the start of emitPrecedences2. The [for...]...[/for] construct
supports the formatting of p.name using a [.../] escape to access the name.
The additional separator argument de�nes the inter-text separation.

The redundant emitPrecedences1 demonstrates that declarations occur as
escapes within the surrounding text literal and the need to re-escape in order to
make a nested call.

Fig. 7. Acceleo solution to example

The Xtend solution in Figure 8 is very similar except for the guillemet rather
than square bracket escapes.

The redundant emitPreferences1 demonstrates that declarations occur as
functions within an outer control �ow allowing a direct call to a nested function.
The inner emitPrecedences2 uses the '''...''' backward escape from the outer

Fig. 8. Xtend solution to example

control to the inner text template formatting. This allows the inner template to
be indented for readability.

The new QVTo and Text Model solution is shown in Figure 9. It is a little
more verbose (or a little more modular). The inner formatting is factored out
as emitPrecedence3 that constructs a StringNode comprising just the formatted
precedence element. Since there is no string template capability, the self.name
expression needs no elaboration, but the text needs quoting and concatenation.

Fig. 9. QVTo and Text solution to example

emitPrecedences2 provides the heading as its text, and iterates emitPrece-
dences3 to de�ne the children. The separator and children StringNode elements
provide very similar capability to the for construct of Acceleo or Xtend.

The redundant emitPrecedences1 demonstrates use of the init section to by-
pass creation of a nested StringNode. The intermediate Text model instances
created by QVTo are shown in Figure 10.

Fig. 10. StringNode instances for the example

4.2 MOFM2T

The OMG issued the MOF Model to Text Transformation Language Request For
Proposal (MOFM2T RFP) in April 2007 as a follow on to the MOF 2.0 Query
/ Views / Transformations RFP (QVT RFP) which addressed only Model-to-
Model transformation. The MOFM2T RFP [9] is very clear in its intent:

This RFP calls for a language and semantics for transforming models
into text. The goal is not to create yet another language, but to use
or extend existing OMG language(s). Justi�cation must be provided for
creating yet another language.

The �nal MOFM2T submission [10] re-uses the MOF metamodel, OCL ex-
pressions and QVT query syntax. However the orthodoxy of the traditional text
templates already in use by the submitters' candidates prevailed. The submis-
sion fails to re-use any of the transformation facilities of QVT. It is hard to claim
that MOFM2T is not `yet another language'. No justi�cation is provided.

In contrast, in this paper we re-use QVTo (or QVTr or ATL or ...) unchanged
to support M2T. This was possible with just one day of development for the one-
class metamodel and its associated support.

It might seem that a fully declarative transformation language such as QVTr
for M2T could result in the output paragraphs appearing in unpredictable or-
ders? But no, if all collections are ordered, a declarative transformation result
should also be ordered; only unordered collections may yield shu�ed results.

5 Future Work

The http://www.eclipse.org/qvt/2018/TextModel metamodel and its sup-
port was made available in June 2018 as part of the Eclipse Photon release once
the Eclipse QVTd support is also installed. It may be bundled with ATL and/or
QVTo in future releases.

The current support is usable. The text model is powerful, but could be
extended. More signi�cant is the opportunity for syntax sugar to make that
power more accessible.

5.1 Splice Iterator

The inelegance of the splicing at the end of Section 2.2 may be mitigated by
adding a splice() iterator to the OCL Standard Library for ordered collections
of toString()-able elements. This could support:

'{ '+ somePs->splice(p; separator=',' | '"'+ p.name +'"') +' }'

5.2 Line Wrapping

Line wrapping is not conventionally available for M2T. Separation of information
and rendering concerns enables the Text Model saver to respect a prevailing
indentation and line-breaking policy and wrap lines accordingly. Figure 5 shows
a nonBreakingSpace property that is intended to provide a facility to control
automatic wrapping of too-long lines. Long lines are �rst broken at spaces or
tabs, then non-breaking space characters are replaced by space characters.

5.3 Declarative Pretty Printing

Tools such as Xtext have demonstrated how the addition of model assignment
annotations to an EBNF grammar can synthesize a useful parser/editor rather
than just a partial parser. No equivalent extension is available to add pretty-
printing annotations, rather Xtext supports manual programming of an inde-
pendent declarative class. TCS [4] has demonstrated that the required line-
wrap/space-before/... declarations can be added to an annotated EBNF gram-
mar. The serializer can then be autogenerated as an M2M text transformation.
A friendly editor could o�er show-assignment-annotations, and show-formatting-
annotations options to avoid redundant clutter.

5.4 String Templates

In the introduction we identi�ed a need to facilitate text synthesis. The eval-
uation in Section 4 observed that String Templates are not essential, although
they may be useful, particularly for output comprising mostly boilerplate.

A string template expression could be added to OCL, in much the same way
as it has been to Xtend, but learning from Xtend, Acceleo and MOFM2T, four
escape tokens are needed for the start and end of a forward or backward escape.
Acceleo has only 2, Xtend and MOFM2T just 3 which inhibits arbitrary nesting.
Again learning from Xtend, guillemets are very readable and so we might use:

�ocl-expression� forwards escape within literal text

�'string-template'� backwards escape - an ocl-expression

An OCL expression starting or ending with a ' can be disambiguated with
a space. Literal guillemets may be escaped.

� 'literal-text' � disambiguated ocl expression

��� ��� escaped literal guillemets

These escapes enable the core of our evaluation example from Section 4 to
nest an ocl-expression within a string-template within an ocl-expression within
a string-template within a QVTo statement.

map Pivot::ModelemitPrecedences2() : Text::StringNode {

�'

h2(#Precedences). *Precedences*

�getPrecedences(m)->splice(separator = ', ' | �'@�name�@'�)�

'�

}

An OCL evaluation of string-templates should compute the appropriate string
result. An M2M compilation may recognize that string-templates and splice()
are syntax sugar for Text Model capabilities.

5.5 Incremental and Parallel M2T

Incremental or parallel execution is di�cult in an M2M with imperative charac-
teristics such as QVTo, but very practical in a purely declarative language such
as QVTr. Therefore if QVTr is used as the M2M, an incremental execution can
mark dirty StringNode elements in the tree that can then be selectively reserial-
ized. Unfortunately incremental QVTr execution is not yet available. A parallel
execution can distribute parts of the StringNode tree to multiple proocessors
and bring the results together at the end.

6 Related Work

De�ning a really simple text model to allow an M2M transformation language
to be used for an M2T seems like a rather obvious idea. However string tem-
plate orthodoxy is so entrenched that this simple tree model seems to have been
overlooked. Consequently many tools and researchers use naive Strings and then
struggle to recover lost structure.

Ogunyomi [5] introduces user-de�ned signatures to facilitate identifying text
segments that need updating. These should be available automatically as a con-
sequence of dependency analysis in a declarative M2M.

Figure 11 shows a Feature Model for our use of M2M for M2T in the style
proposed by Rose [6].

This highlights that the mandatory forwards escaping is missing; we have
proposed an OCL extension to remedy this. In other respects, the M2M facilities

Fig. 11. Feature Model for M2M used for M2T

provide good feature coverage and additional features regarding model output.
The external text model provides for extensibility.

Tisi et all [8] add Higher Order capabilities to ATL that include an ability to
embed concrete syntax within output patterns using |[...]| reverse escaping.

7 Conclusions

We have introduced a very simple one-class metamodel that models text as a
tree of attributed character sequences.

We have shown that this metamodel separates the content and pretty printing
concerns and enables any M2M to be used without modi�cation as an M2T.

We have demonstrated the usability of this approach by using Eclipse QVTo
to generate c, h, lex and y �les from an Ecore metamodel.

We have outlined minor extensions to OCL to improve OCL-based M2M
usability for M2T.

We can therefore argue that this simple approach to M2T is more compliant
with the OMG MOFM2T RFP than the MOFM2T speci�cation.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers, Principles, Techniques and Tools, Addison
Wesley, 1986

2. Brownell, D.: SAX2, 'Reilly, 2002, ISBN 0-596-00237-8.

3. Ivanov, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. 1-6.
(2002).

4. Jouault, F., Bézivin, J., Kurtev. I.: TCS: A DSL for the speci�cation of textual
concrete syntaxes in model engineering. Model-Driven Engineering Languages and
Systems: 17th International Conference, MODELS 2014, , September 28 � October 3,
2014, Valencia, Spain. https://research.utwente.nl/en/publications/tcsa-dsl-for-the-
speci�cation-of-textual-concrete-syntaxes-in-mo

5. Ogunyomi, B., Rose, L., Kolovos, D.: User-de�ned Signatures for Source Incremental
Model-to-text Transformation. 5th International Conference, GPCE 2006, Portland,
Oregon, USA, October 22-26, 2006. http://ceur-ws.org/Vol-1331/p4.pdf

6. Rose, L., Matragkas, N., Kolovos, D., Paige, R.: A feature model for model-to-text
transformation languages. In Modeling in Software Engineering (MISE), 2012 ICSE
Workshop on (pp. 57-63). IEEE. DOI: 10.1109/MISE.2012.6226015

7. Siljamaki, T.: Additional M2T capability in QVTO. Eclipse QVTo project Bugzilla
396543. December, 2012. https://bugs.eclipse.org/396543

8. Tisi M., Cabot J., Jouault F.: Improving Higher-Order Transformations Support
in ATL. In: Tratt L., Gogolla M. (eds) Theory and Practice of Model Transforma-
tions. ICMT 2010. Lecture Notes in Computer Science, vol 6142. Springer, Berlin,
Heidelberg

9. MOF Model to Text Transformation Language Request For Proposal. OMG Docu-
ment: ad/04-04-07, April 2004. https://www.omg.org/cgi-bin/doc?ad/04-04-07.pdf

10. Revised submission for MOF Model to Text Transformation Language RFP. OMG
Document: ad/06-09-03. September 2006. https://www.omg.org/cgi-bin/doc?ad/06-
09-03.pdf

11. MOF Model to Text Transformation Language, v1.0, OMG Docu-
ment Number: formal/2008-01-16, Object Management Group (2008),
http://www.omg.org/spec/MOFM2T/1.0

12. Object Constraint Language. Version 2.4., OMG Document Number: formal/2014-
02-03, Object Management Group (2009), http://www.omg.org/spec/OCL/2.4

13. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Speci�cation,
Version 1.3. OMG Document Number: ptc/16-06-03, June 2016.

14. Eclipse Acceleo Project.
https://projects.eclipse.org/projects/modeling.m2t.acceleo

15. Eclipse ATL Project.
https://projects.eclipse.org/projects/modeling.mmt.atl

16. Eclipse QVT Declarative Project.
https://projects.eclipse.org/projects/modeling.mmt.qvtd

17. Eclipse QVT Operational Mappings Project.
https://projects.eclipse.org/projects/modeling.mmt.qvto

18. Eclipse Xtext Project.
https://projects.eclipse.org/projects/modeling.tmf.xtext

