
Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

129

CREATING TOOLS TO ASSIST IN DEVELOPMENT OF CMS

SOFTWARE

G. Adamov
1,2,a

1 Laboratory of Information Technologies, Joint Institute for Nuclear Research, 6 Joliot-Curie,
Dubna, Moscow region, 141980, Russia

 2 Institute of Quantum Physics and Engineering Technologies, Georgian Technical University, 77
Kostava Str., Tbilisi, 0175, Georgia

E-mail: aadamov@jinr.ru

Software packages, created for the modern physics experiments, present a sets intertwined code

structures, written by different people and bundled together to perform range of different
reconstruction and analysis tasks on the experimental data. Sometimes due to complicated nature of
such frameworks a new set of tools is required to simplify their further development. In this work we
investigate an example of such tool, created for the CMS experiment to analyse the structure of its
software components.

Keywords: python, refactoring, CMSSW, source control

© 2018 George Adamov

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

130

1. CMS Software Overview

CMS Software (CMSSW) is an overall collection of software for the reconstruction and
analysis of data taken from the CMS detector. Following is a general description of the framework
interpreted by author, the CMSSW and all of its parts are best described in [1].

A tool described here is based on the main idea of the CMSSW offline analysis process – a

system of workflows. Without going deep into details it is basically predefined configurations and
instructions given to the CMSSSW to handle different types of analysis tasks performed with data
collected by CMS experiment. There are a lot of different parts and modules for various tasks inside
the framework, but for the workflow system to function properly the most important of them are the
following three.

cmsRun is a main executable of CMSSW event processing model, it manages the execution of
the framework modules which contain all the code for calibration, reconstruction, simulation etc. It is
configured at runtime by user’s job specific configuration file.

cmsDriver is a tool to create production-solid configuration files from minimal command line
options.

 runTheMatrix.py contains standard workflows (series of cmsDriver commands) for each
release. It is used for running a sequence of specific modules for the specific set of tasks based on the
workflow description.

Figure 1. A rough schema of CMSSW workflow dependencies

Figure 2. Example of the process tree running two workflows

The simplified diagram of the workflow subset structure, shown in Figure , describes the
relation between workflow and the parts used in it.

Workflow in this case is a predefined configuration, with specific unique id and name,
describing the way and execution order of the set of configuration files needed for specific task.

Step file is a configuration file run during the workflow execution and is responsible for
configuring the specific parameter and handling of the files, usually root files, needed for the

workflow. Step file also defines libraries that had to be used during analysis and parameters given to
them.

Library is a module compiled into a single loadable file by a CSMSW build tools and is
included during runtime to perform a specific task.

Module is a set of configuration/analysis code that handles the specific analysis task. It defines
the data that had to be used, describes the tasks that had to be performed on this data and the output to
be produced as the result of processing this information (plots, datasets, etc.). It consists of the source
files written both in Python and C, which basically tell CMSSW what data to process and how to

process it.
More details on CMS software are expounded in [2].

2. Description of the task

To make the maintenance of the workflow structure easier and simplify the modules
development, the idea of a help tool was introduced by the CMS software group management.

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

131

This tool had to list all libraries used during each step of the workflow process, categorize and
save information about them. This should potentially allow the developer to get throughout
information about workflow, determine what modules and what source code is used in it, quickly
understand which steps it consists of. Also it had to allow the reverse search from source, for example
any part of the module source code is changed with the workflow information and the source map

(which is generated by separate tool) developers can quickly understand what workflows will be
affected by it.

It also has to be portable enough to run in the shared cluster environment such as lxplus at
CERN, without installation of any additional libraries.

As one of the main priorities it was also requested to not interfere with the main software
packages in any way, basically to separate this new script from the CMSSW core components so it can
be easily adapted for different releases and not be dependent on them.

Also since multiple workflows can run in parallel at the same time, it is required that script
could simultaneously capture all the information of the running processes.

To satisfy the following request a tool was developed, written in Python language, since it is
widely used by the development team. This tool runs in parallel with the main workflow process,
monitors it and extracts the list of step configuration files and libraries loaded for the analysis
purposes. It then compares the libraries with pre-made list of source to module name mapping and
writes all the results to the database as well as generating a JSON file with needed information. From

this point developers can take a quick look at the JSON file or access a database through the CLI
(Command Line Interface) tool to view detailed information about the given workflow.

3. Detailed overview of the program

The main challenge for the program is to catch all the libraries used in all the workflow
configurations ran at the same time. To do that this program wraps around runTheMatrix.py and runs
it as a subprocess, this way it can see and continuously monitor all the child cmsRun processes,
responsible for running the step configurations (Figure , shows the dependency tree created during
run). It then takes the PID of each cmsRun process and reads the map file located at /proc/<PID>/map

from the file system. These files describe a region of contiguous virtual memory in a process and
contain information about libraries loaded during the process execution. This method was chosen since
it gives the most reliable and easy to parse information about libraries loaded from CMSSW core.
Script then sorts this file contents and selects the desired libraries, which are distinguished from
system libraries by a path pointing to framework location (Figure 3).

Figure 3. Libraries extracted from man file

After the workflow execution is finished all the collected results are written into the JSON file
and SQLite database. (Example can be seen in Figure 4).

The JSON output files contain information about the workflow id, step files and the libraries
that were used in them. SQLite database in addition has separate table to connect library names with

the module source files it was compiled from. This table is parsed from the list of source to module
name relations generated separately by different tool for each major framework release.

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

132

Figure 4. Examples of the produced JSON file and the SQLite database structure

The results then can be searched with the CLI tool integrated into the main executable of the
script. With this tool developer can see the dependency between each step configuration in workflow
and source files, used to compile libraries loaded in those steps.

CLI tool has two ways of outputting the results: as a formatted text into a terminal or a JSON
file with requested information and search parameters.

Figure 5. Examples of the search result in a form of JSON

There are several search types available: search for source files by library name, search for
libraries build from given module name, list of libraries used in specified workflow, list of source files

used in specified workflow. For each search a custom JSON structure is created. (Figure , shows
examples of such search). Results of the search in the chosen format are then presented to the
developer for further overview.

4. Future possibilities

Currently the described tool is used internally by a handful of developers as an additional
option for codebase discovery and considered to satisfy all initial requirements.

 Still it is possible to improve the existing tool. For example by creating a web interface for it,
which will allow to run and search the workflows, as well as execute code search, through the more

easy and understandable web page.
Another thing that can be improved is a database, which could be made more persistent and

centralized to store all the information about current release as well as give an ability to see changes
made to the workflows between the release versions. It will also open an opportunity to add the
statistics of the workflows and files usage inside the framework.

This change however will require a dedicated server space and as a consequence will cause
less portability of the script, so it is debatable if such an outcome worth all the effort required. That’s
why at the moment it is decided to leave all as it is, collect more user response and request from

developers and then decide what further steps to take.

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

133

5. Conclusion

This work, while not offering something groundbreaking or innovative, shows how small tools
like the one described can help in the development of much larger sophisticated software tools such as
CMS Software framework.

Such tools can ease the life of developers and present an additional option for code refactoring

and code discovery in projects with large codebase. This in return gives an ability to spend less time
searching for the right parts of code and instead quickly change it, knowing exactly what parts of the
framework will be affected. It also allows new developers to easily navigate big project, know
consequence of each action and thus greatly increase projects development speed which is a crucial for
effective development of any large system.

References

[1] The CMSSW Documentation Suite, The CMS Offline Workbook. Official CERN Twiki,
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook

[2] D. J. Lange. “The CMS Reconstruction Software”, Journal of Physics: Conference Series, 2011.
Vol. 331, no. 3. P. 032020.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook

