
Goals and Principles for the Redesign of a Programming
Course

Erno Vanhala 
University of Tampere
erno.vanhala@uta.fi

Jussi Kasurinen
Lappeenranta University of Technology

jussi.kasurinen@lut.fi

ABSTRACT

In this study it is discussed how programming courses have been
redesigned. The article is based on three courses lectured during
academic years  from 2005 to 2016.  During these  years  several
modifications and revisions were made, such as moving a course
from Python 2 to Python 3, another one from C++ to Java and in
one  occasions  updating  the  course  to  include  the  latest  web
development  concepts  and  technologies.  The  first  course
included  video  lectures  and  the  latter  two  were  upgraded  to
utilize flipped classroom teaching method. From these revisions
the  student  feedback  was  collected  and  examined  to  gain
understanding on what ideas work and what do not. The overall
results  could  be  summarize  in  four  key  concepts:  1)  provide
easy-to-use working environment 2)  give students freedom, 3)
fortify the frequency of key concepts and 4) separate theory to
pre-classroom learning and action to in-classroom learning.

CCS CONCEPTS

K.3.2 [Computer and Education]: Computer and Information
Science Education – computer science education. 

KEYWORDS

programming, object-oriented programming, flipped classroom,
redesign principles

ACM Reference Format:
Erno Vanhala and Jussi Kasurinen. 2018. Goals and Principles for
the Redesign  of  a  Programming Course.  In  Proceedings  of  The
2018  Workshop  on  PhD  Software  Engineering  Education:
Challenges, Trends, and Programs (SWEPHD2018).  St. Petersburg,
Russia, 6 pages.

1 INTRODUCTION
Why bother changing a programming course unless you have to?
The question  is,  of  course,  what  is  a  good  enough  reason  to
introduce changes which are likely to cause change resistance,
increased effort, and worse short term results [7]? 

However, as the passing rates of case courses have improved,
a more fundamental question becomes interesting: whether the
students  actually  learn programming skills  in the courses.  The
level of learning has not been studied much in the programming
education field but, for example, a Bayesian Knowledge Transfer
algorithm has been proposed to fit  to estimate the learning of
specific programming structures [2,14]. 

The  redesign  process  started  in  2006  with  an  attempt  to
remove observed problems in the Fundamentals of programming,
CS1  (Case  A).  Similarly,  teaching  methods  became  interesting
when it was observed how students appreciated video lectures
introduced  in  Case  A.  With  Case  B  and  C  it  was  developed
further with flipped classroom method.

The overall philosophy for revising the case courses has been
to make it easy for the students to download the programming
environment and start using it. We have a few aims in improving
programming courses:  1)  reducing dissatisfaction,  2) increasing
motivation and 3) estimating learning. In this article it is reported
the goals of the course redesigns.

2 RELATED RESEARCH
In  this  section  related  research  is  presented  to  introduce  the
topics  that  are  relevant  when  discussing  the  reasons  and  the
process of redesigning of a programming course.

2.1 Student motivation
Student motivation has raised considerable interest  among the
researchers [3,21]. Besides the hygiene factors – elements (e.g. air
conditioning or programming manual) that are not the actual key
components of the process, but can greatly affect the success of
the task (e.g. office work or learning programming) – there are
also motivating things on learning, which can greatly affect on
the actual course outcome [21]. 

For example, the assignments and lectures on the course have
to be easy enough to  be understandable  for all,  but  they also
should challenge the most advanced students. Students with less
IT  skills  tend  to  frustrate  near  the  end  of  the  course  when
assignments  get  harder.  On  the  other  hand,  students  with
existing  programming  skills  are  frustrated  since  they  are  not
challenged,  and  are  just  required  to  participate.  There  are,
however,  ways to detect frustration based on compilation logs
and  time  spent  on  Virtual  Learning  Environment  (VLE)  [22].
When a students get overly frustrated they can easily lose their
confidence [10] and will get a grade worse than their actual skill
level would indicate. 

Copyright © 2018 for the individual papers by the papers' authors. Copying 
permitted for private and academic purposes. This volume is published and 
copyrighted by its editors.
The 2018 Workshop on PhD Software Engineering Education: Challenges, Trends, and 
Programs, September 17th, 2018, St. Petersburg, Russia

mailto:erno.vanhala@uta.fi


SWEPHD2018, September 2018, St. Petersburg RUS E. Vanhala et al.

In principle, the students who have positive impression on a
subject tend to be motivated [21]. Motivated students also have a
positive perception of the subject and amount of practical work
[21].  In  this  sense,  it  is  obvious  that  these  traits  should  be
supported,  by providing  programming  assignments,  which  the
students find motivational [24].

2.2 Student dissatisfaction
Hygiene  factors  [11] are  not  widely  studied  in  the  area  of
introductory  programming,  but  few studies  can be  found (e.g.
[13,15]).  Before  a  student  can be motivated,  the  basic  hygiene
factors need to be present  [11]. In programming courses these
Herzberg's  hygiene  factors  include,  for  example,  comfortable
learning  environment  and  learning  conditions.  The  first  one
contains  the lecture  halls  and computer  classes,  and the latter
material supporting the learning and students' time schedules. 

When  the  hygiene  needs  and  requirements  are  met,  the
motivational aspects become increasingly important to increase
the  student  satisfaction.  Herzberg  introduces  7  principles  [11]
from which three can be easily modified to be used in teaching
programming: 1) In the learning environment it is quite easy to
give  the  students  access  to  the  scores  of  one's  programming
tasks. 2) When giving tasks to the students it is possible to give
several tasks covering different degree of difficulty. 3) Access to
additional  tasks  providing  deeper  understanding  to  engage
advanced students in the course.

2.3 Course success measurement
After the course  implementation has been carried  out,  usually
the final survey has been given to the students.  Based on this
feedback it  is  possible  to pinpoint  difficult  parts  of the course
topics and unsuccessful ideas or failed implementations.

Yet,  a  course  success  measure  should  reflect  the  actual
objective  of  course  participation,  the  learning  of  the  course
contents. The learning processes have been studied, for example,
from  the  point  of  view  how  novice  programmers  understand
programs  [23],  how they  structure  their  own code  [5,20],  and
how  the  programming  knowledge  can  be  measured  –  the
Bayesian  Knowledge  Tracing  algorithm  (BKT)  [2,6,8] and
Adaptive Control of Thought - Rational (ACT-R) [1]. The ACT-R
is  focused  on  long-term  learning,  skill  acquisition,  and
deterioration while the BKT algorithm has been reported to have
a history of success in programming and algebra, and thus the
BKT has been reported sufficient for skill mastery estimation [8]. 

The principles of the BKT algorithm are outlined in Figure 1:
the  prior  knowledge  (Ln)  is  taken  into  account  when  the
probability  of  learning  the  concept  in  question  is  calculated
(p(T))  to measure the student learning.  As student repeats  the
process, the possibility of guessing the right answer (p(G)) and to
err  even  when  the  concept  is  learned  (p(S))  are  taken  into
account. It has been estimated that repeating the process for six
times  predicts  the  learning  of  the  concepts  in  question  in  a
reasonable level.

Figure 1. Bayesian Knowledge Tracing algorithm [14].

2.4 Flipped classroom method
As technology develop it  also opens new methods to improve
teaching methods. The core idea of flipped class room is to let
students to study theory on their own outside the classroom and
concentrate on actual doing in class with teacher. This method is
already  used  in  computer  science  on  various  course  [12,16].
Flipped classroom can also be used in other areas from primary
school to university level education although it originated from
economics [4].

3 RESEARCH METHOD
The present study started with two research questions: 1) When
should a programming course be revised? and 2) What should be
taken into account when redesigning?

In general the study had three objectives: First to demonstrate
how the collected data  can be  used to  pinpoint  problems and
development needs in the course. Second, to report the goals and
principles  for  the  course  redesign.  The third  objective  was  to
assess how programming assignments could be developed to take
into account the developed principles. In this sense, the study has
the characteristics of both natural and design science [17] but it
is reported as a case study since the case study methods [25] fit
well  the  study  and,  in  general,  the  courses  referred  to  in  the
study represent case studies with literal replication [25].

The data used in the study comes from three courses taught in
a Finnish  university,  between  2005  and 2016.  Each  course  has
been concluded with a final survey that has been distributed to
all  students  enrolled  in  the  course.  The  final  surveys  have
included quantitative questions like the difficulty and usefulness
of the different course elements but also open questions to allow
the  students  to  express  their  feelings  and  concerns  about  the
course.

The  analysis  has  been  based  on  both  quantitative  and
qualitative methods. In particular, the BKT analysis is based on
quantitative  measurements  and  statistical  analysis  while  the
problem analysis  has been based more  on the qualitative  data
acquired from multiple sources. For example, problematic weekly
assignments have been identified by analyzing the points each
assignment got but deciding about the changes required by each
assignments  has  been  estimated  case  by  case  by  the  designer
even  though  the  student  problem  reports  and  feedback  have
helped a lot in some cases. 



Goals and Principles for the Redesign of a Programming Course SWEPHD2018, September 2018, St. Petersburg RUS

4 CASE STUDIES
The next chapters describe three case courses, their descriptions
and upgrades done to them.

4.1 Course descriptions
This study utilizes three programming courses. Table 1 lists key
features  for  the  courses.  All  the  courses  have  positioned  in
bachelors  level,  but  also  not  computer  science  students  from
masters level have taken part of the courses.

Table 1: Key features for the case courses

Case Name Key changes Data

A Fundamentals of
programming

Introduction of lecture 
videos, change from 
Python 2 to Python 3, 
programming manual

2006 – 
2015

B Object-oriented 
programming

Change from C++ to Java 
and change from lecture 
videos to flipped classroom,
programming manual

2010 – 
2016

C Webbed 
applications

Introduction of flipped 
classroom and updating all 
the materials

2015

For Case A, a larger Python programming manual was written
to replace a course book,  since at the time there was no book
available in the local language. When the course was updated to
Python  3,  the  number  of  weekly  programming  tasks  was
increased  and  the  format  of  the  programming  project  was
changed  from  GUI-based  “motivational”  project  to  text-  and
calculation based real-life problem.

Case B followed examples of Case A as it had video lectures,
but  in  the  end  it  was  decided  to  change  the  programming
language of the course from C++ to Java and in the same time to
drop the traditional lectures-exercises-exam paradigm and move
to the flipped classroom. In addition, two programming manuals
were  written;  one  for  Java  in  general  and  one  for  GUI-
programming in Java.

Similarly,  Case  C  was  transformed  to  flipped  classroom
method and all the course materials were updated to reflect the
fast development of web programming techniques.

All the case courses consisted of 12–14 weeks depending on
the  year  it  was  lectured.  All  the  courses  followed  the  format
where besides the introductory lecture, each week a new concept
was introduced and the previous topics were utilized with the
newly learned skills.

4.2 Changes in the course

4.2.1 Hygiene factors

The first major observation was the students were complaining
about very basics on case courses, for example “Where do I get
the needed software?” or “How do I return my assignments?”.

One  of  the  key  principles  when  revising  and  improving
courses  was  to remove these  hygiene  factor  obstacles.  Python

was selected as the programming language for Case A as it can
be easily installed on Windows, Mac and Linux computers and it
already includes IDLE as IDE. IDLE itself is easy-to-use and does
not throw everything to students at once, and it has a minimalist
and  simple  look,  which  replicates  between  the  different
platforms,  which  suits  CS1  where  the  students  meet
programming code for the very first time.

With Case  B it  was also  thought  how to give students  the
suitable IDE with minimal work to be done. As Case B had also
GUI-programming and the JavaFX was chosen as the GUI-toolkit
it was decided to use NetBeans as the IDE as both JavaFX and
NetBeans were bundled together from the developers of Java.

As web developing can be done with pretty much every tool
available,  and the  course  required  both  backend  and  frontend
development,  the  Case  C  was  a  different  scenario.  The  most
pressing issue was the server side system; how this  should be
addressed in the university infrastructure, since the system had
to be usable by the students, while still retaining a certain level
of cyber security.  In this case, the solution was to use a cloud
platform that enabled the option to run the student-generated
code  without  the  need  of  installing  web  server,  database  and
various libraries. Additionally, some students decided to use their
own  environments  and  followed  guideline  videos  on  how  to
install the necessary packages to Linux or Mac.

Case A and half of the Case B utilized VLE for the assignment
submission  and  grading,  since  the  course  had  thousands  of
student-submitted  works.  Since  this  VLE  could  not  manage
graphical user interfaces, the second half of the Case B and Case
C applied the traditional  teacher  grading,  but  by allowing the
students to demonstrate their solutions with quick demonstration
at the exercise event, or by sending a video link explaining what
they  had  done.  On  latter  implementations,  a  peer  review
approach by other students was also applied.

Teaching materials were provided for every case course. With
Case  A this  meant  the  programming  manual,  style  guide  and
Python  installation  manual  with  lecture  examples  and  videos.
Case B had videos  covering all  the course  topics,  two written
manuals and code examples available in a git repository. Case C
had  videos  covering  all  the  course  topics,  short  manual
presenting the most important techniques and tools used in web
programming and code examples in a git repository.

One of  the usually overlooked hygiene factors  is the exam.
When learning to program it is normal to ask students to write a
short program in the exam, yet when the exam is pen and paper,
it  does not reflect to the real  world where the students would
have compiler messages and manuals with them. To avoid this
issue Case B introduced online exam and Case C had no exam at
all,  but an essay to show how students had learned their  new
skills.  In  the  end  Case  A  also  introduced  an  online  exam for
programming  as  it  would  decrease  the  manpower  needed  to
grade all the exams.

4.2.2 Changes  done  to  the  weekly  programming
assignments

With  all  cases  weekly  programming  assignments  were
constructed so that they had usually 5 smaller tasks thus students



SWEPHD2018, September 2018, St. Petersburg RUS E. Vanhala et al.

were able to gain 5 points from one week. With Case A example
solutions were provided and they were coded to show how style
guide help to build easy-to-read programming code. 

With all cases the number of weekly assignments were also
increased  – though some tasks  were  divined into  two smaller
tasks  –  thus  students  had  to  repeat  the  key  structures  and
concepts  at  least  six  times  as suggested.  Although one  has to
note that techniques presented in the end of the course could not
be covered such many times.

The BKT analysis  was done with the program source codes
retrieved from the VLE database after the course, and the prior
programming knowledge of the students was estimated with an
initial  survey  in  the  beginning  of  the  course.  When  the
programming assignments were developed in 2006 it was only
aimed  at  reasonable  assignments,  and  only  few programming
structures  met  the  BKT  analysis  requirements.  The  overall
outcomes were up 10–20% on all measured categories.

Other positive side of the increased number  of assignments
was that average students did not need to do all the five tasks per
week, but students with advanced skills had more to do. The last
task  is  set  to  be  the  hardest  one,  so  the  students  who  were
interested in programming could get more challenge when they
wanted.

Students focus  on tasks  that  are beneficial  to them,  that  is,
tasks giving points to them. All the case courses had previously
weekly exercises that were voluntary and there were no points
given from a successful solutions. When the case courses were
revised all  of  them shift to a  model where  students  could get
points  from all  the work they do for the course and the final
grade  was  calculated  from  the  points  got  from  weekly
assignments, course projects, exam, and other parts of the course.

4.2.3 Course project

All of the cases have larger programming project in the end of
the course. The previous version of the Case A was taught with C
programming language and its course project was transformed to
the first implementation of Python course. The text-based project
was  not  seen  up-to-date  and  it  was  then  changed  GUI-based
Turtlet  programming  project.  Although it  was  supposed to  be
motivating, students gave mixed feedback, similarly as observed
for example by [18]. Turtlet had limitations on the usefulness and
student  creativity  as  well  as  maintenance  problems,  so  a  new
project  was  to developed for the course.

With  Python  3  the  programming  project  used  more
engineering approach. First theme on the project was to calculate
district heating systems.  The project was approximately double
the size of the old Turtlet version, yet it did not yield complaints
more than the Turtlet. Nor was it completely success. The project
required  a  lot  of  precise  mathematical  calculation  that  the
students found hard to get right. The project was later moved to
work with temperatures, data files and generating svg-graphics.

Case  B  had  had  various  humorous  –  game-like  –  projects
when it  was  implemented  with  C++.  The projects  required  to
understand the concepts of C++ but they did not reflect to real
problems or were not in an area, which would have been useful

experience for the future. When Case B was transformed to Java
the course project was also redesigned.

The new project included parsing publicly available open data
sources and building a graphical user interface to visualize the
data on a map overlay. This gave students a feel of working with
the real-world problems, tools and data.

With  Case  C  the  course  project  was  not  focusing  on  any
specific area. As the Case C is more advanced course than A or B,
it was decided to give students more creativity and responsibility
with the course project. There were elements that gave certain
amount of points and combining several elements students could
get the number of points they wanted to get certain grade. For
example creating responsive design gave 5, utilization of cache
gave 3 and front-controller design pattern gave 3 points.

4.2.4 Lectures vs. flipped classroom

The  Case  A  provided  video  lectures  from  the  beginning  of
Python era.  Students  found the  videos  very useful.  Also  with
Case B video lectures were provided from the beginning of data
collection  period.  When  Case  B  was  revised  it  started  to  use
flipped  classroom  method.  Similarly  Case  C  was  revised  to
flipped  classroom  when  data  collection  started  with  new
administrating lecturer.

Both video lectures and flipped classroom seem to be suitable
when teaching programming. Students have given feedback on
how they value the opportunity to watch theory when they have
time and repeat it as many times they need.

With flipped classroom, although the initial  cost of creating
new course format is high it later gives more man power to be
used in classroom teaching then benefiting the students.

5 DISCUSSION 
In  the  beginning  two  research  questions  where  set:  1)  when
should  a  programming  course  be  revised?  2)  what  should  be
taken  into  account  when redesigning?  Here  the  questions  are
discussed  based  on  the  experience  gained  from  three  cases
described in the previous chapter.

5.1 When  should  a  programming  course  be
revised?
The  present  study  explored  the  reasons  for  initiating  the
programming assignment  revision and found four key reasons
for the revision:

Problems with existing assignments. The students reported
different  kind of  defects  in the assignments  over  a number  of
years  which  indicated  that  there  were  problems  with  the
assignments.  Collected  data  suggests  that  problems  in  the
programming  assignments  reduced  the  student  motivation  to
complete  them,  and  thus  such  problems  became  the  hygiene
problems  in  these  courses.  Thus,  to  avoid  dissatisfaction  –
hygiene  problems  –  among  the  students,  the  programming
assignments should not pose undue problems for the students.

Mismatch between the students and the assignments.  Even
though  the  assignments  would  not  have  any  problems,  the



Goals and Principles for the Redesign of a Programming Course SWEPHD2018, September 2018, St. Petersburg RUS

students may not be motivated by them. Collected data suggests
that  the  students  were  concerned  about  the  usefulness  of  the
assignments they had to complete and especially the game-like
project with graphical user interface (Case A) had been criticized
every  year  it  was  used.  Thus,  to  keep  the  programming
assignments motivating for the students they should be aligned
with  the  student  experiences  and  expectations  as  the  student
body evolves. This observation is in line with the earlier  work
from for example [3].

Technological  development. Programming  languages  and
tools develop quickly. With Case A the change from Python 2 to
3  required  to  check  all  the  material  and  assignments  in  the
course. In Case B, where the programming language changed, all
the  assignments  needed  to  be  redone.  And  web programming
(Case C) changes all the time so the revision of everything was a
mandatory task to be carried out at least once in five years.

Pedagogical  development. The  teaching  methods  and  tools
are improved all the time. Where PowerPoint slides came in the
90s,  this  millennium  has  given  video  lectures  and  flipped
classroom.  Teachers  need to  match the new ways of studying
and thus courses need to be revised also from pedagogical point
of  view.  The  traditional  lecture-exercise-exam  model  can  be
replaced with modern ways where students get more individual
time from teachers. With Case A video lectures where provided
all  the  time  with  Python  course  and  with  Case  B  and  C the
transition  to  flipped  classroom  was  carried  out  when  courses
where  revised.  Both  the  video  lectures  and  flipped  classroom
method generated praises from students.

5.2 What should be taken into  account when
redesigning?
The response to the second research question of what should be
taken  into  account  in  the  redesign  is  twofold.  The  problems
leading to the revision should, of course, be fixed but a revision
provides  also  an  opportunity  to  improve  the  course.  In  the
present study the revisions made it possible to assure that the
assignments  were  fit  estimating  the  learning  outcomes  of  the
course  with  the  BKT  algorithm.  Overall  the  following  design
principles for programming assignment revision can be pointed:

• Motivating  assignments  reflecting  the  real  world
problems, useful for the studies as well as the future
careers and assignments as engineers

• Give an option to do more assignments when the topic
requires them

• Repeat all the main programming structures at least six
times  in  the  weekly  assignments  to  allow  accurate
mapping  of  the  learned  topics  with  BKT  or  ACT-R
algorithm

• Follow  both  the  technological  development  and
pedagogical  development  to  be  able  to  utilize  up-to-
date tools and methods

5.3 Retrospective
The reported  modifications  to  the  programming  courses  have
been made during the years 2005 – 2016. After few years of cool

down it can now be discussed what parts of improvements were
success and what parts still require work.

With Case  A the  most  difficult  part  has been developing  a
programming project that would be easy enough for beginners
but would also let students to show their skills if one wants to.
This is an issue that has no real solutions, but it can be iterated
towards project that would have all the necessary parts required
and still be easy and useful.

Case  B  failed  in  grading  for  the  first  implementation  after
revision. Points were provided too easily and students got high
grades – although they did good work. Some example solutions
were  also  not  perfect  and  issues  arose  when JavaFX required
special version of Java, which was not installed by default. These
hygiene factors were then hot-fixed, but would still require more
work to be done.

The biggest  issue  with  Case  C is  the  number  of  tools  and
techniques web development has. In the course dozen of different
techniques are introduced to students and then they do not have
enough time to repeat newly learned skills. This problem would
be solved by extending the course somehow or by splitting it into
two separated courses.

With all the cases teachers are required to do a lot of grading.
With  Case  B  it  was  changed  so  that  students  peer  reviewed
programming  project  so  that  teachers  could  focus  more  on
teaching. This similar method could be considered also for Case
A and C.

5.4 Limitations and validity of the study
As this is a partly qualitative study, the observations presented
here  are  not  strong,  confirmatory  results,  but  guidelines  and
sophisticated suggestions on things that have been discussed in
this article  [9]. Although we have triangulated the data against
quantitative data sources, this study is not free from possible bias
towards any direction that has been missed. Bias is addressed in
the following  ways.  We have followed the three  principles  of
data collection [25]: we have used multiple sources of evidence,
created  a  multicase  study  [19],  and  maintained  a  chain  of
evidence.  We  have  also  triangulated  our  data  from  multiple
sources  (e.g.,  student  surveys  and  feedback,  VLE  program
database,  and grading  data),  both authors  have participated  in
the analysis, we have used different theories, and we have used
both qualitative and quantitative methods to analyze the data. 

6 CONCLUSION
This article presented three university level case courses, which
had all been revised and improved. When revising a course one
should  note,  for  example,  to  follow  the  latest  technical  and
pedagogical  tools  and  methods,  make  sure  students  repeat
learned tasks at least six times and motivate students with real-
life assignments.

This is a latest wrap up of the on-going improvement of these
three  courses.  The  shift from  lecture  room  lectures  to  video
lectures and flipped classroom method has already widely begun,
but there is still  much to do. For example, only Case A was a
mass course and only Cases B and C where flipped. In the future



SWEPHD2018, September 2018, St. Petersburg RUS E. Vanhala et al.

it is required to study whether same methods can be used when
flipping a mass course.

7 REFERENCES

[1] J. R. Anderson and C.D. Schunn. 2000. Implications of the
ACT-R Learning Theory: No Magic Bullets.  Advances in
instructional psychology 5.

[2] Ryan Baker, Albert T. Corbett, and Vincent Aleven. 2008.
More  Accurate  Student  Modeling  through  Contextual
Estimation  of  Slip  and  Guess  Probabilities  in  Bayesian
Knowledge Tracing. 406–415.

[3] Tiffany Barnes, Eve Powell, Amanda Chaffin, and Heather
Lipford. 2008. Game2Learn: improving the motivation of
CS1  students.  In  Proceedings  of  the  3rd  international
conference  on  Game  development  in  computer  science
education, 1–5.

[4] Jacob Lowell Bishop and Matthew A. Verleger. 2013. The
flipped  classroom:  A  survey  of  the  research.  In  ASEE
National Conference Proceedings, Atlanta, GA.

[5] Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick,
John English, William Fone, and Judy Sheard. 2003. How
shall we assess this? In Working group reports from ITiCSE
on  Innovation  and  technology  in  computer  science
education, 107–123.

[6] Cristina Conati, Abigail Gertner, and Kurt VanLehn. 2002.
Using  Bayesian  Networks  to  Manage  Uncertainty  in
Student  Modeling.  User  Modeling  and  User-Adapted
Interaction 12,  4  (November  2002),  371–417.
DOI:https://doi.org/10.1023/A:1021258506583

[7] P.D.I. Elrod and D.D. Tippett. 2002. The “death valley” of
change. Journal of Organizational Change Management 15,
3 (2002), 273–291.

[8] Kevin  A.  Gluck.  2004.  Knowledge  Tracing  for  Complex
Training  Applications:  Beyond  Bayesian  Mastery
Estimates. 383–384.

[9] Nahid  Golafshani.  2003.  Understanding  Reliability  and
Validity in Qualitative Research.  The Qualitative Report 8,
4 (2003), 597–606.

[10] Stuart  Hansen  and  Erica  Eddy.  2007.  Engagement  and
frustration in programming projects. In Proceedings of the
38th  SIGCSE  technical  symposium  on  Computer  science
education, 271–275.

[11] Frederick  Herzberg.  1968.  One more time:  How do you
motivate employees? Harvard Business Review 46, 1 (1968),
53–62.

[12] Diane Horton and Michelle Craig. 2015. Drop, Fail, Pass,
Continue: Persistence in CS1 and Beyond in Traditional
and  Inverted  Delivery.  In  Proceedings  of  the  46th  ACM
Technical  Symposium  on  Computer  Science  Education
(SIGCSE  ’15),  235–240.
DOI:https://doi.org/10.1145/2676723.2677273

[13] Jussi  Kasurinen  and  Uolevi  Nikula.  2007.  Revising  the
First Programming Course - The Second Round. 92–101.

[14] Jussi  Kasurinen  and  Uolevi  Nikula.  2009.  Estimating
programming  knowledge  with  Bayesian  knowledge
tracing.  In  Proceedings  of  the  14th annual  ACM SIGCSE
conference  on  Innovation  and  technology  in  computer
science education, 313–317.

[15] Jussi Kasurinen, Mika Purmonen, and Uolevi Nikula. 2008.
A Study of  Visualization  in  Introductory  Programming.
181–194.

[16] Mary Lou Maher,  Celine Latulipe,  Heather  Lipford,  and
Audrey Rorrer. 2015. Flipped Classroom Strategies for CS
Education.  In  Proceedings  of  the  46th  ACM  Technical
Symposium on Computer Science Education (SIGCSE ’15),
218–223. DOI:https://doi.org/10.1145/2676723.2677252

[17] S.T.  March  and  G.F.  Smith.  1995.  Design  and  Natural
Science  Research  on  Information  Technology.  Decision
Support Systems 15, 4 (1995), 251–266.

[18] William Isaac McWhorter and Brian C. O’Connor.  2009.
Do  LEGO®  Mindstorms®  motivate  students  in  CS1?
SIGCSE Bull. 41, 1 (2009), 438–442.

[19] Christine  B.  Meyer.  2001.  A  Case  in  Case  Study
Methodology.  Field Methods 13, 4 (November 2001), 329–
352. DOI:https://doi.org/10.1177/1525822X0101300402

[20] Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson.
2005.  Mining  student  CVS repositories  for  performance
indicators.  In  Proceedings  of  the  2005  international
workshop on Mining software repositories, 1–5.

[21] Matthew Mitchell, Judy Sheard, and Selby Markham. 2000.
Student  motivation  and  positive  impressions  of
computing  subjects.  In  Proceedings  of  the  Australasian
conference on Computing education, 189–194.

[22] Ma.  Mercedes  T.  Rodrigo  and  Ryan  S.J.d.  Baker.  2009.
Coarse-grained  detection  of  student  frustration  in  an
introductory  programming course.  In  Proceedings of  the
fifth  international  workshop  on  Computing  education
research workshop, 75–80.

[23] B Simon, R Lister, and S Fincher. 2006. Multi-Institutional
Computer  Science  Education  Research:  A  Review  of
Recent Studies of Novice Understanding. 12–17.

[24] Alan  L.  Tharp.  1981.  Getting  more  oomph  from
programming  exercises.  In  Proceedings  of  the  twelfth
SIGCSE  technical  symposium  on  Computer  science
education, 91–95.

[25] R.K. Yin. 2002.  Case Study Research: Design and Methods
(3rd edition ed.). SAGE Publications., Thousand Oaks, CA.


