
Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

243

IMPROVING THE LOAD OF SUPERCOMPUTERS BASED

ON JOB MIGRATION USING CONTAINER

VIRTUALIZATION

S.P. Polyakov
a
, Yu.Yu. Dubenskaya

Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University (SINP MSU), 1(2),
Leninskie gory, GSP-1, Moscow 119991, Russia

E-mail: a s.p.polyakov@gmail.com

Modern supercomputer schedulers on average may leave ~10% and sometimes as much as 30% of the

computational resources idle. One possible approach to increase the load is to use an additional queue
of low-priority jobs small enough to fit into the schedule gaps. We propose to use this approach for
non-parallel jobs with arbitrary runtime wrapped in containers to allow them to be saved and migrated
to other nodes or back to the queue. As a result, all the idle nodes can be used for computations. We
also estimate the increase in average load and utilization efficiency that can be achieved using this

approach.

Keywords: supercomputers, supercomputer schedulers, average load, containers, container
virtualization, container migration

© 2018 Stanislav P. Polyakov, Yulia Yu. Dubenskaya

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

244

1. Improving the load of supercomputers and containers

Modern supercomputers use schedulers to allocate the computational resources. Despite the
substantial effort put into developing and improving scheduler algorithms, the average load of
supercomputers is often close to 90% and can be as low as 70% [1, 2]. This is caused by varying
dimensions of the submitted jobs (number of required computational nodes, runtime), unpredictable

submission time, and inaccuracy of runtime estimates.
Besides further improving the scheduling algorithms, other approaches can be used to address

the problem. One example is allowing the idle nodes to be used by additional low priority jobs that can
be terminated whenever the scheduler assigns the node to a regular job. The example of this approach
is the opportunistic use of idle Titan-2 resources by ATLAS [3].

Numerous problems can be solved by computations without parallelization so the
corresponding jobs can use any available resource slot. However, many such jobs require substantial
computation time and cannot fit into smaller gaps in the schedule. This problem can be solved by an

efficient mechanism of saving the current state of a computational node and continuing computations
from the saved state, possibly on a different node.

A variation of such mechanism, a live container migration, is implemented in several
container virtualization platforms including OpenVZ [4] and Docker [5] (in Docker, live migration is
currently available in experimental mode only).

We propose to increase the load of supercomputers by using an additional queue of non-
parallel jobs wrapped in containers. Containers can be started very quickly and impose little to no

overhead. Using the live migration tools containers can be saved and returned to the queue or migrated
directly to other nodes before the allotted time is over. Assuming the minimal scheduler time slot is
sufficient to start a container, perform some computations, and save it, the proposed approach
potentially allows to use all the nodes left idle by the scheduler and increase the load to 100% of the
available computational nodes. We are currently developing a prototype of the job management
system implementing this approach.

Our proposed system will not eliminate the need for further improvements in scheduling

algorithms: first, the containerized jobs that often need to be stopped and restarted reduce the
computational nodes efficiency, and second, these jobs are presumed to have lower priority than the
regular jobs. Conversely, improvements of the scheduling algorithms will reduce the effect of the
proposed system but will not make it useless while the load remains substantially lower than 100%.

In the following section, we further discuss scheduling algorithms and find an estimate of the
potential load increase resulting from our approach.

2. Scheduling algorithms and load estimate

One of the commonly used basic scheduling algorithms is FCFS (First-Come First-Served)

with backfilling [6]. The algorithm schedules the jobs in order of submission until the first job that
cannot be started immediately. This job is then assigned a reservation at the earliest time slot when
enough computational nodes become available, and the following jobs are only allowed to use these
nodes if they are expected to finish before the reserved time. A number of variations and modifications
have been proposed since the algorithm first appeared, and modern schedulers such as SLURM [7]
allow to tune the algorithm using various optimization parameters.

Figure 1 illustrates the problem and the backfilling approach: jobs 4-7 cannot be started
immediately so they are scheduled to further slots, in some cases changing the execution order. As

illustrated by the job 7, the nodes executing the same job do not have to be adjacent, although some
schedulers allow to take locality into account. Note that the backfilling algorithm used in Figure 1
allocates multiple reservations. A variation of the algorithm that allocates reservations to all jobs is
called conservative backfilling [8]; some schedulers such as MAUI [9] allow system administrators to
set up the number of reservations.

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

 Figure 1. An example of a schedule

 All variations of backfilling algorithm require an estimate of job runtime. Some schedulers
require the estimate to be submitted by the user along with the number of requested computational
units, the other may attempt to predict the runtime based on the previous jobs by the user [10, 11].

Inaccurate estimates may result in additional idle time for the nodes that can be used to run other jobs,
or in the job failing to complete before the end of the allotted time. In the latter case, the scheduler
may either terminate it forcibly or let it keep running and reschedule the affected reservations.

 For our load estimate we used a simulation of a simple conservative backfilling algorithm. Job
dimensions were generated randomly based on approximated 2017 data from Lomonosov-1
supercomputer (average number of CPU slots 7.5, standard deviation 16.7, maximum 512; average
runtime 255 minutes, standard deviation 1204 minutes, maximum 15 days). For user runtime

estimates, we used a simplified model with a single parameter, prediction accuracy p. The model is
based on the observation [12] that users typically select one of the “round” values as their runtime
estimates. We used a set of 20 standard round values (1, 2, 5, 10, 20, 30 minutes, 1, 2, 3, 6, 8, 12
hours, 1, 1.5, 2, 3, 5, 7, 10, 15 days) as possible inaccurate estimates. For each job one of the three
runtime estimates was selected randomly:

 (a) equal to actual runtime (probability p);
 (b) runtime rounded up to the closest round value (probability p(1-p));

 (c) runtime rounded up to the next closest round value (probability (1-p)2).
 The simulations were run for a supercomputer with 512 CPU slots and 180 days (with a time

slot corresponding to one minute). The calculated values of average load l were averaged over 10
attempts. Figure 2 shows the simulation results.

 Figure 2. Average load estimates

 If T=1 is the duration of a time slot used by the scheduler, t<1 is the combined time of starting

and saving a containerized job, and c is the performance ratio between containerized and non-
containerized jobs, then the increase of average load from 90% to 100% due to the use of our proposed
system corresponds to the increase of average utilization efficiency at least by 0.1(1-t)c of the peak
efficiency.

 245

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

246

Figure 3. A schedule with added containerized jobs

This estimate assumes that all additional containerized jobs are only allowed to run for one
time slot and must be saved before it is over regardless of the existing reservations. Alternative
approach is allowing these jobs to run continuously and only saving and migrating them before the

reservation by a regular job comes up. The potential downside of this approach is illustrated by the
Figure 3: if job 4 terminates earlier than planned, job 7 can start earlier (or another job using 4 CPU
slots and 1 time slot can be fit into the gap, if the job rescheduling is not allowed). But if the additional
containerized jobs a1 and a2 are not saved by the end of the third time slot, they cannot be terminated
without losing some progress. Similarly, a newly submitted job may be delayed if the nodes running
containerized jobs do not have enough time to save the containers.

3. Acknowledgement

 The work was supported by the Russian Foundation for Basic Research grant #18-37-00502

“Development and research of methods for increasing the performance of supercomputers based on
job migration using container virtualization”. The authors would also like to thank Sergey Zhumatiy
for useful discussions.

4. Conclusion

We proposed an approach to increase the average load of supercomputers using the container
virtualization mechanisms. We also estimated the potential increase in average load resulting from this
approach, and the corresponding increase in utilization efficiency.

References

[1] Leonenkov S., Zhumatiy S. Supercomputer Efficiency: Complex Approach Inspired by

Lomonosov-2 History Evaluation // Russian Supercomputing Days: Proc. Int. Conf. (Sept. 24-25,
2018, Moscow, Russia). Moscow State University, 2018. pp. 518–528.

[2] Antonov A.S. et al. Examination of supercomputer system jobs flow dynamic characteristics //
Computational methods and programming. 2013. V. 14, no. 4. pp. 104–108 (in Russian).

[3] F. Barreiro Megino et al. [ATLAS Collaboration]. Integration of Titan supercomputer at OLCF
with ATLAS Production System // J. Phys.: Conf. Ser. 2017. V. 898, no. 9. P. 092002.

[4] http://openvz.org/

[5] https://docker.com/

[6] Lifka D. The ANL/IBM SP scheduling system // 1st Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP). Feitelson D.G., Rudolph L. (eds.). Springer-Verlag, Apr. 1995. Lect.
Notes Comput. Sci. V. 949. pp. 295–303.

[7] https://slurm.schedmd.com/

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

247

[8] Mu’alem A.W., Feitelson D.G. Utilization, predictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling // IEEE Trans. Parallel & Distributed Syst. June 2001. V. 12
issue 6. pp. 529–543.

[9] http://www.adaptivecomputing.com/products/open-source/maui/

[10] Tsafrir D, Etsion Y., Feitelson D.G. Backfilling Using System-Generated Predictions Rather than
User Runtime Estimates // IEEE Trans. Parallel & Distributed Syst. June 2007. V. 18 issue 6. pp. 789–
803.

[11] Gaussier E. et al. Improving backfilling by using machine learning to predict running times //
Proc. Int. Conf. for High Performance Computing, Networking, Storage and Analysis. ACM, 2015. P.
64.

[12] Tsafrir D., Etsion Y., Feitelson D.G. Modeling user runtime estimates // 11th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP). Feitelson D.G. et al. (eds.). Springer-Verlag,
June 2005. Lect. Notes Comput. Sci. V. 3834. pp. 1–35.

