CEUR-WS.org/Vol-2266/T3-3.pdf

HiLT@QIECSIL-FIRE-2018: A Named Entity
Recognition System for Indian Languages

Sagar, Srinivas P 'Y K L, Rusheel Koushik Gollakota, and Amitava Das

Indian Institute of Information Technology, Sri City, Andhra Pradesh 517646, India.
{sagar.r16,srinivas.p, rusheelkoushik.g16}@iiits.in
amitava.das@mechyd.ac.in

Abstract. In this paper, we describe our submission for FIRE 2018
Shared Task on Named Entity Recognition in Indian Languages[3]. Iden-
tification of Named Entities is important in several higher language
technology systems such as Information Extraction systems, Machine
Translation systems, and Cross-Lingual Information Access systems. The
system makes use of the different contextual information of the words
along with the Word-Level and Character-Level features that are help-
ful in predicting the various Named Entity Classes. This model is an
end to end Language Independent Deep Learning Model for Named En-
tity Recognition to support all Indian Languages. Our model uses no
domain-specific knowledge and no handcrafted rules of any sort to at-
tain good results. The model solely relies on semantic information in form
of word level embedding and character level embedding learned by unsu-
pervised learning algorithms so that this model can be replicated across
other languages.We have used 2CNN+LSTM model consisting of CNN
as character-level encoder, CNN as word-level encoder and BiLSTM as
the Tag Decoder.

Keywords: Named Entity Recognition - Deep Learning - Embeddings

1 Introduction

Named Entity Recognition (NER) is an important tool in almost all Natural Lan-
guage Processing applications. Proper identification and classification of Named
Entities are very crucial and pose a very big challenge to the NLP researchers.
This work focuses on NLP approaches for identifying Named Entities such as
Name, Number, Date, Event, Location, Things , Organization and Occupation.
NER is an important step to various NLP Applications like Machine Transla-
tion, Question Answering , Topic Modelling , Information Extraction and many
more. Further there is no concept of capitalization in Indian Languages like we
have in English and thus this makes NER task more difficult and challenging as
the rules prepared for English cannot be applied directly to Indian Languages
, so we have come up with a Language Independent Deep Learning Model for
Named Entity Recognition. In this paper, we use a simple 2CNN+LSTM model
to predict the tag of a word in a sentence built using character embeddings and

word embeddings in order to extract various features at the Character-Level and
Word-Level respectively.

The rest of the paper is organized as follows : In Section 2 we discuss about
the dataset for our task. In Section 3 we discuss about our methodology and
describe our model for Named Entity Recognition. In Section 4 we discuss about
various Experiments and Results. In Section 5 we finally conclude our paper.

2 Related Work

NER task has been extensively studied in the literature of Natural Language
Processing. Previous approaches in NER can be classified into Rule Based Ap-
proaches and Learning based approaches. Further Learning Based approaches
can be divided into Machine Learning Based Approaches and Deep Learning
Based Approaches. Another model was built for NER using large lists of names
of people, location etc. in 1996[8]. Rule based system had a big disadvantage
that a huge list was needed to be made for all the named entities before deter-
mining their Named Entity Class. They didn’t had the capability of detecting
a new Named Entity and determining their class if they are not already in the
dictionary. Then comes the learning based approaches where people use fea-
ture learning based approach using Hand Crafted Rules like Capitalization ,etc.
These features were given to machine learning based classifiers like SVM, Naive
Bayes,etc. which were then used to classify into different classes[7]. But this is a
problem with Indian language itself. Indian languages show frequent variation in
nature, so very big dictionaries cannot be made. Further there is a problem in the
language based approaches, since these language do not have capitalization and
other things which can be used to easily classify. Further it was also treated as
sequence labelling problem because the context is very important in determining
the entities. HMM and CRF were used to solve such problems[4]. Further lately,
deep active learning was used in order to gather more details, where character
level and word level encoders were also used for named entity recognition in En-
glish Language. Deep learning approaches have also been applied using LSTM
to predict the Named Entities and their class in Indian Languages[1].

3 Data

The labelled training for Hindi, Telugu, Tamil, Malayalam and Kannada was
provided by FIRE 2018 where every word in the sentence was tagged with their
corresponding NER Tag [2]. Further for pre-evaluation as well as final-evaluation
the unlabelled data was also provided for all the five Indian Languages.

3.1 Data Format

Every line in the training file had one word and their corresponding tag separated
by a tab space and a sentence ended with a "newline” and no tag corresponding

to it. The testing set data format was almost the same as training set, i.e. every
line had a word but it didn’t had a corresponding tag. And in the testing set, a
sentence also ended with the same "newline”.

3.2 Data Statistics

Table 1 describes the count of various tags in all five different languages. Here
”other” is not a NER Tag , it is used to mark any word which is not a Named
Entity. Since most of the words in a sentence, including ”,” and even ”.” | are
not Named Entities so that’s why other has the maximum count of tags on all
the languages.

Table 2 describes the number of sentences and the corresponding count of

Tagged Words in sentences for all the five languages.

Tag Distribution|Hindi |Telugu|Tamil |Kanadda|Malayalam
datenum 2672 2521 |15482 |1046 1609

event 2932 729 5112 523 837
location 166547 (95756 (134262 (10473 29371
name 88887 160499 |118021 |15110 59422
number 37754 |28618 |77310 (3948 30553
occupation 15732 |8437 |16507 |3081 8037
organization 12254 2431 {9999 746 4841
things 4048 1069 6183 242 1999

other 1141207|577625{1109354|262651 |701664

Table 1: Tag Distribution in different Languages for the training data

Data-Set Hindi |Telugu|Tamil |[Kannada|Malayalam
Sentences 76537 163223 |134030(20536 65188
Tagged Words|330826|200060|382876(35169 136669

Table 2: Sentences and Tagged Words in the training data

4 NER Model Description

We have built a 2CNN+LSTM model for this task of NER. For the task we have
used word level and character level features of a word. We have used CNN to
determine the Character Level Feature Vector and Word Level Feature Vector.
For this task LSTM can also be used in place of CNN but since [6], LSTM are
computationally much more expensive, so CNN was used. Fig. 1 describes the
complete workflow through the model. Our model consists of 3 components:

4.1 Character Level encoder

Initially, Character embeddings[5] are created for all characters in the words in
the training data. The length of the word varies in the training set so, each word

is made to a length of double the average length of the words in order to get
uniform length of each word. Words smaller than the given length are padded
and words longer are cut down . Further, Character tokenization is also done in
order to rank characters according to their frequency in all words. Only top 75%
of the characters are retained and all other characters are replaced by unknown
<UNK_CHAR> tag.

The Character Level Encoder, extracts the character level features of a word.
A sentence is taken as input and every word of the sentence is mapped to the
corresponding characters in that word. Every character in a word is further
mapped to corresponding character embedding . A word matrix is formed by
combining all the character embedding to form a matrix for every word. Then
CNN is applied over every word matrix formed by combining the character
vectors of every word. Further a Max-Pooling layer is applied over every word
matrix to get a Character Level Feature Vector.

4.2 Word Level Encoder

Word embeddings[5] are created for all the words using word2vec. We need to
bring the sentences to uniform length, so sentences are made to a length double
the average length of sentences in the training set. Sentences smaller than the
given length are padded and sentences longer and cut down to this length. All
the sentences are then tokenized and the words are ranked according to their
frequency in the document . Further, in order to handle the case of unknown
words the top 75 % of the word are retained and the remaining words are replaced
by unknown <UNK_WORD> tag.

Word level encoder extracts the word level features from the surrounding
words in a sentence. A sentence is taken as input and every word of the sentence
is mapped to its word embeddings. Word embedding of a word is concatenated
with the character level feature vector of that particular word. A matrix is formed
by combining all the vectors of words to form a sentence-matrix. Then CNN is
applied over the sentence-matrix. Max pooling layer is not applied because we
need the same number of vectors as output as the length of sentence in order to
determine the NER Tag of every word in the sentence.

4.3 Tag decoder

The Tag Decoder induces a probability distribution [1] over a sequence of tags in
a sentence. A sentence is taken as input and every word of the sentence is mapped
to its word embedding. Now the output which we got from the Word-Level CNN
was concatenated with the corresponding word embeddings. Now this is given
as the input to the Bidirectional LSTM. Further the Bi-LSTM determines the
output tag of all the words in the sentence. Output of every word is passed
through 3 projection layers and Softmax is applied on the last projection layer
to determine the corresponding tag.

input_4: InputLayer

embedding_5: Embedding

time_distributed_8(embedding_6): TimeDistributed(Embedding)

time_distributed_9(conv1d_4): TimeDistributed(Conv1D)

A |
time_distributed_10(conv1d_5): TimeDistributed(Conv1D) |

input_5: InputLayer

time_distributed_1 I (max_pooling1d_2): TimeDistributed(MaxPooling D)

\ /

reshape_2: Reshape embedding_7: Embedding

>~

concatenate_3: Concatenate

input_6: InputLayer

y r

conv1d_6: ConvlD embedding_8: Embedding

~N S

concatenate_4: Concatenate

bidirectional_2(Istm_2): Bidirectional(LSTM)

time_distributed_12(dense_4): TimeDistributed(Dense)

time_distributed_13(dense_5): TimeDistributed(Dense)

time_distributed_14(dense_6): TimeDistributed(Dense)

Fig. 1: Language Independent Named Entity Recognition Model

5 Experimental Results

Our model is a non-linear, and we need to tune a number of hyper parameters for
an optimal performance. Hyper parameters are described as follows. The Char-
acter Level Embedding Size determines the length of the character embedding
vector. We have used the embedding size to be 50 . The Word Embedding Size
determines the length of Word Embedding Vector and we have set the embedding
size to be 100 with window size of 5. Following this we selected top words and
top characters after tokenization and marked all other words as UNK_WORD.
We chose top 756% of the words for tokenization. We have used 2 CNN Layers
with 20 and 11 filters respectively for extracting Character Level features in a
word respectively. Then we have applied another CNN layer with 10 filters for
extracting Word Level Features in a sentence. The number of layers of Bi-LSTM
as a tag decoder and the number of hidden units in Bi-LSTM which are used
to determine the tag of a sentence is also one of the important parameter. We
have used just one layer of Bi-LSTM with hidden units equal to 300. Number
of layers in the feed forward network and number of cells in each layer is also
one of the hyper parameters. We have used 3 dense layers, the first and second
dense layers have 100 cells and the third layer having the number of cells equal
to number of classes we need to categorize.

5.1 Training

Adam optimizer is applied with ”categorical_crosentropy” loss. We have splitted
data into Training and Validation data validation split of 20% Now the model is
trained for 25 epochs with an early stopping of patience 2 on validation loss. On
this, most of the languages we got maximum accuracy in around 7 to 9 epochs
and after that overfitting started.

5.2 Testing

For testing all the word not in the dictionary of the system are marked with
unknown <UNK_WORD> and similarly for all the characters not in the list are
marked as unknown <UNK_CHAR>. Further all the sentences are limited to
double the average length of sentence which we had fixed earlier during training.
Similarly all the words are limited to double the average length of words which
we had fixed earlier during training. Results are predicted for the sentence for
the length of double the average length of a sentence. For the remaining words
the ”other” tag is marked.

Table 3 describes our F1 Score which we achieved in all these five languages
for both pre-evaluation and final-evaluation for the given five Indian Languages.
Table 4 describes describes the F1 Score of all NER tags for all five Indian
Languages.

F1-Scores Hindi|Telugu|Tamil | Kannada|Malayalam
Pre-Evaluation [94.44(92.42 |92.48 |92.94 92.92
Final-Evaluation|94.35 (92.47 |91.79 |93.17 92.1

Table 3: Our score for pre-evaluation and final-evaluation

F1 Scores |Hindi|Telugu|Tamil|Malayalam|Kannada
datenum 89 39 71 21 35
event 71 49 67 57 59
location 93 91 87 70 69
name 73 72 71 65 52
number 85 80 87 84 68
occupation |78 74 72 70 59
oragnisation|77 52 61 64 52
other 96 |95 95 95 96
things 65 54 68 51 16

Table 4: Our Score for various tags of different languages

6 Conclusion

We have developed a named entity recognition system using deep learning for
five different languages Hindi, Telugu, Tamil, Malayalam, Kannada. We have
considered the Character Level and Word Level features. The model is a language
independent model for Named Entity Recognition for Indian Languages which
performs better than rule based approaches. This model can be extended further
to many other Indian Languages as this approach does not require much of
annotated data and also does not require an expert from that language to form
the rules for Named Entity Recognition. Evaluation results show that the model
performs slightly better for Hindi over other languages.

References

1. Vinayak Athavale, Shreenivas Bharadwaj, Monik Pamecha, Ameya Prabhu, and
Manish Shrivastava. Towards deep learning in hindi NER: an approach to tackle
the labelled data sparsity. CoRR, abs/1610.09756, 2016.

2. H B Barathi Ganesh, K P Soman, U Reshma, Kale Mandar, Mankame Prachi,
Kulkarni Gouri, Kale Anitha, and M Anand Kumar. Information extraction for
conversational systems in indian languages - arnekt iecsil. In Forum for Information
Retrieval Evaluation, 2018.

3. H B Barathi Ganesh, K P Soman, U Reshma, Kale Mandar, Mankame Prachi,
Kulkarni Gouri, Kale Anitha, and M Anand Kumar. Overview of arnekt iecsil
at fire-2018 track on information extraction for conversational systems in indian
languages. In FIRE (Working Notes), 2018.

4. Asif "Ekbal, Rejwanul Haque, Amitava Das, Venkateswarlu Poka, and Sivaji”
Bandyopadhyay. ”language independent named entity recognition in indian lan-

guages”. In ”Proceedings of the IICNLP-08 Workshop on Named Entity Recognition
for South and South East Asian Languages”, ”2008”.

. Tomas Mikolov and Ilya Sutskever. Distributed representations of words and phrases
and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 3111-3119. Curran Associates, Inc., 2013.

. Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, and Animashree
Anandkumar. Deep active learning for named entity recognition. CoRR,
abs/1707.05928, 2017.

. Q Tri Tran, TX Thao Pham, Q Hung Ngo, Dien Dinh, and Nigel Collier. Named
entity recognition in vietnamese documents. Progress in Informatics Journal, 5:14—
17, 2007.

. Takahiro Wakao, Robert Gaizauskas, and Yorick Wilks. Evaluation of an algorithm
for the recognition and classification of proper names. In Proceedings of the 16th
conference on Computational linguistics-Volume 1, pages 418-423. Association for
Computational Linguistics, 1996.

