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Abstract

In this paper we present a system for automatic control of a quadro-
copter based on the adaptive control system. The task is to ensure
the motion of the quadrocopter along the given route and to control
the stabilization of the quadrocopter in the air in a horizontal or in a
given angular position by sending control signals to the engines. The
nonlinear model of a quadrocopter is expressed in the form of a linear
non-stationary system.

1 Introduction

The UAV (Unmanned aerial vehicle) can be controlled by an occasional command or continuously, in the latter
case the UAV is called a remotely piloted aircraft (RPA). The main advantage of the UAV / RPA is the
significantly lower cost of its production and control (under the condition of equal efficiency in the performance
of the tasks).

Nowadays unmanned aerial vehicles (UAVs), which are mainly flying robots, constitute an important part
of scientific research in military, civil and space fields. Replacing manned vehicles, UAVs have an advantage in
complex and dangerous environments. Their reliability in severe conditions for humans is much higher.

In the last decade, studies on various types of unmanned multi-rotors have received much attention in the
field of automatic control. Quadrotor is the most popular type of multi-rotor UAV due to its simple mechanics
and high maneuverability such as the fast vertical take-off and landing. In addition, the implementation of
stable stationary flight is a valued opportunity for a quadrotor. However, controlling the motion of a quadrotor
is a difficult and challenging task because of its nonlinearity under controlled dynamics. Many methods for
controlling quadrotors were proposed [Alt03], and some strategies were developed for solving the issues which
follow the problems of this system type. Early control strategies are traditional PID control, feedback linearization
and LQR methods. Recently, nonlinear controllers such as TSMC [ Bes07], backstepping control [MBe06] and
model predictive control (MPC) [Ma16] have been used to improve tracking accuracy and resistance to model
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uncertainty and external disturbances. In addition, adaptive controllers are designed for a low-power non-linear
quadrotor system to eliminate the tracking error, despite disturbances.

In spite of the fact that the mentioned controllers have the reliable tracking the trajectories, they are just
suitable for implementation on unmounted stationary the control units. On the other hand, they need fast
and heavy computing devices because of their complex and time-consuming control laws. In addition, they are
limited by long-range applications, when the delay of communication with the stationary control unit disrupts
the real-time operation of the quadrotor. The conventional proportional integral-derivative (PID controller) is
the most preferred control method for on-board implementation of the control unit in autonomous systems.
However, it is very difficult to adjust the PID gain to a number of operating points or for different continuous
trajectories. In addition, PID regulators are not very successful for controlling non-linear systems with reduced
voltage. Therefore, several methods are used to develop a PID controller with improved tracking characteristics,
which may be suitable for on-board implementation. Fuzzy logic is a powerful tool that is often used to obtain
excellent results compared to a conventional PID controller.

Consequently, there is a need for a mathematical model which could describe the control of a quadcopter. The
difficulty is that a quadrocopter has 6 degrees of freedom, while we can control only 4 parameters: the angular
velocities of the engines.

The next important task is to build a stabilizing algorithm. Controlled by four spaced apart engines, a
quadrocopter is an unstable dynamic system which, due to the nonlinearity of the mathematical model, must be
stabilized by the complex control algorithms.

2 Related work

Many modeling approaches have been presented [Erg07],[Bou04] and various control methods have been pro-
posed [Alt02], [Alt03]. First of all, several backstepping controllers have been developed. Madani studied a
full-state backstepping technique based on Lyapunov stability [Mad06], [MBe06]. E. Altug presented backstep-
ping control using single and double cameras as visual feedback [Alt02], [Alt03]. Other backstepping control
methods were used by Castillo. He used this controller with a saturation function and it performed well under
perturbation [Cas06]. Also, Metni used backstepping technique in order to obtain adaptive nonlinear tracking
law for quadrotors system [Met07].

Feedback linearization controller was implemented by Altug [Alt02]. A PD controller was designed to control y
and and feedback linearization controller was implemented to control x and z. A. Benalleuge presented feedback
linearization high-order sliding mode observer for a quadrotor. The algorithm had shown robustness for wind
disturbances and noise [ Ben06].

The method of quaternions for position stabilization was presented in [ Tay06]. With compensation of the
Coriolis and gyroscopic torques, the controller guaranteed exponential stability while a classical PD controller
without compensation of the Coriolis and gyroscopic torques could guarantee only asymptotic stability. A sliding
mode disturbance observer was shown [ Bes07] and designed as the robust controller for quadrocopters. This
controller showed the robustness for external disturbances, model uncertainties, and engine’s errors. The robust
adaptive fuzzy control was applied in [ Coz06]. This controller showed a good performance against sinusoidal
wind disturbances. Mokhtari presented in [Mok04] robust dynamical feedback controller of Euler angles which
used the estimation wind parameters.

3 Proposed method

3.1 The matrix of rotation

The rotation around axis OX is described by the matrix:

Rx =

 1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ

 (1)

Around axis OY

Ry =

 cos Θ 0 − sin Θ
0 1 0

sin Θ 0 cos Θ

 (2)



And around axis OZ

Rz =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1

 (3)

The matrix D = Rx ∗ Ry ∗ Rz describes the transition from Earth-fixed frame to the Body-fixed frame. This
matrix is presented as:

D =

 cos Θ cos Ψ cos Θ sin Ψ − sin Θ
sinϑ sin Θ cos Ψ− cosϕ sin Ψ sinϑ sin Θ cos Ψ + cosϑ cos Ψ sinϑ cos Θ
cosϑ sin Θ cos Ψ + sinϑ sinϑ cosϕ sin Θ cos Ψ + sinϑ cosϑ cosϑ cos Θ

 (4)

The transition from in Earth-fixed body to the velocities in Body fixed system is defined by equations: ẋ
ẏ
ż

 = D−1

 u
v
ω

 (5)

Transformation angles velocities for the transition from one frame system to an-other one will be defined in
the following way:

Figure 1: Euler’s angles

 p
q
r

 = E

 ϕ̇

Θ̇

Ψ̇

 (6)

E matrix is represented

E =

 1 0 sin Θ
0 cosϑ sinϑ cos Θ
0 − sinϑ cosϑ cos Θ

 (7)



3.2 The equation of moving

The written second law of Newton in Earth-fixed frame:

F = mV̇ (8)

Here m – a mass of a vehicle, which is constant. V – velocity of UAV in the Earth-fixed frame. Writing the
total derivative [Cas05] of velocity for time, we will rewrite the law:

F = mV̇ + m(−→ω ∗ −→V ) (9)

or  Fx

Fy

Fz

 = m

 u̇
v̇
ω̇

+ m

 p
q
r

 ∗
 u

v
ω

 (10)

After a performance of cross product [Che03], the notation of Newton’s second law will be obtained: Fx

Fy

Fz

 = m

 u̇ + qω − rv
v̇ + ru− pω
ω + pv̇ − qu

 (11)

Neglecting all forces beside thrust force of propeller [Coo97] T and force of gravity [Lel11], the equation (11)
is writing as:  0

0
mg − T

 = m

 u̇ + qω − rv
v̇ + ru− pω
ω + pv̇ − qu

 (12)

Transition to Body fixed frame with the help of transfer matrix D, we obtain equation:

u̇ = rv − qω − g sin Θ
v = pω − ru + g sin Θ sinϕ

ω̇ = qu− pv + g cosϕ cos Θ− 1
m .

(13)

The thrust force of all engines can be shown in the following way [Bou04]:

T = b(Ω2
1Ω2

2Ω2
3Ω2

4) (14)

Where b – the trust coefficient [Dor07] and Ωi - the velocity of each engine (i = 1, 2, 3, 4). In this case, the
equation (13) is rewritten as:

u̇ = rv − qω − g sin Θ

v = pω − ru + g sin Θ sinϕ (15)

ω̇ = qr − pv + g cosϕ cos Θ− b

m
(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

3.3 Rotating motion

The torques of quadrotor’s rotation represented as:

M = Ḣ (16)

Total derivative of vector H is written as:

M = Ḣ + ω ∗H (17)

Let
H = I ∗ ω (18)



Here I – torque of quadrocopter’s inertia ω = (p, q, r) - vector Tensor of torque inertia is written as:

I =

 Ix 0 0
0 Iy 0
0 0 Iy

 (19)

Then the equation (17) is rewritten:

M = Iω̇ + ω ∗ Iω

After substitution:

Mx = ṗIx + qr(IzIy)
Mx = q̇Iy + pr(IxIz)
Mx = żIz + pq(IyIx)

(20)

By symmetry relative planes XZ and YZ

Ix = Iy

And equation (20) becomes simpler

Mx = ṗIx + qr(Iz − Iy)
Mx = q̇Iy + pr(Ix − Iz)

Mx = ṙIz

(21)

Considering the thrust force and drag force the torques will be rewritten as:

Mx = lb(Ω2
2Ω2

4)
My = lb(Ω2

1Ω2
3)

Mz = d(Ω2
2Ω2

4Ω2
1Ω2

3)
(22)

d - drag coefficient [Fra05], l – the length of the propeller Transforming the system (22) the last equations of
moving are presented in the following way:

ṗ =
lb

Ix
(Ω2

2Ω2
4)− qr

Iz − Ix
Ix

q̇ =
lb

Iy
(Ω2

1Ω2
3)− pr

Ix − Iz
Iy

(23)

ṙ =
d

Iz
(Ω2

2 + Ω2
4 − Ω2

1 − Ω2
3)

3.4 The dynamic of the engine [Hof07]:

Kirchhoff’s equation and the second law of Newton represent the equations of quadrocopter’s engines.{
Jrω̈m + bω̇m = Kti,

L di

dt
+ Ri = U −Ke. ˙ωm

(24)

Here

Jr – torque of inertia shaft,

b – coefficient of viscous friction,

Ke – coefficient EMF,

Kt – torque of engine rotation,

R – electric resistance,

L – inductivity.



4 Adaptive control

Adaptive control is a method used for automatic control of moving in the real time. It uses the online estimating
of external parameters and automatic control. The system of equations describes the kind of control presented:

ẋ(t) = Amx(t) + b(u(t) + KT
x x(t)), x(0) = x0 (25)

y(t) = CTx(t) (26)

Here Am known matrix, x(t) condition vector of system, b and c known constants, Kx – vector of unknowns.
Let

Unorm(t) = −kTx x(t) + kgr(t) (27)

kg =
1

cTA1
mb

(28)

Due to simplification the following equations for ideal system are obtained:

ẋt(t) = Amx(t) + bkgr(t), xm(0) = x0

ym(t) = CTx(t) (29)

e(t) = xm(t)− x

The law of adaptive control

K̇x = −Γx(t)ẽT (t)pb, Kx(0) = Kx0 (30)

Matrix P is defined from equation of Lyapunov

AT
mP + PAm = −Q (31)

The diagram of such control type has been represented:

Figure 2: The diagram of adaptive control



Figure 3: Angle response

Figure 4: Error response

4.1 Transfer function

The system of equations (24) describes the work of engines. In order to obtain the transfer-function [Kiv06], the
transformation of Laplace was implemented in the system (24):{

S(JsS + b)C(s) = KtI(s)
(Ls + R)I(s) = u(s)−KeSC(s)

(32)

W (s) =
Ċ(s)

u(s)
=

kt
(JsS + b)(Ls + R) + kekt

(33)

Here Ċ(s)-the velocity of the motor shaft; u(s) - voltage input. The result of modeling is represented on the
graphics: 3, 4, 5.

Conclusion

The adaptive control as a control system has been considered. The evaluation has been used in the design
of the controller. Comparative results of simulation tests have been carried out in MatLab / Simulink. The



Figure 5: Control vectors

results of simulations demonstrate that the quadrocopter is successfully stabilized, keeping the desired position
and altitude using the proposed controller, thereby showing the effectiveness of the proposed system under
conditions of uncertainty.
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